Skip to content
2000
Volume 17, Issue 1
  • ISSN: 0929-8665
  • E-ISSN: 1875-5305

Abstract

The growth factor receptor-bound protein Src homology 2 (Grb2-SH2) plays an important role in the oncogenic Ras signaling pathway, which involves in cell proliferation and differentiation. Therefore, the antagonist of Grb2-SH2 has become a potential target for developing anticancer agents. Recently, we discovered the peptide 1 (Fmoc-Glu-Tyr-Aib- Asn-NH2) with high affinity for the Grb2-SH2 domain by using surface plasmon resonance (SPR)-biosensor technology. Herein, we report the further design of the lead peptide 1 by addition of an Arg-Gly-Asp sequence to 1 to enhance its binding to Grb2-SH2 and to induce apoptosis in cancer cells. Both the linear and cyclic analogs of the newly designed compounds were prepared along with an analog in which the Nα-Fmoc group was removed. These peptide analogs were assayed for their affinity for the Grb2-SH2, their antiproliferative effect on human breast cancer cells, their specificity for cancer cells, and their effects on cytotoxicity and the cell cycle. MCF-7 and MDA-MB-453 breast cancer cells were treated with various concentrations of each peptide. The cell viability and cytotoxicity of peptide-treated cells were determined by using the cell proliferation kit (3-[4, 5-dimethyl-2-thiazolyl]-2, 5-diphenyl-tetrazolium bromide, MTT) and cytotoxicity kit (lactate dehydrogenase, LDH), respectively. Effects of peptides on the cell cycle progression of cancer cells and apoptosis were analyzed by using flow cytometry. Results demonstrated that the peptide analog 2 (H-Arg-Gly-Asp- Glu-Tyr-Aib-Asn-Arg-Gly-Asp-NH2) had anti-proliferative effects on MCF-7 and MDA-MB-453 cells with the IC50 of 45.7 μM and 47.4 μM, respectively. The cytotoxicity and percentage of sub-G1 in the cell cycle were increased in these cancer cells when cells were treated with higher concentration of the Arg-Gly-Asp-containing peptide 2. These results provide important information for the development of anti-cancer agents.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/092986610789909421
2010-01-01
2025-06-20
Loading full text...

Full text loading...

/content/journals/ppl/10.2174/092986610789909421
Loading

  • Article Type:
    Research Article
Keyword(s): apoptosis; cell cycle; cell viability; cytotoxicity; human breast cancer cell line; Peptide
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test