Skip to content
2000
Volume 14, Issue 8
  • ISSN: 0929-8665
  • E-ISSN: 1875-5305

Abstract

It is a critical challenge to develop automated methods for fast and accurately determining the structures of proteins because of the increasingly widening gap between the number of sequence-known proteins and that of structureknown proteins in the post-genomic age. The knowledge of protein structural class can provide useful information towards the determination of protein structure. Thus, it is highly desirable to develop computational methods for identifying the structural classes of newly found proteins based on their primary sequence. In this study, according to the concept of Chou's pseudo amino acid composition (PseAA), eight PseAA vectors are used to represent protein samples. Each of the PseAA vectors is a 40-D (dimensional) vector, which is constructed by the conventional amino acid composition (AA) and a series of sequence-order correlation factors as original introduced by Chou. The difference among the eight PseAA representations is that different physicochemical properties are used to incorporate the sequence-order effects for the protein samples. Based on such a framework, a dual-layer fuzzy support vector machine (FSVM) network is proposed to predict protein structural classes. In the first layer of the FSVM network, eight FSVM classifiers trained by different PseAA vectors are established. The 2nd layer FSVM classifier is applied to reclassify the outputs of the first layer. The results thus obtained are quite promising, indicating that the new method may become a useful tool for predicting not only the structural classification of proteins but also their other attributes.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/092986607781483778
2007-08-01
2025-05-23
Loading full text...

Full text loading...

/content/journals/ppl/10.2174/092986607781483778
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test