Skip to content
2000
image of Recent Updates on Chemo Biodiversity of the Genus Cladosporium

Abstract

Endophytes are an appealing source of natural products with unique structures that can aid in the treatment of life-altering disorders because of the complexity and structural variety of the secondary metabolites they produce. The genus , which belongs to family Cladosporiaceae, class Dothideomycetes has received more attention due to the isolation of various classes of compounds with unique structures mainly alkaloids, azaphilones, benzofluoranthenones, coumarins, isocumarins, lactones, naphthalenones, macrolides, perylenequinones and steroids that exhibited diverse biological activities as: antiviral, antimicrobial, anti-inflammatory, antidiabetic, phytotoxicity and anti-Alzheimer, whereas anticancer compounds predominated. This review focuses on the isolated secondary metabolites from genus specifically, and due to their exquisite bioactivity, the source of the strains, the culture media, the biological potential of isolated secondary metabolites and covers the literature from 2000 to 2023.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155328257241021033118
2024-10-30
2025-01-11
Loading full text...

Full text loading...

References

  1. Redecker D. Kodner R. Graham L.E. Glomalean fungi from the Ordovician. Science 2000 289 5486 1920 1921 10.1126/science.289.5486.1920 10988069
    [Google Scholar]
  2. Shukla S. Habbu P. Kulkarni V. Jagadish K. Pandey A. Sutariya V. Endophytic microbes: A novel source for biologically/pharmacologically active secondary metabolites. Asian J. Pharmacol. Toxicol 2014 2 1 6
    [Google Scholar]
  3. Ali L. Khan A.L. Hussain J. Al-Harrasi A. Waqas M. Kang S.M. Al-Rawahi A. Lee I.J. Sorokiniol: A new enzymes inhibitory metabolite from fungal endophyte Bipolaris sorokiniana LK12. BMC Microbiol. 2016 16 1 103 10.1186/s12866‑016‑0722‑7 27277006
    [Google Scholar]
  4. Bensch K. Groenewald J.Z. Meijer M. Dijksterhuis J. Jurjević Ž. Andersen B. Houbraken J. Crous P.W. Samson R.A. Cladosporium species in indoor environments. Stud. Mycol. 2018 89 1 177 301 10.1016/j.simyco.2018.03.002 29681671
    [Google Scholar]
  5. De Hoog G. Guarro J. Gene J. Figueras M. Atlas of clinical fungi, Centraalbureau voor Schimmelcultures. URV Netherlands 2nd ed 2000
    [Google Scholar]
  6. Domsch K.H. Compendium of soil fungi. IHW-Verlag. 1993 1 630 643
    [Google Scholar]
  7. Dugan F.M. Braun U. Groenewald J.Z. Crous P.W. Morphological plasticity in Cladosporium sphaerospermum. Persoonia 2008 21 1 9 16 10.3767/003158508X334389 20396574
    [Google Scholar]
  8. Zalar P. de Hoog G.S. Schroers H.J. Crous P.W. Groenewald J.Z. Gunde-Cimerman N. Phylogeny and ecology of the ubiquitous saprobe Cladosporium sphaerospermum, with descriptions of seven new species from hypersaline environments. Stud. Mycol. 2007 58 1 157 183 10.3114/sim.2007.58.06 18490999
    [Google Scholar]
  9. Bensch K. Braun U. Groenewald J.Z. Crous P.W. The genus Cladosporium. Stud. Mycol. 2012 72 1 1 401 10.3114/sim0003 22815589
    [Google Scholar]
  10. Shaker N. Ahmed G. El-Sawy M. Ibrahim H. Ismail H. Isolation, characterization and insecticidal activity of methylene chloride extract of cladosporium cladosporioides secondary metabolites against Aphis gossypii (Glov.). Journal of Plant Protection and Pathology 2019 10 2 115 119 10.21608/jppp.2019.40896
    [Google Scholar]
  11. Bai M. Zheng C.J. Tang D.Q. Zhang F. Wang H.Y. Chen G.Y. Two new secondary metabolites from a mangrove-derived fungus Cladosporium sp. JS1-2. J. Antibiot. (Tokyo) 2019 72 10 779 782 10.1038/s41429‑019‑0206‑8 31267010
    [Google Scholar]
  12. Ye Y.H. Zhu H.L. Song Y.C. Liu J.Y. Tan R.X. Structural revision of aspernigrin A, reisolated from Cladosporium herbarum IFB-E002. J. Nat. Prod. 2005 68 7 1106 1108 10.1021/np050059p 16038560
    [Google Scholar]
  13. Wu G. Sun X. Yu G. Wang W. Zhu T. Gu Q. Li D. Cladosins A-E, hybrid polyketides from a deep-sea-derived fungus, Cladosporium sphaerospermum. J. Nat. Prod. 2014 77 2 270 275 10.1021/np400833x 24499327
    [Google Scholar]
  14. Tie Q. Wang M. Huang X. Chen Y. Liu Y. Yang B. Li Y. A new indole alkaloid from Cladosporium sp. SCSIO41205. Nat. Prod. Res. 2023 25 1 4 10.1080/14786419.2023.2261610 37746840
    [Google Scholar]
  15. Yehia R.S. Osman G.H. Assaggaf H. Salem R. Mohamed M.S.M. Isolation of potential antimicrobial metabolites from endophytic fungus Cladosporium cladosporioides from endemic plant Zygophyllum mandavillei. S. Afr. J. Bot. 2020 134 296 302 10.1016/j.sajb.2020.02.033
    [Google Scholar]
  16. Han X. Bao X.F. Wang C.X. Xie J. Song X.J. Dai P. Chen G.D. Hu D. Yao X.S. Gao H. Cladosporine A, a new indole diterpenoid alkaloid with antimicrobial activities from Cladosporium sp. Nat. Prod. Res. 2021 35 7 1115 1121 10.1080/14786419.2019.1641807 31307232
    [Google Scholar]
  17. Fan Z. Sun Z.H. Liu H.X. Chen Y.C. Li H.H. Zhang W.M. Perangustols A and B, a pair of new azaphilone epimers from a marine sediment-derived fungus Cladosporium perangustm FS62. J. Asian Nat. Prod. Res. 2016 18 11 1024 1029 10.1080/10286020.2016.1181623 27240037
    [Google Scholar]
  18. Lu Y. Li S. Shao M. Xiao X. Kong L. Jiang D. Zhang Y. Isolation, identification, derivatization and phytotoxic activity of secondary metabolites produced by Cladosporium oxysporum DH14, a locust-associated fungus. J. Integr. Agric. 2016 15 4 832 839 10.1016/S2095‑3119(15)61145‑5
    [Google Scholar]
  19. Wang C.N. Lu H.M. Gao C.H. Guo L. Zhan Z.Y. Wang J.J. Liu Y.H. Xiang S.T. Wang J. Luo X.W. Cytotoxic benzopyranone and xanthone derivatives from a coral symbiotic fungus Cladosporium halotolerans GXIMD 02502. Nat. Prod. Res. 2021 35 24 5596 5603 10.1080/14786419.2020.1799363 32713199
    [Google Scholar]
  20. Liu Y. Kurtán T. Yun Wang C. Han Lin W. Orfali R. Müller W.E.G. Daletos G. Proksch P. Cladosporinone, a new viriditoxin derivative from the hypersaline lake derived fungus Cladosporium cladosporioides. J. Antibiot. (Tokyo) 2016 69 9 702 706 10.1038/ja.2016.11 26905758
    [Google Scholar]
  21. Zhang F.Z. Li X.M. Li X. Yang S.Q. Meng L.H. Wang B.G. Polyketides from the mangrove-derived endophytic fungus Cladosporium cladosporioides. Mar. Drugs 2019 17 5 296 10.3390/md17050296 31108946
    [Google Scholar]
  22. Zhu M. Gao H. Wu C. Zhu T. Che Q. Gu Q. Guo P. Li D. Lipid-lowering polyketides from a soft coral-derived fungus Cladosporium sp. TZP29. Bioorg. Med. Chem. Lett. 2015 25 17 3606 3609 10.1016/j.bmcl.2015.06.072 26169125
    [Google Scholar]
  23. Singh B. Sharma P. Kumar A. Chadha P. Kaur R. Kaur A. Antioxidant and in vivo genoprotective effects of phenolic compounds identified from an endophytic Cladosporium velox and their relationship with its host plant Tinospora cordifolia. J. Ethnopharmacol. 2016 194 450 456 10.1016/j.jep.2016.10.018 27721051
    [Google Scholar]
  24. Amin M. Zhang X.Y. Xu X.Y. Qi S.H. New citrinin derivatives from the deep-sea-derived fungus Cladosporium sp. SCSIO z015. Nat. Prod. Res. 2020 34 9 1219 1226 10.1080/14786419.2018.1556266 30663375
    [Google Scholar]
  25. He ZH. Zhang G. Yan QX. Zou ZP. Xiao HX. Xie CL. Tang XX. Luo LZ. Yang XW. Cladosporactone A, a unique polyketide with 7‐Methylisochromen‐3‐one Skeleton from the deep‐sea‐derived fungus Cladosporium cladosporioides Chem. Biodivers 2020 17 6 158 162
    [Google Scholar]
  26. Wang X. Radwan M.M. Taráwneh A.H. Gao J. Wedge D.E. Rosa L.H. Cutler H.G. Cutler S.J. Antifungal activity against plant pathogens of metabolites from the endophytic fungus Cladosporium cladosporioides. J. Agric. Food Chem. 2013 61 19 4551 4555 10.1021/jf400212y 23651409
    [Google Scholar]
  27. Zhang B. Wu J.T. Zheng C.J. Zhou X.M. Yu Z.X. Li W.S. Chen G.Y. Zhu G.Y. Bioactive cyclohexene derivatives from a mangrove-derived fungus Cladosporium sp. JJM22. Fitoterapia 2021 149 104823 10.1016/j.fitote.2020.104823 33387642
    [Google Scholar]
  28. de Medeiros L.S. Murgu M. de Souza A.Q.L. Rodrigues-Fo E. Antimicrobial depsides produced by Cladosporium uredinicola, an endophytic fungus isolated from Psidium guajava fruits. Helv. Chim. Acta 2011 94 6 1077 1084 10.1002/hlca.201000387
    [Google Scholar]
  29. Rotinsulu H. Yamazaki H. Sugai S. Iwakura N. Wewengkang D.S. Sumilat D.A. Namikoshi M. Cladosporamide A, a new protein tyrosine phosphatase 1B inhibitor, produced by an Indonesian marine sponge-derived Cladosporium sp. J. Nat. Med. 2018 72 3 779 783 10.1007/s11418‑018‑1193‑y 29508256
    [Google Scholar]
  30. Hamayun M. Afzal Khan S. Ahmad N. Tang D.S. Kang S.M. Na C.I. Sohn E.Y. Hwang Y.H. Shin D.H. Lee B.H. Kim J-G. Lee I-J. Cladosporium sphaerospermum as a new plant growth-promoting endophyte from the roots of Glycine max (L.) Merr. World J. Microbiol. Biotechnol. 2009 25 4 627 632 10.1007/s11274‑009‑9982‑9
    [Google Scholar]
  31. Jadulco R. Brauers G. Edrada R.A. Ebel R. Wray V. Sudarsono S. Proksch P. New metabolites from sponge-derived fungi Curvularia lunata and Cladosporium herbarum. J. Nat. Prod. 2002 65 5 730 733 10.1021/np010390i 12027752
    [Google Scholar]
  32. Li C.P. Song Y.P. Liang X.R. Ji N.Y. Four dodecanoic acid derivatives from the cold-seep-derived fungus Cladosporium cladosporioides 8-1. Nat. Prod. Res. 2023 17 1 6 37194666
    [Google Scholar]
  33. Zhang F.Z. Li X.M. Yang S.Q. Meng L.H. Wang B.G. Thiocladospolides A–D, 12-membered macrolides from the mangrove-derived endophytic fungus Cladosporium cladosporioides MA-299 and structure revision of pandangolide 3. J. Nat. Prod. 2019 82 6 1535 1541 10.1021/acs.jnatprod.8b01091 31038952
    [Google Scholar]
  34. Zhang F.Z. Li X.M. Meng L.H. Wang B.G. Cladocladosin A, an unusual macrolide with bicyclo 5/9 ring system, and two thiomacrolides from the marine mangrove-derived endophytic fungus, Cladosporium cladosporioides MA-299. Bioorg. Chem. 2020 101 103950 10.1016/j.bioorg.2020.103950 32474178
    [Google Scholar]
  35. Liu H.X. Tan H.B. Li S.N. Chen Y.C. Li H.H. Qiu S.X. Zhang W.M. Two new 12-membered macrolides from the endophytic fungal strain Cladosprium colocasiae A801 of Callistemon viminalis. J. Asian Nat. Prod. Res. 2019 21 7 696 701 10.1080/10286020.2018.1471067 29741104
    [Google Scholar]
  36. Salvatore M.M. Andolfi A. Nicoletti R. The genus Cladosporium: A rich source of diverse and bioactive natural compounds. Molecules 2021 26 13 3959 10.3390/molecules26133959 34203561
    [Google Scholar]
  37. Dai H.Q. Kang Q.J. Li G.H. Shen Y.M. Three new polyketide metabolites from the endophytic fungal strain Cladosporium tenuissimum LR463 of Maytenus hookeri. Helv. Chim. Acta 2006 89 3 527 531 10.1002/hlca.200690055
    [Google Scholar]
  38. Wuringege Guo Z-K. Wei W. Jiao R-H. Yan T. Zang L-Y. Jiang R. Tan R-X. Ge H-M. Polyketides from the plant endophytic fungus Cladosporium sp. IFB3lp-2. J. Asian Nat. Prod. Res. 2013 15 9 928 933 10.1080/10286020.2013.817389
    [Google Scholar]
  39. Wang W. Feng H. Sun C. Che Q. Zhang G. Zhu T. Li D. Thiocladospolides F-J, antibacterial sulfur containing 12-membered macrolides from the mangrove endophytic fungus Cladosporium oxysporum HDN13-314. Phytochemistry 2020 178 112462 10.1016/j.phytochem.2020.112462 32888671
    [Google Scholar]
  40. Gesner S. Cohen N. Ilan M. Yarden O. Carmeli S. Pandangolide 1a, a metabolite of the sponge-associated fungus Cladosporiumsp., and the absolute stereochemistry of pandangolide 1 and iso-cladospolide B. J. Nat. Prod. 2005 68 9 1350 1353 10.1021/np0501583 16180812
    [Google Scholar]
  41. Shigemori H. Kasai Y. Komatsu K. Tsuda M. Mikami Y. Kobayashi J. Sporiolides A and B, new cytotoxic twelve-membered macrolides from a marine-derived fungus Cladosporium species. Mar. Drugs 2004 2 4 164 169 10.3390/md204164
    [Google Scholar]
  42. Huang C. Chen T. Yan Z. Guo H. Hou X. Jiang L. Long Y. Thiocladospolide E and cladospamide A, novel 12-membered macrolide and macrolide lactam from mangrove endophytic fungus Cladosporium sp. SCNU-F0001. Fitoterapia 2019 137 104246 10.1016/j.fitote.2019.104246 31226284
    [Google Scholar]
  43. Ghaffari F. Ebadi M. Mollaei S. Isolation and molecular identification of endophytic fungi associated with Ziziphora tenuior L. and their biological potential. S. Afr. J. Bot. 2023 161 358 364 10.1016/j.sajb.2023.08.024
    [Google Scholar]
  44. Jadulco R. Proksch P. Wray V. Sudarsono Berg A. Gräfe U. New macrolides and furan carboxylic acid derivative from the sponge-derived fungus Cladosporium herbarum. J. Nat. Prod. 2001 64 4 527 530 10.1021/np000401s 11325242
    [Google Scholar]
  45. Ma R.Z. Zheng C.J. Zhang B. Yang J.Y. Zhou X.M. Song X.M. Two New naphthalene-chroman coupled derivatives from the mangrove-derived fungus Cladosporium sp. JJM22. Phytochem. Lett. 2021 43 114 116 10.1016/j.phytol.2021.03.014
    [Google Scholar]
  46. Wu J.T. Zheng C.J. Zhang B. Zhou X.M. Zhou Q. Chen G.Y. Zeng Z.E. Xie J.L. Han C.R. Lyu J.X. Two new secondary metabolites from a mangrove-derived fungus Cladosporium sp. JJM22. Nat. Prod. Res. 2019 33 1 34 40 10.1080/14786419.2018.1431634 29388439
    [Google Scholar]
  47. Zhang Z. He X. Liu C. Che Q. Zhu T. Gu Q. Li D. Clindanones A and B and cladosporols F and G, polyketides from the deep-sea derived fungus Cladosporium cladosporioides HDN14-342. RSC Advances 2016 6 80 76498 76504 10.1039/C6RA14640F
    [Google Scholar]
  48. Naseer S. Bhat K.A. Qadri M. Riyaz-Ul-Hassan S. Malik F.A. Khuroo M.A. Bioactivity‐guided isolation, antimicrobial and cytotoxic evaluation of secondary metabolites from Cladosporium tenuissimum associated with Pinus wallichiana. ChemistrySelect 2017 2 3 1311 1314 10.1002/slct.201601942
    [Google Scholar]
  49. Zhang F. Zhou L. Kong F. Ma Q. Xie Q. Li J. Dai H. Guo L. Zhao Y. Altertoxins with quorum sensing inhibitory activities from the marine-derived fungus Cladosporium sp. KFD33. Mar. Drugs 2020 18 1 67 10.3390/md18010067 31963874
    [Google Scholar]
  50. Li H.L. Li X.M. Mándi A. Antus S. Li X. Zhang P. Liu Y. Kurtán T. Wang B.G. Characterization of cladosporols from the marine algal-derived endophytic fungus Cladosporium cladosporioides EN-399 and configurational revision of the previously reported cladosporol derivatives. Wang. J. Org. Chem. 2017 82 19 9946 9954 10.1021/acs.joc.7b01277 28853887
    [Google Scholar]
  51. Nasini G. Arnone A. Assante G. Bava A. Moricca S. Ragazzi A. Secondary mould metabolites of Cladosporium tenuissimum, a hyperparasite of rust fungi. Phytochemistry 2004 65 14 2107 2111 10.1016/j.phytochem.2004.03.013 15279980
    [Google Scholar]
  52. Ai W. Lin X. Wang Z. Lu X. Mangaladoss F. Yang X. Zhou X. Tu Z. Liu Y. Cladosporone A, a new dimeric tetralone from fungus Cladosporium sp. KcFL6′ derived of mangrove plant Kandelia candel. J. Antibiot. (Tokyo) 2015 68 3 213 215 10.1038/ja.2014.126 25248726
    [Google Scholar]
  53. Venkateswarulu N. Shameer S. Bramhachari P.V. Basha S.K.T. Nagaraju C. Vijaya T. Isolation and characterization of plumbagin (5- hydroxyl- 2- methylnaptalene-1,4-dione) producing endophytic fungi Cladosporium delicatulum from endemic medicinal plants. Biotechnol. Rep. (Amst.) 2018 20 e00282 10.1016/j.btre.2018.e00282 30294561
    [Google Scholar]
  54. Khan M.I.H. Sohrab M.H. Rony S.R. Tareq F.S. Hasan C.M. Mazid M.A. Cytotoxic and antibacterial naphthoquinones from an endophytic fungus, Cladosporium sp. Toxicol. Rep. 2016 3 861 865 10.1016/j.toxrep.2016.10.005 28959613
    [Google Scholar]
  55. So K.K. Chun J. Kim D.H. Antimicrobial and antitumor photodynamic effects of phleichrome from the phytopathogenic fungus Cladosporium Phlei. Mycobiology 2018 46 4 448 451 10.1080/12298093.2018.1551599 30637154
    [Google Scholar]
  56. Li X. Chen Y. Liu Z. Li S. Liu H. Wang Y. Zhang W. Yan H. Cytotoxic pyrone derivatives from the deep-sea-derived fungus Cladosporium halotolerans FS702. Nat. Prod. Res. 2023 1 7 36938638
    [Google Scholar]
  57. Abdulrahman M.S. Mansy M.S. Mekawey A.A. Amin B.H. Antimicrobial Activities of Secondary Metabolites from Airborne Cladosporium Species Isolated in Cairo. Egypt Res. Sq 2022 10.21203/rs.3.rs‑1605219/v1
    [Google Scholar]
  58. Xie M.M. Jiang J.Y. Zou Z.B. Xu L. Zhang Y. Wang C.F. Liu C.B. Yan Q.X. Liu Z. Yang X.W. Chemical constituents of the deep‐sea‐derived fungus Cladosporium oxysporum 170103 and their antibacterial effects. Chem. Biodivers. 2022 19 12 e202200963 10.1002/cbdv.202200963 36436828
    [Google Scholar]
  59. Lee S.R. Kang H. Yoo M.J. Yi S-A. Christine B. Lee J. Kim K.H. Lee J. Kim K.H. Anti-adipogenic pregnane steroid from a Hydractinia-associated fungus, Cladosporium sphaerospermum SW67. Nat. Prod. Sci. 2020 26 3 230 235 10.20307/nps.2020.26.3.230
    [Google Scholar]
  60. Hosoe T. Okamoto S. Nozawa K. Kawai K.I. Okada K. Takaki G.M.D.C. Fukushima K. Miyaji M. New pentanorlanostane derivatives, cladosporide B-D, as characteristic antifungal agents against Aspergillus fumigatus, isolated from Cladosporium sp. J. Antibiot. (Tokyo) 2001 54 9 747 750 10.7164/antibiotics.54.747 11714232
    [Google Scholar]
  61. Hosoe T. Okada H. Itabashi T. Nozawa K. Okada K. Campos Takaki G.M. Fukushima K. Miyaji M. Kawai K. A new pentanorlanostane derivative, cladosporide A, as a characteristic antifungal agent against Aspergillus fumigatus, isolated from Cladosporium sp. Chem. Pharm. Bull. (Tokyo) 2000 48 10 1422 1426 10.1248/cpb.48.1422 11045443
    [Google Scholar]
  62. Pang X. Lin X. Wang J. Liang R. Tian Y. Salendra L. Luo X. Zhou X. Yang B. Tu Z. Liu Y. Three new highly oxygenated sterols and one new dihydroisocoumarin from the marine sponge-derived fungus Cladosporium sp. SCSIO41007. Steroids 2018 129 41 46 10.1016/j.steroids.2017.12.001 29223616
    [Google Scholar]
  63. Pan F. El-Kashef D.H. Kalscheuer R. Müller W.E.G. Lee J. Feldbrügge M. Mándi A. Kurtán T. Liu Z. Wu W. Proksch P. Cladosins L-O, new hybrid polyketides from the endophytic fungus Cladosporium sphaerospermum WBS017. Eur. J. Med. Chem. 2020 191 112159 10.1016/j.ejmech.2020.112159 32101782
    [Google Scholar]
  64. Liang X. Huang Z.H. Ma X. Qi S.H. Qi, S.-H Unstable tetramic acid derivatives from the deep-sea-derived fungus Cladosporium sphaerospermum EIODSF 008. Mar. Drugs 2018 16 11 448 10.3390/md16110448 30445739
    [Google Scholar]
  65. Huang Z. Nong X. Liang X. Qi S. New tetramic acid derivatives from the deep-sea-derived fungus Cladosporium sp. SCSIO z0025. Tetrahedron 2018 74 21 2620 2626 10.1016/j.tet.2018.04.010
    [Google Scholar]
  66. Yu G.H. Wu G.W. Zhu T.J. Gu Q.Q. Li D.H. Cladosins F and G, two new hybrid polyketides from the deep-sea-derived Cladosporium sphaerospermum 2005-01-E3. J. Asian Nat. Prod. Res. 2015 17 2 120 124 10.1080/10286020.2014.940330 25081023
    [Google Scholar]
  67. Zhang Z. He X. Wu G. Liu C. Lu C. Gu Q. Che Q. Zhu T. Zhang G. Li D. Aniline-tetramic acids from the deep-sea-derived fungus Cladosporium sphaerospermum L3P3 cultured with the HDAC inhibitor SAHA. J. Nat. Prod. 2018 81 7 1651 1657 10.1021/acs.jnatprod.8b00289 29985604
    [Google Scholar]
  68. Rischer M. Lee S.R. Eom H.J. Park H.B. Vollmers J. Kaster A.K. Shin Y.H. Oh D.C. Kim K.H. Beemelmanns C. Spirocyclic cladosporicin A and cladosporiumins I and J from a Hydractinia -associated Cladosporium sphaerospermum SW67. Org. Chem. Front. 2019 6 8 1084 1093 10.1039/C8QO01104D
    [Google Scholar]
  69. Silber J. Ohlendorf B. Labes A. Wenzel-Storjohann A. Näther C. Imhoff J.F. Malettinin E, an antibacterial and antifungal tropolone produced by a marine Cladosporium strain. Front. Mar. Sci. 2014 1 35 10.3389/fmars.2014.00035
    [Google Scholar]
  70. Paul D. Park K. Identification of volatiles produced by Cladosporium cladosporioides CL-1, a fungal biocontrol agent that promotes plant growth. Sensors 2013 13 10 13969 13977 10.3390/s131013969 24135990
    [Google Scholar]
  71. Zhang Y. Luo L. Zhu S. Niu S. Zhang Y. Zhang Y. Cladoxanthones C–G, xanthone derivatives from Cladosporium sp. RSC Advances 2023 13 32 21954 21961 10.1039/D3RA04012G 37483674
    [Google Scholar]
  72. Zhu G. Kong F. Wang Y. Fu P. Zhu W. Cladodionen, a cytotoxic hybrid polyketide from the marine-derived Cladosporium sp. OUCMDZ-1635. Mar. Drugs 2018 16 2 71 10.3390/md16020071 29470403
    [Google Scholar]
  73. Sallam A. El-Metwally M. Sabry M.A. Elsbaey M. Cladamide: A new ceramide from the endophytic fungus Cladosporium cladosporioides. Nat. Prod. Res. 2023 37 7 1082 1091 10.1080/14786419.2021.1986709 34622719
    [Google Scholar]
  74. Liu D.R. Yan Q.X. Zou Z.B. Xie C.L. Yang X.W. Jia A.Q. Cladosporium sphaerospermum extract inhibits quorum sensing associated virulence factors of Serratia marcescens. Biofilm 2023 6 100146 10.1016/j.bioflm.2023.100146 37560185
    [Google Scholar]
  75. Wang N. Zhang S. Li Y.J. Song Y.Q. Lei C.Y. Peng Y.Y. Wang J.J. Lou B.H. Jiang H.B. Novel isolate of Cladosporium subuliforme and its potential to control Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae). Egypt. J. Biol. Pest Control 2023 33 1 37 10.1186/s41938‑023‑00685‑0
    [Google Scholar]
  76. Ameen F. Al-Homaidan A.A. Al-Sabri A. Almansob A. AlNAdhari S. Anti-oxidant, anti-fungal and cytotoxic effects of silver nanoparticles synthesized using marine fungus Cladosporium halotolerans. Appl. Nanosci. 2023 13 1 623 631 10.1007/s13204‑021‑01874‑9
    [Google Scholar]
  77. Adhikari P. Joshi K. Pandey A. Taxus associated fungal endophytes: Anticancerous to other biological activities. Fungal Biol. Rev. 2023 45 100308 10.1016/j.fbr.2023.100308
    [Google Scholar]
  78. Govindappa M. Lavanya M. Aishwarya P. Pai K. Lunked P. Hemashekhar B. Arpitha B.M. Ramachandra Y.L. Raghavendra V.B. Synthesis and characterization of endophytic fungi, Cladosporium perangustum mediated silver nanoparticles and their antioxidant, anticancer and nano-toxicological study. Bionanoscience 2020 10 4 928 941 10.1007/s12668‑020‑00719‑z
    [Google Scholar]
  79. Lee S.R. Lee D. Eom H.J. Rischer M. Ko Y.J. Kang K.S. Kim C.S. Beemelmanns C. Kim K.H. Hybrid polyketides from a hydractinia-associated Cladosporium sphaerospermum SW67 and their putative biosynthetic origin. Mar. Drugs 2019 17 11 606 10.3390/md17110606 31653089
    [Google Scholar]
  80. Zhu J. Wang Z. Song L. Fu W. Liu L. Anti-Alzheimer’s natural products derived from plant endophytic fungi. Molecules 2023 28 5 2259 10.3390/molecules28052259 36903506
    [Google Scholar]
/content/journals/npj/10.2174/0122103155328257241021033118
Loading
/content/journals/npj/10.2174/0122103155328257241021033118
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test