Skip to content
2000
Volume 15, Issue 1
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

Over the past few decades, researchers have become interested in natural compounds and their potential to prevent and treat diseases. Phenolic monoterpenoids, thymol and carvacrol, are quickly absorbed into the bloodstream through the gastrointestinal tract. Studies conducted and have shown that both thymol and carvacrol have anti-inflammatory, antioxidant, and antiapoptotic properties. Research indicates these compounds can easily cross the blood-brain barrier and offer neuroprotective effects. They are both very safe and have no toxicity in therapeutic doses. This review focuses on the neuroprotective effects of thymol and carvacrol and analyzes their impact on the central nervous system, including their antioxidant and anti-inflammatory effects. The report also highlights their potential influence on neurodegenerative diseases like Parkinson's and Alzheimer's, emotional disorders, and brain and spinal cord ischemia.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155288752240219095244
2025-01-01
2024-11-26
Loading full text...

Full text loading...

References

  1. Can BaserK. Biological and pharmacological activities of carvacrol and carvacrol bearing essential oils.Curr. Pharm. Des.200814293106311910.2174/13816120878640422719075694
    [Google Scholar]
  2. Gholami-AhangaranM. Ahmadi-DastgerdiA. AziziS. BasiratpourA. ZokaeiM. DerakhshanM. Thymol and carvacrol supplementation in poultry health and performance.Vet. Med. Sci.20228126728810.1002/vms3.66334761555
    [Google Scholar]
  3. Nagoor MeeranM.F. JavedH. Al TaeeH. AzimullahS. OjhaS.K. Pharmacological properties and molecular mechanisms of thymol: Prospects for its therapeutic potential and pharmaceutical development.Front. Pharmacol.2017838010.3389/fphar.2017.0038028694777
    [Google Scholar]
  4. Jyoti; Dheer, D.; Singh, D.; Kumar, G.; Karnatak, M.; Chandra, S.; Prakash Verma, V.; Shankar, R. Thymol chemistry: A medicinal toolbox.Curr. Bioact. Compd.201915545447410.2174/1573407214666180503120222
    [Google Scholar]
  5. LioliosC.C. GortziO. LalasS. TsaknisJ. ChinouI. Liposomal incorporation of carvacrol and thymol isolated from the essential oil of Origanum dictamnus L. and in vitro antimicrobial activity.Food Chem.20091121778310.1016/j.foodchem.2008.05.060
    [Google Scholar]
  6. KarimianP. KavoosiG. SaharkhizM.J. Antioxidant, nitric oxide scavenging and malondialdehyde scavenging activities of essential oils from different chemotypes of Zataria multiflora.Nat. Prod. Res.201126221410.1080/14786419.2011.63113622054260
    [Google Scholar]
  7. Sharifi-RadM. VaroniE.M. IritiM. MartorellM. SetzerW.N. del Mar ContrerasM. SalehiB. Soltani-NejadA. RajabiS. TajbakhshM. Sharifi-RadJ. Carvacrol and human health: A comprehensive review.Phytother. Res.20183291675168710.1002/ptr.610329744941
    [Google Scholar]
  8. KohlertC. SchindlerG. MärzR.W. AbelG. BrinkhausB. DerendorfH. GräfeE.U. VeitM. Systemic availability and pharmacokinetics of thymol in humans.J. Clin. Pharmacol.200242773173710.1177/00912700240110267812092740
    [Google Scholar]
  9. MichielsJ. MissottenJ. DierickN. FremautD. MaeneP. De SmetS. In vitro degradation and in vivo passage kinetics of carvacrol, thymol, eugenol and trans ‐cinnamaldehyde along the gastrointestinal tract of piglets.J. Sci. Food Agric.200888132371238110.1002/jsfa.3358
    [Google Scholar]
  10. AziziZ. EbrahimiS. SaadatfarE. KamalinejadM. MajlessiN. Cognitive-enhancing activity of thymol and carvacrol in two rat models of dementia.Behav. Pharmacol.201223324124910.1097/FBP.0b013e328353430122470103
    [Google Scholar]
  11. RathodN.B. KulawikP. OzogulF. RegensteinJ.M. OzogulY. Biological activity of plant-based carvacrol and thymol and their impact on human health and food quality.Trends Food Sci. Technol.202111673374810.1016/j.tifs.2021.08.023
    [Google Scholar]
  12. ImranM. AslamM. AlsagabyS.A. SaeedF. AhmadI. AfzaalM. ArshadM.U. AbdelgawadM.A. El-GhorabA.H. KhamesA. ShariatiM.A. AhmadA. HussainM. ImranA. IslamS. Therapeutic application of carvacrol: A comprehensive review.Food Sci. Nutr.202210113544356110.1002/fsn3.299436348778
    [Google Scholar]
  13. XuJ. ZhouF. JiB.P. PeiR.S. XuN. The antibacterial mechanism of carvacrol and thymol against Escherichia coli.Lett. Appl. Microbiol.200847317417910.1111/j.1472‑765X.2008.02407.x19552781
    [Google Scholar]
  14. KachurK. SuntresZ. The antibacterial properties of phenolic isomers, carvacrol and thymol.Crit. Rev. Food Sci. Nutr.202060183042305310.1080/10408398.2019.167558531617738
    [Google Scholar]
  15. SouzaE.L. OliveiraC.E.V. StamfordT.L.M. ConceiçãoM.L. Gomes NetoN.J. Influence of carvacrol and thymol on the physiological attributes, enterotoxin production and surface characteristics of Staphylococcus aureus strains isolated from foods.Braz. J. Microbiol.2013441293610.1590/S1517‑8382201300500000124159280
    [Google Scholar]
  16. KimH. LeeS. SonB. JeonJ. KimD. Lee; Youn, H.; Lee, J.M.; Youn, B. Biocidal effect of thymol and carvacrol on aquatic organisms: Possible application in ballast water management systems.Mar. Pollut. Bull.201813373474010.1016/j.marpolbul.2018.06.02530041370
    [Google Scholar]
  17. ElbeH. YigitturkG. CavusogluT. BaygarT. Ozgul OnalM. OzturkF. Comparison of ultrastructural changes and the anticarcinogenic effects of thymol and carvacrol on ovarian cancer cells: Which is more effective?Ultrastruct. Pathol.202044219320210.1080/01913123.2020.174036632183603
    [Google Scholar]
  18. MichielsJ. MissottenJ. Van HoorickA. OvynA. FremautD. De SmetS. DierickN. Effects of dose and formulation of carvacrol and thymol on bacteria and some functional traits of the gut in piglets after weaning.Arch. Anim. Nutr.201064213615410.1080/1745039090349991520481352
    [Google Scholar]
  19. SaravananS. PariL. Role of thymol on hyperglycemia and hyperlipidemia in high fat diet-induced type 2 diabetic C57BL/6J mice.Eur. J. Pharmacol.201576127928710.1016/j.ejphar.2015.05.03426007642
    [Google Scholar]
  20. HocaM. BecerE. VatanseverH.S. Carvacrol is potential molecule for diabetes treatment.Arch. Physiol. Biochem.20231810.1080/13813455.2023.228853738019023
    [Google Scholar]
  21. DouX. YanD. LiuS. GaoL. ShanA. Thymol alleviates LPS-induced liver inflammation and apoptosis by inhibiting NLRP3 inflammasome activation and the AMPK-mTOR-autophagy pathway.Nutrients20221414280910.3390/nu1414280935889766
    [Google Scholar]
  22. ZhaoW. ChenL. ZhouH. DengC. HanQ. ChenY. WuQ. LiS. Protective effect of carvacrol on liver injury in type 2 diabetic db/db mice.Mol. Med. Rep.202124574110.3892/mmr.2021.1238134435648
    [Google Scholar]
  23. El-SayedE.S.M. MansourA.M. Abdul-HameedM.S. Thymol and carvacrol prevent doxorubicin‐induced cardiotoxicity by abrogation of oxidative stress, inflammation, and apoptosis in rats.J. Biochem. Mol. Toxicol.2016301374410.1002/jbt.2174026387986
    [Google Scholar]
  24. EmE-S. ArA-A. am, M.; Aa, E.L-A. Thymol and carvacrol prevent cisplatin-induced nephrotoxicity by abrogation of oxidative stress, inflammation, and apoptosis in rats.J. Biochem. Mol. Toxicol.201529416517210.1002/jbt.2168125487789
    [Google Scholar]
  25. TrabaceL. ZottiM. MorgeseM.G. TucciP. ColaiannaM. SchiavoneS. AvatoP. CuomoV. Estrous cycle affects the neurochemical and neurobehavioral profile of carvacrol-treated female rats.Toxicol. Appl. Pharmacol.2011255216917510.1016/j.taap.2011.06.01121723308
    [Google Scholar]
  26. JavedH. AzimullahS. MeeranM.F. AnsariS. OjhaS. Neuroprotective effects of thymol, a dietary monoterpene against dopaminergic neurodegeneration in rotenone-induced rat model of Parkinson’s disease.Int. J. Mol. Sci.2019207153810.3390/ijms2007153830934738
    [Google Scholar]
  27. SinghA. KukretiR. SasoL. KukretiS. Oxidative stress: A key modulator in neurodegenerative diseases.Molecules2019248158310.3390/molecules2408158331013638
    [Google Scholar]
  28. TeleanuD.M. NiculescuA.G. LunguI.I. RaduC.I. VladâcencoO. RozaE. CostăchescuB. GrumezescuA.M. TeleanuR.I. An overview of oxidative stress, neuroinflammation, and neurodegenerative diseases.Int. J. Mol. Sci.20222311593810.3390/ijms2311593835682615
    [Google Scholar]
  29. LiuZ. ZhouT. ZieglerA.C. DimitrionP. ZuoL. Oxidative stress in neurodegenerative diseases: From molecular mechanisms to clinical applications.Oxid. Med. Cell. Longev.2017201711110.1155/2017/252596728785371
    [Google Scholar]
  30. González-BurgosE. Gómez-SerranillosM.P. Terpene compounds in nature: A review of their potential antioxidant activity.Curr. Med. Chem.201219315319534110.2174/09298671280383333522963623
    [Google Scholar]
  31. MarquesF.M. FigueiraM.M. SchmittE.F.P. KondratyukT.P. EndringerD.C. SchererR. FronzaM. In vitro anti-inflammatory activity of terpenes via suppression of superoxide and nitric oxide generation and the NF-κB signalling pathway.Inflammopharmacology201927228128910.1007/s10787‑018‑0483‑z29675712
    [Google Scholar]
  32. JavanA.J. JavanM.J. Electronic structure of some thymol derivatives correlated with the radical scavenging activity: Theoretical study.Food Chem.201416545145910.1016/j.foodchem.2014.05.07325038698
    [Google Scholar]
  33. KarimiE. AbbasiS. AbbasiN. Thymol polymeric nanoparticle synthesis and its effects on the toxicity of high glucose on OEC cells: Involvement of growth factors and integrin-linked kinase.Drug Des. Devel. Ther.2019132513253210.2147/DDDT.S21445431440034
    [Google Scholar]
  34. KimuraA. NamekataK. GuoX. HaradaC. HaradaT. Neuroprotection, growth factors and BDNF-TrkB signalling in retinal degeneration.Int. J. Mol. Sci.2016179158410.3390/ijms1709158427657046
    [Google Scholar]
  35. AydınE. TurkezH. TasdemirS. HacımuftuogluF. Anticancer, antioxidant and cytotoxic potential of thymol in vitro brain tumor cell model.Cent. Nerv. Syst. Agents Med. Chem.201717211612210.2174/187152491666616082312185427554922
    [Google Scholar]
  36. BaldisseraM.D. SouzaC.F. De MatosA.F.I.M. DoleskiP.H. BaldisserottoB. Da SilvaA.S. MonteiroS.G. Blood-brain barrier breakdown, memory impairment and neurotoxicity caused in mice submitted to orally treatment with thymol.Environ. Toxicol. Pharmacol.20186211411910.1016/j.etap.2018.06.01230005306
    [Google Scholar]
  37. OjhaS.K. MeeranF.N. SheikhA. JavedH. Protective effects of thymol against neurodegeneration in rotenone induced rat model of Parkinson’s disease.Proceedings for Annual Meeting of The Japanese Pharmacological Society WCP2018201816810.1254/jpssuppl.WCP2018.0_PO2‑1‑68
    [Google Scholar]
  38. MostafaR. HassanA. SalamaA. Thymol mitigates monosodium glutamate-induced neurotoxic cerebral and hippocampal injury in rats through overexpression of nuclear erythroid 2-related factor 2 signaling pathway as well as altering nuclear factor-kappa b and glial fibrillary acidic protein expression. Open Access Maced. J. Med. Sci.20219A71672610.3889/oamjms.2021.6170
    [Google Scholar]
  39. MaQ. Role of nrf2 in oxidative stress and toxicity.Annu. Rev. Pharmacol. Toxicol.201353140142610.1146/annurev‑pharmtox‑011112‑14032023294312
    [Google Scholar]
  40. CuadradoA. Brain-protective mechanisms of transcription factor NRF2: Toward a common strategy for neurodegenerative diseases.Annu. Rev. Pharmacol. Toxicol.202262125527710.1146/annurev‑pharmtox‑052220‑10341634637322
    [Google Scholar]
  41. YoudimK.A. DeansS.G. Effect of thyme oil and thymol dietary supplementation on the antioxidant status and fatty acid composition of the ageing rat brain.Br. J. Nutr.2000831879310.1017/S000711450000012X10703468
    [Google Scholar]
  42. MorgensternR. ZhangJ. JohanssonK. Microsomal glutathione transferase 1: Mechanism and functional roles.Drug Metab. Rev.201143230030610.3109/03602532.2011.55851121495795
    [Google Scholar]
  43. SobczakM. BoczekT. KowalskiA. WiktorskaM. NiewiarowskaJ. ZylinskaL. Downregulation of microsomal glutathione-S-transferase 1 modulates protective mechanisms in differentiated PC12 cells.J. Physiol. Biochem.201470237538310.1007/s13105‑014‑0312‑924419913
    [Google Scholar]
  44. SobczakM. KalembaD. FerencB. ZylinskaL. Limited protective properties of thymol and thyme oil on differentiated PC12 cells with downregulated Mgst1.J. Appl. Biomed.201412423524310.1016/j.jab.2014.08.002
    [Google Scholar]
  45. GuimarãesA.G. OliveiraG.F. MeloM.S. CavalcantiS.C.H. AntoniolliA.R. BonjardimL.R. SilvaF.A. SantosJ.P.A. RochaR.F. MoreiraJ.C.F. AraújoA.A.S. GelainD.P. Quintans-JúniorL.J. Bioassay-guided evaluation of antioxidant and antinociceptive activities of carvacrol.Basic Clin. Pharmacol. Toxicol.2010107694995710.1111/j.1742‑7843.2010.00609.x20849525
    [Google Scholar]
  46. JiangZ.S. PuZ.C. HaoZ.H. Carvacrol protects against spinal cord injury in rats via suppressing oxidative stress and the endothelial nitric oxide synthase pathway.Mol. Med. Rep.20151245349535410.3892/mmr.2015.404526151839
    [Google Scholar]
  47. HakimiZ. SalmaniH. MarefatiN. ArabZ. GholamnezhadZ. BeheshtiF. ShafeiM.N. HosseiniM. Protective effects of carvacrol on brain tissue inflammation and oxidative stress as well as learning and memory in lipopolysaccharide-challenged rats.Neurotox. Res.202037496597610.1007/s12640‑019‑00144‑531811590
    [Google Scholar]
  48. NaeemK. Tariq Al KuryL. NasarF. AlattarA. AlshamanR. ShahF.A. KhanA. LiS. Natural dietary supplement, carvacrol, alleviates LPS-induced oxidative stress, neurodegeneration, and depressive-like behaviors via the Nrf2/HO-1 pathway.J. Inflamm. Res.2021141313132910.2147/JIR.S29441333854358
    [Google Scholar]
  49. El-FarA.H. MohamedH.H. ElsabaghD.A. MohamedS.A. NoreldinA.E. Al JaouniS.K. AlsenosyA.A. Eugenol and carvacrol attenuate brain d-galactose-induced aging-related oxidative alterations in rats.Environ. Sci. Pollut. Res. Int.20222931474364744710.1007/s11356‑022‑18984‑835182345
    [Google Scholar]
  50. ElhadyM.A. KhalafA.A.A. KamelM.M. NoshyP.A. Carvacrol ameliorates behavioral disturbances and DNA damage in the brain of rats exposed to propiconazole.Neurotoxicology201970192510.1016/j.neuro.2018.10.00830392869
    [Google Scholar]
  51. WangP. LuoQ. QiaoH. DingH. CaoY. YuJ. LiuR. ZhangQ. ZhuH. QuL. The neuroprotective effects of carvacrol on ethanol-induced hippocampal neurons impairment via the antioxidative and antiapoptotic pathways.Oxid. Med. Cell. Longev.2017201711710.1155/2017/407942528191274
    [Google Scholar]
  52. KhalilA. KovacS. MorrisG. WalkerM.C. Carvacrol after status epilepticus (SE) prevents recurrent SE, early seizures, cell death, and cognitive decline.Epilepsia201758226327310.1111/epi.1364528084627
    [Google Scholar]
  53. BaluchnejadmojaradT. HassanshahiJ. RoghaniM. MansouriM. RaoufiS. Protective effect of carvacrol in 6-hydroxydopamine hemi-parkinsonian rat model.J. Basic Clin. Pathophysiol.201422934
    [Google Scholar]
  54. BaranauskaiteJ. SadauskieneI. LiekisA. KasauskasA. LazauskasR. ZlabieneU. MasteikovaR. KopustinskieneD.M. BernatonieneJ. Natural compounds rosmarinic acid and carvacrol counteract aluminium-induced oxidative stress.Molecules2020258180710.3390/molecules2508180732326410
    [Google Scholar]
  55. Zare MehrjerdiF. NiknazarS. YadegariM. AkbariF.A. PirmoradiZ. KhaksariM. Carvacrol reduces hippocampal cell death and improves learning and memory deficits following lead-induced neurotoxicity via antioxidant activity.Naunyn Schmiedebergs Arch. Pharmacol.202039371229123710.1007/s00210‑020‑01866‑632303785
    [Google Scholar]
  56. BanikS. AkterM. Corpus BondadS.E. SaitoT. HosokawaT. KurasakiM. Carvacrol inhibits cadmium toxicity through combating against caspase dependent/independent apoptosis in PC12 cells.Food Chem. Toxicol.201913411083510.1016/j.fct.2019.11083531562949
    [Google Scholar]
  57. CuiZ. XieZ. WangB. ZhongZ. ChenX. SunY. SunQ. YangG. BianL. Carvacrol protects neuroblastoma SH-SY5Y cells against Fe2+-induced apoptosis by suppressing activation of MAPK/JNK-NF-κB signaling pathway.Acta Pharmacol. Sin.201536121426143610.1038/aps.2015.9026592517
    [Google Scholar]
  58. YanT. SunY. GongG. LiY. FanK. WuB. BiK. JiaY. The neuroprotective effect of schisandrol A on 6-OHDA-induced PD mice may be related to PI3K/AKT and IKK/IκBα/NF-κB pathway.Exp. Gerontol.201912811074310.1016/j.exger.2019.11074331629801
    [Google Scholar]
  59. ZhaoY. KucaK. WuW. WangX. NepovimovaE. MusilekK. WuQ. Hypothesis: JNK signaling is a therapeutic target of neurodegenerative diseases.Alzheimers Dement.202218115215810.1002/alz.1237034032377
    [Google Scholar]
  60. ShababT. KhanabdaliR. MoghadamtousiS.Z. KadirH.A. MohanG. Neuroinflammation pathways: A general review.Int. J. Neurosci.2017127762463310.1080/00207454.2016.121285427412492
    [Google Scholar]
  61. RadtkeF.A. ChapmanG. HallJ. SyedY.A. Modulating neuroinflammation to treat neuropsychiatric disorders.BioMed Res. Int.2017201712110.1155/2017/507178629181395
    [Google Scholar]
  62. RaufA. BadoniH. Abu-IzneidT. OlatundeA. RahmanM.M. PainuliS. SemwalP. WilairatanaP. MubarakM.S. Neuroinflammatory markers: key indicators in the pathology of neurodegenerative diseases.Molecules20222710319410.3390/molecules2710319435630670
    [Google Scholar]
  63. JavadianS. SabouniF. HaghbeenK. O riganum V ulgare L. Extracts versus thymol: An anti-inflammatory study on activated microglial and mixed glial cells.J. Food Biochem.201640110010810.1111/jfbc.12199
    [Google Scholar]
  64. MahmoodiM. AyoobiF. AghaeiA. RahmaniM. TaghipourZ. HosseiniA. JafarzadehA. SankianM. Beneficial effects of Thymus vulgaris extract in experimental autoimmune encephalomyelitis: Clinical, histological and cytokine alterations.Biomed. Pharmacother.20191092100210810.1016/j.biopha.2018.08.07830551467
    [Google Scholar]
  65. KhazdairM.R. GholamnezhadZ. RezaeeR. BoskabadyM.H. Immuno-modulatory and anti-inflammatory effects of Thymus vulgaris, Zataria multiflora, and Portulaca oleracea and their constituents.Pharma. Res. Mod. Chinese. Med.2021110001010.1016/j.prmcm.2021.100010
    [Google Scholar]
  66. Abd-ElhakimY.M. SaberT.M. MetwallyM.M.M. Abd-AllahN.A. MohamedR.M.S.M. AhmedG.A. Thymol abates the detrimental impacts of imidacloprid on rat brains by lessening oxidative damage and apoptotic and inflammatory reactions.Chem. Biol. Interact.202338311069010.1016/j.cbi.2023.11069037648049
    [Google Scholar]
  67. DengX.Y. LiH.Y. ChenJ.J. LiR.P. QuR. FuQ. MaS.P. Thymol produces an antidepressant-like effect in a chronic unpredictable mild stress model of depression in mice.Behav. Brain Res.2015291121910.1016/j.bbr.2015.04.05225958231
    [Google Scholar]
  68. FangFang Li, H.; Qin, T.; Li, M.; Ma, S. Thymol improves high-fat diet-induced cognitive deficits in mice via ameliorating brain insulin resistance and upregulating NRF2/HO-1 pathway.Metab. Brain Dis.201732238539310.1007/s11011‑016‑9921‑z27761760
    [Google Scholar]
  69. ArruriV.K. GunduC. KalvalaA.K. SherkhaneB. KhatriD.K. SinghS.B. Carvacrol abates NLRP3 inflammasome activation by augmenting Keap1/Nrf-2/p62 directed autophagy and mitochondrial quality control in neuropathic pain.Nutr. Neurosci.20222581731174610.1080/1028415X.2021.189298533641628
    [Google Scholar]
  70. LeeB. YeomM. ShimI. LeeH. HahmD. Inhibitory effect of carvacrol on lipopolysaccharide-induced memory impairment in rats.Korean J. Physiol. Pharmacol.2020241273710.4196/kjpp.2020.24.1.2731908572
    [Google Scholar]
  71. Tiefensee RibeiroC. GasparottoJ. PetizL.L. BrumP.O. PeixotoD.O. KunzlerA. da Rosa SilvaH.T. BortolinR.C. AlmeidaR.F. Quintans-JuniorL.J. AraújoA.A. MoreiraJ.C.F. GelainD.P. Oral administration of carvacrol/β-cyclodextrin complex protects against 6-hydroxydopamine-induced dopaminergic denervation.Neurochem. Int.2019126273510.1016/j.neuint.2019.02.02130849398
    [Google Scholar]
  72. AhmadiM. EidiA. AhmadvandH. KhaksarianM. SotoodehnejadnematalahiF. Effect of carvacrol on the expression of IL-10, FOX-P3, IL-4 and TGF-β genes in the spinal cord of rats model of multiple sclerosis.Mult. Scler. Relat. Disord.202070104471
    [Google Scholar]
  73. SadeghM. SakhaieM.H. Carvacrol mitigates proconvulsive effects of lipopolysaccharide, possibly through the hippocampal cyclooxygenase-2 inhibition.Metab. Brain Dis.20183362045205010.1007/s11011‑018‑0314‑330229386
    [Google Scholar]
  74. RawatC. KukalS. DahiyaU.R. KukretiR. Cyclooxygenase-2 (COX-2) inhibitors: Future therapeutic strategies for epilepsy management.J. Neuroinflammation201916119710.1186/s12974‑019‑1592‑331666079
    [Google Scholar]
  75. AbbaslooE. AmiresmailiS. ShirazpourS. KhaksariM. KobeissyF. ThomasT.C. Satureja khuzistanica Jamzad essential oil and pure carvacrol attenuate TBI-induced inflammation and apoptosis via NF-κB and caspase-3 regulation in the male rat brain.Sci. Rep.2023131478010.1038/s41598‑023‑31891‑336959464
    [Google Scholar]
  76. AhmadiM. EidiA. AhmadvandH. KhaksarianM. SotoodehnejadnematalahiF. Effect of Carvacrol on histological analysis and expression of genes involved in an animal model of multiple sclerosis.Mult. Scler. Relat. Disord.20237010447110.1016/j.msard.2022.10447136580874
    [Google Scholar]
  77. MohammadiN. Asle-RoustaM. RahnemaM. AminiR. Morin attenuates memory deficits in a rat model of Alzheimer’s disease by ameliorating oxidative stress and neuroinflammation.Eur. J. Pharmacol.202191017450610.1016/j.ejphar.2021.17450634534533
    [Google Scholar]
  78. TiwariS. AtluriV. KaushikA. YndartA. NairM. Alzheimer’s disease: Pathogenesis, diagnostics, and therapeutics. Int. J. Nanomed.20195541555410.2147/IJN.S200490
    [Google Scholar]
  79. TamK.Y. JuY. Pathological mechanisms and therapeutic strategies for Alzheimer’s disease.Neural Regen. Res.202217354354910.4103/1673‑5374.32097034380884
    [Google Scholar]
  80. CollinsA.E. SalehT.M. KalischB.E. Naturally occurring antioxidant therapy in Alzheimer’s disease.Antioxidants202211221310.3390/antiox1102021335204096
    [Google Scholar]
  81. LaiShi Min, S.; Liew, S.Y.; Chear, N.J.Y.; Goh, B.H.; Tan, W.N.; Khaw, K.Y. Plant terpenoids as the promising source of cholinesterase inhibitors for anti-AD therapy.Biology 202211230710.3390/biology1102030735205173
    [Google Scholar]
  82. AsadbegiM. YaghmaeiP. SalehiI. KomakiA. Ebrahim-HabibiA. Investigation of thymol effect on learning and memory impairment induced by intrahippocampal injection of amyloid beta peptide in high fat diet- fed rats.Metab. Brain Dis.201732382783910.1007/s11011‑017‑9960‑028255862
    [Google Scholar]
  83. AsadbegiM. KomakiA. SalehiI. YaghmaeiP. Ebrahim-HabibiA. ShahidiS. SarihiA. Soleimani AslS. GolipoorZ. Effects of thymol on amyloid-β-induced impairments in hippocampal synaptic plasticity in rats fed a high-fat diet.Brain Res. Bull.201813733835010.1016/j.brainresbull.2018.01.00829339105
    [Google Scholar]
  84. AziziZ. ChoopaniS. SalimiM. MajlessiN. NaghdiN. Protein kinase C involvement in neuroprotective effects of thymol and carvacrol against toxicity induced by amyloid-β in rat hippocampal neurons.Basic Clin. Neurosci.202213329530410.32598/bcn.2021.666.236457884
    [Google Scholar]
  85. AziziZ. SalimiM. AmanzadehA. MajelssiN. NaghdiN. Carvacrol and thymol attenuate cytotoxicity induced by amyloid β25-35 via activating protein kinase C and inhibiting oxidative stress in PC12 cells.Iran. Biomed. J.202024424325010.29252/ibj.24.4.24332306722
    [Google Scholar]
  86. AlkonD.L. SunM.K. NelsonT.J. PKC signaling deficits: A mechanistic hypothesis for the origins of Alzheimer’s disease.Trends Pharmacol. Sci.2007282516010.1016/j.tips.2006.12.00217218018
    [Google Scholar]
  87. TimalsinaB. HaqueM.N. ChoiH.J. DashR. MoonI.S. Thymol in Trachyspermum ammi seed extract exhibits neuroprotection, learning, and memory enhancement in scopolamine‐induced Alzheimer’s disease mouse model.Phytother. Res.20233772811282610.1002/ptr.777736808768
    [Google Scholar]
  88. JavedH. Mohamed FizurN.M. JhaN.K. AshrafG.M. OjhaS. Neuroprotective potential and underlying pharmacological mechanism of carvacrol for alzheimer’s and parkinson’s diseases.Curr. Neuropharmacol.20232161421143210.2174/1570159X2166622122312025136567278
    [Google Scholar]
  89. DengW. LuH. TengJ. Carvacrol attenuates diabetes-associated cognitive deficits in rats.J. Mol. Neurosci.201351381381910.1007/s12031‑013‑0069‑623877802
    [Google Scholar]
  90. ForqaniM.A. AkbarianM. AmirahmadiS. SoukhtanlooM. HosseiniM. ForouzanfarF. Carvacrol improved learning and memory and attenuated the brain tissue oxidative damage in aged male rats.Int. J. Neurosci.2023141810.1080/00207454.2023.2257877
    [Google Scholar]
  91. MedhatD. El-mezayenH.A. El-NaggarM.E. FarragA.R. AbdelgawadM.E. HusseinJ. KamalM.H. Evaluation of urinary 8-hydroxy-2-deoxyguanosine level in experimental Alzheimer’s disease: Impact of carvacrol nanoparticles.Mol. Biol. Rep.20194644517452710.1007/s11033‑019‑04907‑331209743
    [Google Scholar]
  92. TimalsinaB. HaqueM.N. DashR. ChoiH.J. GhimireN. MoonI.S. Neuronal differentiation and outgrowth effect of thymol in Trachyspermum ammi seed extract via BDNF/TrkB signaling pathway in prenatal maternal supplementation and primary hippocampal culture.Int. J. Mol. Sci.20232410856510.3390/ijms2410856537239909
    [Google Scholar]
  93. AskinH. YildizM. AyarA. Effects of thymol and carvacrol on acetylcholinesterase from drosophila melanogaster.Acta Phys. Pol. A2017132372072210.12693/APhysPolA.132.720
    [Google Scholar]
  94. ShahriariM. ZibaeeA. SahebzadehN. ShamakhiL. Effects of α-pinene, trans-anethole, and thymol as the essential oil constituents on antioxidant system and acetylcholine esterase of Ephestia kuehniella Zeller (Lepidoptera: Pyralidae).Pestic. Biochem. Physiol.2018150404710.1016/j.pestbp.2018.06.01530195386
    [Google Scholar]
  95. NoshyP.A. ElhadyM.A. KhalafA.A.A. KamelM.M. HassanenE.I. Ameliorative effect of carvacrol against propiconazole-induced neurobehavioral toxicity in rats.Neurotoxicology20186714114910.1016/j.neuro.2018.05.00529852196
    [Google Scholar]
  96. de SouzaM.M. AndreollaM.C. RibeiroT.C. GonçalvesA.E. MedeirosA.R. de SouzaA.S. FerreiraL.L.G. AndricopuloA.D. YunesR.A. de OliveiraA.S. Structure–activity relationships of sulfonamides derived from carvacrol and their potential for the treatment of Alzheimer’s disease.RSC Medicinal Chemistry202011230731610.1039/D0MD00009D33479638
    [Google Scholar]
  97. CaputoL. AmatoG. De MartinoL. De FeoV. NazzaroF. Anti-cholinesterase and anti-α-amylase activities and neuroprotective effects of carvacrol and p-cymene and their effects on hydrogen peroxide induced stress in SH-SY5Y cells.Int. J. Mol. Sci.2023247607310.3390/ijms2407607337047044
    [Google Scholar]
  98. JukicM. PoliteoO. MaksimovicM. MilosM. MilosM. In vitro acetylcholinesterase inhibitory properties of thymol, carvacrol and their derivatives thymoquinone and thymohydroquinone.Phytother. Res.200721325926110.1002/ptr.206317186491
    [Google Scholar]
  99. SistiF.M. dos SantosN.A.G. do AmaralL. dos SantosA.C. The neurotrophic-like effect of carvacrol: Perspective for axonal and synaptic regeneration.Neurotox. Res.202139388689610.1007/s12640‑021‑00341‑133666886
    [Google Scholar]
  100. BloemB.R. OkunM.S. KleinC. Parkinson’s disease.Lancet2021397102912284230310.1016/S0140‑6736(21)00218‑X33848468
    [Google Scholar]
  101. HaddadiH. RajaeiZ. AlaeiH. ShahidaniS. Chronic treatment with carvacrol improves passive avoidance memory in a rat model of Parkinson’s disease.Arq. Neuropsiquiatr.2018762717710.1590/0004‑282x2017019329489959
    [Google Scholar]
  102. HamzehloeiL. RezvaniM.E. RajaeiZ. Effects of carvacrol and physical exercise on motor and memory impairments associated with Parkinson’s disease.Arq. Neuropsiquiatr.201977749350010.1590/0004‑282x2019007931365641
    [Google Scholar]
  103. ManouchehrabadiM. FarhadiM. AziziZ. Torkaman-BoutorabiA. Carvacrol protects against 6-hydroxydopamine-induced neurotoxicity in in vivo and in vitro models of Parkinson’s disease.Neurotox. Res.202037115617010.1007/s12640‑019‑00088‑w31364033
    [Google Scholar]
  104. NourmohammadiS. YousefiS. ManouchehrabadiM. FarhadiM. AziziZ. Torkaman-BoutorabiA. Thymol protects against 6-hydroxydopamine-induced neurotoxicity in in vivo and in vitro model of Parkinson’s disease via inhibiting oxidative stress.BMC Complementary Medicine and Therapies20222214010.1186/s12906‑022‑03524‑135144603
    [Google Scholar]
  105. AkanT. AydınY. KorkmazO.T. UlupınarE. SaydamF. The effects of carvacrol on transient receptor potential (TRP) channels in an animal model of parkinson’s disease.Neurotox. Res.202341666066910.1007/s12640‑023‑00660‑537452911
    [Google Scholar]
  106. LinsL.C.R.F. SouzaM.F. BispoJ.M.M. GoisA.M. MeloT.C.S. AndradeR.A.S. Quintans-JuniorL.J. RibeiroA.M. SilvaR.H. SantosJ.R. MarchioroM. Carvacrol prevents impairments in motor and neurochemical parameters in a model of progressive parkinsonism induced by reserpine.Brain Res. Bull.201813991510.1016/j.brainresbull.2018.01.01729378222
    [Google Scholar]
  107. CaiP.Y. BodhitA. AnsariS. HednaV.S. Vagus nerve stimulation in ischemic stroke: Old wine in a new bottle.Front. Neurol.201459981110.3389/fneur.2014.00107
    [Google Scholar]
  108. SoaresR.O.S. LosadaD.M. JordaniM.C. ÉvoraP. Castro-e-SilvaO. Ischemia/reperfusion injury revisited: An overview of the latest pharmacological strategies.Int. J. Mol. Sci.20192020503410.3390/ijms2020503431614478
    [Google Scholar]
  109. LiJ. ZhaoT. QiaoH. LiY. XiaM. WangX. LiuC. ZhengT. ChenR. XieY. WuJ. WeiX. LiJ. FengY. SunP. Research progress of natural products for the treatment of ischemic stroke. J. Integr. Neurosci.202221101410.31083/j.jin210101435164450
    [Google Scholar]
  110. SadeghimaneshA. Khalaji-PirbaloutyV. LorigooiniZ. Rafieian-KopaeiM. TorkiA. RabieiZ. Phytochemical and neuroprotective evaluation of Citrus aurantium essential oil on cerebral ischemia and reperfusion.Bangladesh J. Pharmacol.201813435336110.3329/bjp.v13i4.37408
    [Google Scholar]
  111. SetorkiM. MirzapoorS. Evaluation of Thymus vulgaris extract on hippocampal injury induced by transient global cerebral ischemia and reperfusion in rat.Zahedan J. Res. Med. Sci.2017195e921610.5812/zjrms.9216
    [Google Scholar]
  112. GuanX. LiX. YangX. YanJ. ShiP. BaL. CaoY. WangP. The neuroprotective effects of carvacrol on ischemia/reperfusion-induced hippocampal neuronal impairment by ferroptosis mitigation.Life Sci.201923511679510.1016/j.lfs.2019.11679531470002
    [Google Scholar]
  113. HongD. ChoiB. KhoA. LeeS. JeongJ. KangB. KangD. ParkK.H. SuhS. Carvacrol attenuates hippocampal neuronal death after global cerebral ischemia via inhibition of transient receptor potential melastatin 7.Cells201871223110.3390/cells712023130486272
    [Google Scholar]
  114. ParnasM. PetersM. DadonD. LevS. VertkinI. SlutskyI. MinkeB. Carvacrol is a novel inhibitor of drosophila TRPL and mammalian TRPM7 channels.Cell Calcium200945330030910.1016/j.ceca.2008.11.00919135721
    [Google Scholar]
  115. LiW.T. ZhangS.Y. ZhouY.F. ZhangB.F. LiangZ.Q. LiuY.H. WeiY. LiC.K. MengX.J. XiaM. DanY. SongJ.N. Carvacrol attenuates traumatic neuronal injury through store-operated Ca2+ entry-independent regulation of intracellular Ca2+ homeostasis.Neurochem. Int.20159010711310.1016/j.neuint.2015.07.02026220904
    [Google Scholar]
  116. ChenW. XuB. XiaoA. LiuL. FangX. LiuR. TurlovaE. BarszczykA. ZhongX. SunC.L.F. BrittoL.R.G. FengZ.P. SunH.S. TRPM7 inhibitor carvacrol protects brain from neonatal hypoxic-ischemic injury.Mol. Brain2015811110.1186/s13041‑015‑0102‑525761704
    [Google Scholar]
  117. Shahrokhi RaeiniA. HafizibarjinZ. RezvaniM.E. SafariF. Afkhami AghdaF. Zare MehrjerdiF. Carvacrol suppresses learning and memory dysfunction and hippocampal damages caused by chronic cerebral hypoperfusion.Naunyn Schmiedebergs Arch. Pharmacol.2020393458158910.1007/s00210‑019‑01754‑831729545
    [Google Scholar]
  118. LiZ. HuaC. PanX. FuX. WuW. Carvacrol exerts neuroprotective effects via suppression of the inflammatory response in middle cerebral artery occlusion rats.Inflammation20163941566157210.1007/s10753‑016‑0392‑527324156
    [Google Scholar]
  119. LatanichC.A. Toledo-PereyraL.H. Searching for NF-kappaB-based treatments of ischemia reperfusion injury.J. Invest. Surg.200922430131510.1080/0894193090304015519842907
    [Google Scholar]
  120. ÇetınkayaA. ÇamsariÇ. Effects of carvacrol administration on motor function following spinal ischemia and reperfusion.Turk. J. Zool.202044544044510.3906/zoo‑2006‑18
    [Google Scholar]
  121. Villas BoasG.R. Boerngen de LacerdaR. PaesM.M. GubertP. AlmeidaW.L.C. ResciaV.C. de CarvalhoP.M.G. de CarvalhoA.A.V. OesterreichS.A. Molecular aspects of depression: A review from neurobiology to treatment.Eur. J. Pharmacol.20198519912110.1016/j.ejphar.2019.02.02430776369
    [Google Scholar]
  122. SakamotoS. ZhuX. HasegawaY. KarmaS. ObayashiM. AlwayE. KamiyaA. Inflamed brain: Targeting immune changes and inflammation for treatment of depression.Psychiatry Clin. Neurosci.2021751030431110.1111/pcn.1328634227186
    [Google Scholar]
  123. ParenteM. CustódioF. CardosoN. LimaM. MeloT. LinharesM. SiqueiraR. NascimentoA. Catunda JúniorF. MeloC. Antidepressant-like effect of Lippia sidoides CHAM (verbenaceae) essential oil and its major compound thymol in mice.Sci. Pharm.20188632710.3390/scipharm8603002729954101
    [Google Scholar]
  124. CapibaribeV.C.C. Vasconcelos MallmannA.S. LopesI.S. OliveiraI.C.M. de OliveiraN.F. ChavesR.C. FernandesM.L. de AraujoM.A. da SilvaD.M.A. ValentimJ.T. Maia Chaves FilhoA.J. MacêdoD.S. de VasconcelosS.M.M. de CarvalhoA.M.R. de SousaF.C.F. Thymol reverses depression-like behaviour and upregulates hippocampal BDNF levels in chronic corticosterone-induced depression model in female mice.J. Pharm. Pharmacol.201971121774178310.1111/jphp.1316231608449
    [Google Scholar]
  125. WinterC. von RumohrA. MundtA. PetrusD. KleinJ. LeeT. MorgensternR. KupschA. JuckelG. Lesions of dopaminergic neurons in the substantia nigra pars compacta and in the ventral tegmental area enhance depressive-like behavior in rats.Behav. Brain Res.2007184213314110.1016/j.bbr.2007.07.00217698212
    [Google Scholar]
  126. ManninoG. AbdiG. MaffeiM.E. BarberoF. Origanum vulgare terpenoids modulate Myrmica scabrinodis brain biogenic amines and ant behaviour.PLoS One20181312e020904710.1371/journal.pone.020904730586439
    [Google Scholar]
  127. SamarghandianS. FarkhondehT. SaminiF. BorjiA. Protective effects of carvacrol against oxidative stress induced by chronic stress in rat’s brain, liver, and kidney.Biochem. Res. Int.201620161710.1155/2016/264523726904286
    [Google Scholar]
  128. ZottiM. ColaiannaM. MorgeseM. TucciP. SchiavoneS. AvatoP. TrabaceL. Carvacrol: From ancient flavoring to neuromodulatory agent.Molecules20131866161617210.3390/molecules1806616123708230
    [Google Scholar]
  129. PolliF.S. GomesJ.N. FerreiraH.S. SantanaR.C. FregonezeJ.B. Inhibition of salt appetite in sodium-depleted rats by carvacrol: Involvement of noradrenergic and serotonergic pathways.Eur. J. Pharmacol.201985411912710.1016/j.ejphar.2019.04.02630986399
    [Google Scholar]
  130. MeloF.H.C. MouraB.A. de SousaD.P. de VasconcelosS.M.M. MacedoD.S. FontelesM.M.F. VianaG.S.B. de SousaF.C.F. Antidepressant‐like effect of carvacrol (5‐Isopropyl‐2‐methylphenol) in mice: Involvement of dopaminergic system.Fundam. Clin. Pharmacol.201125336236710.1111/j.1472‑8206.2010.00850.x20608992
    [Google Scholar]
  131. MichopoulosV. PowersA. GillespieC.F. ResslerK.J. JovanovicT. Inflammation in fear-and anxiety-based disorders: PTSD, GAD, and beyond.Neuropsychopharmacology201742125427010.1038/npp.2016.14627510423
    [Google Scholar]
  132. FedoceA.G. FerreiraF. BotaR.G. Bonet-CostaV. SunP.Y. DaviesK.J.A. The role of oxidative stress in anxiety disorder: Cause or consequence?Free Radic. Res.201852773775010.1080/10715762.2018.147573329742940
    [Google Scholar]
  133. WonE. KimY.K. Neuroinflammation-associated alterations of the brain as potential neural biomarkers in anxiety disorders.Int. J. Mol. Sci.20202118654610.3390/ijms2118654632906843
    [Google Scholar]
  134. Maghsoud-NiaL. Asle-RoustaM. RahnemaM. AminiR. Sesame oil and its component oleic acid ameliorate behavioral and biochemical alterations in socially isolated rats.Iran. J. Sci. Technol. Trans. A Sci.20214541155116310.1007/s40995‑021‑01098‑0
    [Google Scholar]
  135. MohammadiK. MohammadiR. Asle-RoustaM. RahnemaM. MahmaziS. Viola tricolor hydroalcoholic extract improves behavioral deficiencies in rats exposed to chronic immobilization stress.Braz. Arch. Biol. Technol.202265e2221026710.1590/1678‑4324‑2022210267
    [Google Scholar]
  136. ManayiA. NabaviS.M. DagliaM. JafariS. Natural terpenoids as a promising source for modulation of GABAergic system and treatment of neurological diseases.Pharmacol. Rep.201668467167910.1016/j.pharep.2016.03.01427110875
    [Google Scholar]
  137. HossenM.A. Ali RezaA.S.M. AminM.B. NasrinM.S. KhanT.A. RajibM.H.R. TareqA.M. HaqueM.A. RahmanM.A. HaqueM.A. Bioactive metabolites of Blumea lacera attenuate anxiety and depression in rodents and computer‐aided model.Food Sci. Nutr.2021973836385110.1002/fsn3.236234262741
    [Google Scholar]
  138. BhandariS.S. KabraM.P. To evaluate anti-anxiety activity of thymol.J. Acute Dis.20143213614010.1016/S2221‑6189(14)60030‑5
    [Google Scholar]
  139. PriestleyC.M. WilliamsonE.M. WaffordK.A. SattelleD.B. Thymol, a constituent of thyme essential oil, is a positive allosteric modulator of human GABA A receptors and a homo‐oligomeric GABA receptor from Drosophila melanogaster.Br. J. Pharmacol.200314081363137210.1038/sj.bjp.070554214623762
    [Google Scholar]
  140. MeloF.H.C. VenâncioE.T. De SousaD.P. De França FontelesM.M. De VasconcelosS.M.M. VianaG.S.B. De SousaF.C.F. Anxiolytic‐like effect of Carvacrol (5‐isopropyl‐2‐methylphenol) in mice: Involvement with GABAergic transmission.Fundam. Clin. Pharmacol.201024443744310.1111/j.1472‑8206.2009.00788.x19909350
    [Google Scholar]
  141. MöhlerH. The GABA system in anxiety and depression and its therapeutic potential.Neuropharmacology2012621425310.1016/j.neuropharm.2011.08.04021889518
    [Google Scholar]
  142. PiresL.F. CostaL.M. SilvaO.A. de AlmeidaA.A.C. CerqueiraG.S. de SousaD.P. de FreitasR.M. Anxiolytic-like effects of carvacryl acetate, a derivative of carvacrol, in mice.Pharmacol. Biochem. Behav.2013112424810.1016/j.pbb.2013.09.00124036473
    [Google Scholar]
  143. BigdeliY. Asle-RoustaM. RahnemaM. Effects of limonene on chronic restraint stress-induced memory impairment and anxiety in male rats.Neurophysiology201951210711310.1007/s11062‑019‑09800‑0
    [Google Scholar]
  144. Khan-Mohammadi-KhorramiM.K. Asle-RoustaM. RahnemaM. AminiR. Neuroprotective effect of alpha‐pinene is mediated by suppression of the TNF‐α/NF‐κB pathway in Alzheimer’s disease rat model.J. Biochem. Mol. Toxicol.2022365e2300610.1002/jbt.2300635174932
    [Google Scholar]
  145. LansdellS.J. SathyaprakashC. DowardA. MillarN.S. Activation of human 5-hydroxytryptamine type 3 receptors via an allosteric transmembrane site.Mol. Pharmacol.2015871879510.1124/mol.114.09454025338672
    [Google Scholar]
  146. ZiembaP.M. SchreinerB.S.P. FlegelC. HerbrechterR. StarkT.D. HofmannT. HattH. WernerM. GisselmannG. Activation and modulation of recombinantly expressed serotonin receptor type 3A by terpenes and pungent substances.Biochem. Biophys. Res. Commun.201546741090109610.1016/j.bbrc.2015.09.07426456648
    [Google Scholar]
  147. KelleyS.P. BrattA.M. HodgeC.W. Targeted gene deletion of the 5-HT3A receptor subunit produces an anxiolytic phenotype in mice.Eur. J. Pharmacol.20034611192510.1016/S0014‑2999(02)02960‑612568911
    [Google Scholar]
  148. Amini-khoeiH. Nasiri BoroujeniS. LorigooiniZ. YadollahiS. Solati DehkordiS.K. Rafieian KoopaiM. Evaluation of the anticonvulsant effect of carvacrol in Pentylenetetrazole (PTZ)-induced seizures in male mice: N-Methyl-D-Aspartic Acid receptor role.Med. J. Tabriz Uni. Med. Sci.202243651552410.34172/mj.2022.004
    [Google Scholar]
  149. FarjamM. Beigi ZarandiF.B. FarjadianS. GeramizadehB. NiksereshtA.R. PanjehshahinM.R. Inhibition of NR2B-containing N-methyl-D-aspartate receptors (NMDARs) in experimental autoimmune encephalomyelitis, a model of multiple sclerosis.Iran. J. Pharm. Res.201413269570525237366
    [Google Scholar]
  150. ZhangZ. ZhangS. FuP. ZhangZ. LinK. KoJ.K.S. YungK.K.L. Roles of glutamate receptors in Parkinson’s disease.Int. J. Mol. Sci.20192018439110.3390/ijms2018439131500132
    [Google Scholar]
  151. TofighiN. Asle-RoustaM. RahnemaM. AminiR. Protective effect of alpha-linoleic acid on Aβ-induced oxidative stress, neuroinflammation, and memory impairment by alteration of α7 nAChR and NMDAR gene expression in the hippocampus of rats.Neurotoxicology20218524525310.1016/j.neuro.2021.06.00234111468
    [Google Scholar]
  152. LozonY. SultanA. LansdellS.J. PrytkovaT. SadekB. YangK.H.S. HowarthF.C. MillarN.S. OzM. Inhibition of human α7 nicotinic acetylcholine receptors by cyclic monoterpene carveol.Eur. J. Pharmacol.2016776445110.1016/j.ejphar.2016.02.00426849939
    [Google Scholar]
  153. PapkeR.L. HorensteinN.A. Therapeutic targeting of α 7 nicotinic acetylcholine receptors.Pharmacol. Rev.20217331118114910.1124/pharmrev.120.00009734301823
    [Google Scholar]
  154. XuZ.Q. ZhangW.J. SuD.F. ZhangG.Q. MiaoC.Y. Cellular responses and functions of α7 nicotinic acetylcholine receptor activation in the brain: A narrative review.Ann. Transl. Med.20219650910.21037/atm‑21‑27333850906
    [Google Scholar]
  155. Celik TopkaraK. KilincE. CetinkayaA. SaylanA. DemirS. Therapeutic effects of carvacrol on beta‐amyloid‐induced impairments in in vitro and in vivo models of Alzheimer’s disease.Eur. J. Neurosci.20225695714572610.1111/ejn.1556534904309
    [Google Scholar]
  156. SanchetiJ. ShaikhM.F. ChaudhariR. SomaniG. PatilS. JainP. SathayeS. Characterization of anticonvulsant and antiepileptogenic potential of thymol in various experimental models.Naunyn Schmiedebergs Arch. Pharmacol.20143871596610.1007/s00210‑013‑0917‑524065087
    [Google Scholar]
/content/journals/npj/10.2174/0122103155288752240219095244
Loading
/content/journals/npj/10.2174/0122103155288752240219095244
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test