Skip to content
2000
image of Chemical Composition and Biological Activities of the Extracts of Peperomia pellucida Fractions

Abstract

Background

is a medicinal and vegetable plant used worldwide, representing a multi-purpose vegetable with applications in the pharmaceutical, food and cosmetic industries.

Objective

This study evaluated the antioxidant, antibacterial, antifungal, anti-inflammatory, and antidiabetic potential of fractional extracts from plant derived from Can Tho City, Vietnam.

Methods

Four fractional extracts were prepared using different polarity solvents (hexane, dichloromethane, ethyl acetate) and used to determine the best extract for each biological property. The fractions’ total alkaloid, phenolic, and flavonoid content were observed. The four extracts were evaluated for their potential bioactivities: antioxidant, antibacterial, antifungal, anti-inflammatory, and antidiabetic.

Results

Correspond with the hexane, dichloromethane, ethyl acetate, and aqueous fractions, the total content of alkaloids was determined to be 255 ± 23.8; 157 ± 14.0; 219 ± 6.55; 221 ± 6.23 (mg AE/g extract), the total phenolic content was 112 ± 3.34; 141 ± 1.77; 234 ± 29.5; 123 ± 5.04 (mg GAE/g extract), whereas the total content of flavonoids was 84.49 ± 4.53; 33.77 ± 1.26; 367.8 ± 3.37; 34.49 ± 4.53 (mg QE/g extract), respectively. The ethyl acetate fraction gave the best efficiency in DPPH, ABTS, iron reduction, and TAC methods (IC = 334 ± 2.10 µg/mL; 51.4 ± 0.41 µg/mL; 79.1 ± 0.40 µg/mL; and 83.0 ± 0.17 µg/mL, respectively). Antibacterial activity was investigated on 5 strains of , , , , ; the results showed that the extracts were resistant to 5 strains of bacteria, especially best resistant in 2 fractions of ethyl acetate and aqueous. The minimum inhibitory concentration (MIC) value ranged from 0.5 to 32 mg/mL, while the minimum bactericidal concentration (MBC) value ranged from 16 to 64 mg/mL. The best anti-inflammatory activity was ethyl acetate with an IC value of 216.7 ± 7.2 µg/mL, close to that of Diclofenac at 205.4 ± 0.5. The antidiabetic activity was investigated based on the ability to inhibit -amylase and -glucosidase enzymes. The results showed that the best -amylase inhibitors were hexane and dichloromethane (IC = 208.83 ± 2.41 and 191.60 ± 1.27 µg/mL, respectively), roughly equal to the acarbose (155.68 ± 2.59 µg/mL). The best -glucosidase inhibitory fraction was ethyl acetate (IC of 157.04 ± 0.23 µg/mL), close to that of acarbose (116.45 ± 0.21 µg/mL).

Conclusion

Fractional extracts from distributed in gardens of Can Tho City, Vietnam, contain potential antioxidant, antibacterial, antifungal, anti-inflammatory, and antidiabetic bioactive compounds.

Loading

Article metrics loading...

/content/journals/npj/10.2174/2210315514666230808153921
2025-02-03
2025-04-13
Loading full text...

Full text loading...

References

  1. Rahman T. Hosen I. Islam M.T Shekhar H.U. Oxidative stress and human health Adv. Biosci. Biotech. 2012 7 7A 10.4236/abb.2012.327123
    [Google Scholar]
  2. Pickering R.J Rosado C.J Sharma A. Buksh S Tate M. de Haan J.B. Recent novel approaches to limit oxidative stress and inflammation in diabetic complications. Clinical & translational immunology 2018 7 4 e1016
    [Google Scholar]
  3. Sõukand R. Pieroni A. Biró M. Dénes A. Dogan Y. Hajdari A. Kalle R. Reade B. Mustafa B. Nedelcheva A. Quave C.L. Łuczaj Ł. An ethnobotanical perspective on traditional fermented plant foods and beverages in Eastern Europe. J. Ethnopharmacol. 2015 170 284 296 10.1016/j.jep.2015.05.018 25985766
    [Google Scholar]
  4. Tungmunnithum D. Thongboonyou A. Pholboon A. Yangsabai A. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines 2018 5 3 93 10.3390/medicines5030093 30149600
    [Google Scholar]
  5. Gutierrez Y.V. Yamaguchi L.F. de Moraes M.M. Jeffrey C.S. Kato M.J. Natural products from peperomia: Occurrence, biogenesis and bioactivity. Phytochem. Rev. 2016 15 6 1009 1033 10.1007/s11101‑016‑9461‑5
    [Google Scholar]
  6. Wanke S. Samain M.S. Vanderschaeve L. Mathieu G. Goetghebeur P. Neinhuis C. Phylogeny of the genus Peperomia (Piperaceae) inferred from the trnK/matK region (cpDNA). Plant Biol. 2006 8 1 93 102 10.1055/s‑2005‑873060 16435273
    [Google Scholar]
  7. Carriconde C. Little heart-Peperomia pellucida HBK. Back to the Roots Olinda: Northeastern Center for Popular Medicine Olinda Brazil 1997 12 2 3
    [Google Scholar]
  8. Khan A. Rahman M. Islam M.S. Isolation and bioactivity of a xanthone glycoside from Peperomia pellucida. Life Sci Med Res 2010 2010 1 10
    [Google Scholar]
  9. Tablang J.O. Campos R. Jacob J.K.S. Phytochemical screening and antibacterial properties of silverbush (Peperomia pellucida) against selected cultured bacteria. Global Journal of Medicinal Plant Research 2020 8 1 1 6
    [Google Scholar]
  10. Wang Q.W. Yu D.H. Lin M.G. Zhao M. Zhu W.J. Lu Q. Li G.X. Wang C. Yang Y.F. Qin X.M. Fang C. Chen H.Z. Yang G.H. Antiangiogenic polyketides from Peperomia dindygulensis Miq. Molecules 2012 17 4 4474 4483 10.3390/molecules17044474 22504832
    [Google Scholar]
  11. Phongtongpasuk S. Poadang S. Extraction of antioxidants from Peperomia pellucida L. Kunth. Science & Technology Asia 2014 38 43
    [Google Scholar]
  12. Idris O. Olatunji B. Madufor P. In vitro antibacterial activity of the extracts of Peperomia pellucida (L). Br. Microbiol. Res. J. 2016 11 4 1 7 10.9734/BMRJ/2016/21421
    [Google Scholar]
  13. Hastuti U.S. Ummah Y.P.I. Khasanah H.N. Antifungal activity of Piper aduncum and Peperomia pellucida leaf ethanol extract against Candida albicans. AIP Conference Proceedings AIP Publishing LLC 2017 1844 1 10.1063/1.4983417
    [Google Scholar]
  14. Zhang G.L. Li N. Wang Y.H. Zheng Y.T. Zhang Z. Wang M.W. Bioactive lignans from Peperomia heyneana. J. Nat. Prod. 2007 70 4 662 664 10.1021/np0605236 17291043
    [Google Scholar]
  15. Mutee A.F. Salhimi S.M. Yam M.F. Lim C.P. Abdullah G.Z. Ameer O.Z. Abdulkarim M.F. Asmawi M.Z. In vivo Anti-inflammatory and in vitro Antioxidant Activities of Peperomia pellucida. Int. J. Pharmacol. 2010 6 5 686 690 10.3923/ijp.2010.686.690
    [Google Scholar]
  16. Sheikh H. Sikder S. Paul S.K. Hasan A.R. Rahaman M. Kundu S.P. Hypoglycemic, anti-inflammatory and analgesic activity of Peperomia pellucida (L.) HBK (piperaceae). Int. J. Pharm. Sci. Res. 2013 4 1 458 463
    [Google Scholar]
  17. Nguimbou R.M. Boudjeko T. Njintang N.Y. Himeda M. Scher J. Mbofung C.M.F. Mucilage chemical profile and antioxidant properties of giant swamp taro tubers. J. Food Sci. Technol. 2014 51 12 3559 3567 10.1007/s13197‑012‑0906‑6 25477624
    [Google Scholar]
  18. Zhishen J. Mengcheng T. Jianming W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999 64 4 555 559 10.1016/S0308‑8146(98)00102‑2
    [Google Scholar]
  19. Tabasum S. Khare S. Jain K. Spectrophotometric quantification of total phenolic, flavonoid, and alkaloid contents of Abrus precatorius L. seeds. Asian J. Pharm. Clin. Res. 2016 9 2 371 374
    [Google Scholar]
  20. Sharma O.P. Bhat T.K. DPPH antioxidant assay revisited. Food Chem. 2009 113 4 1202 1205 10.1016/j.foodchem.2008.08.008
    [Google Scholar]
  21. Shah P. Modi H. Comparative study of DPPH, ABTS and FRAP assays for determination of antioxidant activity. Int. J. Res. Appl. Sci. Eng. Technol. 2015 3 6 636 641
    [Google Scholar]
  22. Chaves N. Santiago A. Alías J.C. Quantification of the antioxidant activity of plant extracts: Analysis of sensitivity and hierarchization based on the method used. Antioxidants 2020 9 1 76 10.3390/antiox9010076 31952329
    [Google Scholar]
  23. Nazir S. Jan H. Tungmunnithum D. Drouet S. Zia M. Hano C. Abbasi B.H. Callus culture of Thai basil is an effective biological system for the production of antioxidants. Molecules 2020 25 20 4859 10.3390/molecules25204859 33096885
    [Google Scholar]
  24. Ngan L.T.M. Moon J.K. Kim J.H. Shibamoto T. Ahn Y.J. Growth-inhibiting effects of Paeonia lactiflora root steam distillate constituents and structurally related compounds on human intestinal bacteria. World J. Microbiol. Biotechnol. 2012 28 4 1575 1583 10.1007/s11274‑011‑0961‑6 22805939
    [Google Scholar]
  25. Jorgensen J.H. Pfaller M.A. Introduction to the 11th Edition of the Manual of Clinical Microbiology. Manual of Clinical Microbiology Wiley 2015 1 4
    [Google Scholar]
  26. Shah M. Parveen Z. Khan M.R. Evaluation of antioxidant, anti-inflammatory, analgesic and antipyretic activities of the stem bark of Sapindus mukorossi. BMC Complement. Altern. Med. 2017 17 1 526 10.1186/s12906‑017‑2042‑3 29221478
    [Google Scholar]
  27. Mogole L. Omwoyo W. Mtunzi F. Phytochemical screening, anti-oxidant activity and α-amylase inhibition study using different extracts of loquat (Eriobotrya japonica) leaves. Heliyon 2020 6 8 e04736 10.1016/j.heliyon.2020.e04736 32904229
    [Google Scholar]
  28. Shai L. Magano S. Lebelo S. Mogale A. Inhibitory effects of five medicinal plants on rat alpha-glucosidase: Comparison with their effects on yeast alpha-glucosidase. J. Med. Plants Res. 2011 5 13 2863 2867
    [Google Scholar]
  29. Balasundram N. Sundram K. Samman S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem. 2006 99 1 191 203 10.1016/j.foodchem.2005.07.042
    [Google Scholar]
  30. Fattahi S. Jamei R. Antioxidant and antiradical activities of Rosa canina and Rosa pimpinellifolia fruits from West Azerbaijan. Biology Department, Faculty of Science, Urmia University Urmia, Iran 2012
    [Google Scholar]
  31. Wenzig E.M. Widowitz U. Kunert O. Chrubasik S. Bucar F. Knauder E. Bauer R. Phytochemical composition and in vitro pharmacological activity of two rose hip (Rosa canina L.) preparations. Phytomedicine 2008 15 10 826 835 10.1016/j.phymed.2008.06.012 18707854
    [Google Scholar]
  32. Metodiewa D. Kochman A. Karolczak S. Evidence for antiradical and antioxidant properties of four biologically active N,N-diethylaminoethyl ethers of flavanone oximes: A comparison with natural polyphenolic flavonoid (rutin) action. Biochem. Mol. Biol. Int. 1997 41 5 1067 1075 9137839
    [Google Scholar]
  33. Xiao J. Capanoglu E. Jassbi A.R. Miron A. Advance on the flavonoid C-glycosides and health benefits. Critical reviews in food science and nutrition 2016 56 1 S29 S45
    [Google Scholar]
  34. Bhambhani S. Kondhare K.R. Giri A.P. Diversity in chemical structures and biological properties of plant alkaloids. Molecules 2021 26 11 3374 10.3390/molecules26113374 34204857
    [Google Scholar]
  35. Kong Y.R. Tay K.C. Su Y.X. Wong C.K. Tan W.N. Khaw K.Y. Potential of naturally derived alkaloids as multi-targeted therapeutic agents for neurodegenerative diseases. Molecules 2021 26 3 728 10.3390/molecules26030728 33573300
    [Google Scholar]
  36. Chu Y.H. Chang C.L. Hsu H.F. Flavonoid content of several vegetables and their antioxidant activity. J. Sci. Food Agric. 2000 80 5 561 566 10.1002/(SICI)1097‑0010(200004)80:5<561::AID‑JSFA574>3.0.CO;2‑#
    [Google Scholar]
  37. Jafaar H.J. Isbilen O. Volkan E. Sariyar G. Alkaloid profiling and antimicrobial activities of Papaver glaucum and P. decaisnei. BMC Res. Notes 2021 14 1 348 10.1186/s13104‑021‑05762‑x 34496958
    [Google Scholar]
  38. Weng N. Wan S. Wang H. Zhang S. Zhu G. Liu J. Cai D. Yang Y. Insight into unresolved complex mixtures of aromatic hydrocarbons in heavy oil via two-dimensional gas chromatography coupled with time-of-flight mass spectrometry analysis. J. Chromatogr. A 2015 1398 94 107 10.1016/j.chroma.2015.03.057 25939738
    [Google Scholar]
  39. Ismail N.I.M. Chua L.S. Solvent Partition for Terpenoid Rich Fraction From Crude Extract of Eurycoma longifolia. Proceedings of the Third International Conference on Separation Technology 2020 (ICoST 2020) 2020 30 December 2020 10.2991/aer.k.201229.009
    [Google Scholar]
  40. Ahmad I. Maryono M. Mun’im A. Kadar total alkaloid, fenolat, dan flavonoid dari ekstrak etil asetat herba Suruhan (Peperomia pellucida [L] Kunth). Ibn Sina Scientific Journal (JIIS): Pharmaceutical and Health Sciences 2019 4 2 265 275 10.36387/jiis.v4i2.261
    [Google Scholar]
  41. Zlatić N. Jakovljević D. Stanković M. Temporal, plant part, and interpopulation variability of secondary metabolites and antioxidant activity of Inula helenium L. Plants 2019 8 6 179 10.3390/plants8060179 31213017
    [Google Scholar]
  42. Michiels J.A. Kevers C. Pincemail J. Defraigne J.O. Dommes J. Extraction conditions can greatly influence antioxidant capacity assays in plant food matrices. Food Chem. 2012 130 4 986 993 10.1016/j.foodchem.2011.07.117
    [Google Scholar]
  43. Srinivasan S. Wankhar W. Rathinasamy S. Rajan R. Free radical scavenging potential and HPTLC analysis of Indigofera tinctoria linn (Fabaceae). J. Pharm. Anal. 2016 6 2 125 131 10.1016/j.jpha.2015.04.003 29403972
    [Google Scholar]
  44. Ng Z.X. Samsuri S.N. Yong P.H. The antioxidant index and chemometric analysis of tannin, flavonoid, and total phenolic extracted from medicinal plant foods with the solvents of different polarities. J. Food Process. Preserv. 2020 44 9 e14680 10.1111/jfpp.14680
    [Google Scholar]
  45. Amirah S. Zain H.H.M. Husni I. Kassim N.K. Amin I. In vitro Antioxidant Capacity of Peperomia pellucida (L.) Kunth Plant from two different locations in Malaysia using different Solvents Extraction. Res J Pharm Tech 2020 13 4 1767 1773 10.5958/0974‑360X.2020.00319.4
    [Google Scholar]
  46. Oloyede G.K. Onocha P.A. Olaniran B.B. Phytochemical, toxicity, antimicrobial and antioxidant screening of leaf extracts of Peperomia pellucida from Nigeria. Adv. Environ. Biol. 2011 5 12 3700 3709
    [Google Scholar]
  47. Abere T.A. Agoreyo F.O. Eze G.I. Phytochemical, antimicrobial and toxiicological evaluation of the leaves of peperomia pellucida (L.) HBK (Piperaceae). J Pharm Allied Sci 2012 9 3 1637 1652
    [Google Scholar]
  48. Zubair K. Samiya J. Jalal U. Mostafizur R. In vitro investigation of antdiarrhoeal, antimicrobial and thrombolytic activities of aerial parts of Peperomia pellucida. Pharmacologyonline 2015 3 5 13
    [Google Scholar]
  49. Mendes L. Maciel K. Vieira A. Mendonça L. Silva R. Neto P.R. Antimicrobial activity of ethanolic extracts of Peperomia pellucida and Portulaca pilosa. Rev. Cienc. Farm. Basica Apl. 2011 32 1
    [Google Scholar]
  50. Wei L.S. Wee W. Siong J.Y.F. Syamsumir D.F. Characterization of anticancer, antimicrobial, antioxidant properties and chemical compositions of Peperomia pellucida leaf extract. Acta Med. Iran. 2011 49 10 670 674 22071643
    [Google Scholar]
  51. Okoh S. Iweriebor B. Okoh O. Okoh A. Bioactive constituents, radical scavenging, and antibacterial properties of the leaves and stem essential oils from Peperomia pellucida (L.) kunth. Pharmacogn. Mag. 2017 13 51 3 392 10.4103/pm.pm_106_17 29142389
    [Google Scholar]
  52. Gaestel M. Kotlyarov A. Kracht M. Targeting innate immunity protein kinase signalling in inflammation. Nat. Rev. Drug Discov. 2009 8 6 480 499 10.1038/nrd2829 19483709
    [Google Scholar]
  53. Fernando I.P.S. Nah J.W. Jeon Y.J. Potential anti-inflammatory natural products from marine algae. Environ. Toxicol. Pharmacol. 2016 48 22 30 10.1016/j.etap.2016.09.023 27716532
    [Google Scholar]
  54. Perera M. Papa N. Christidis D. Wetherell D. Hofman M.S. Murphy D.G. Bolton D. Lawrentschuk N. Sensitivity, specificity, and predictors of positive 68Ga–prostate-specific membrane antigen positron emission tomography in advanced prostate cancer: A systematic review and meta-analysis. Eur. Urol. 2016 70 6 926 937 10.1016/j.eururo.2016.06.021 27363387
    [Google Scholar]
  55. Ho K.L. Tan C.G. Yong P.H. Wang C.W. Lim S.H. Kuppusamy U.R. Ngo C.T. Massawe F. Ng Z.X. Extraction of phytochemicals with health benefit from Peperomia pellucida (L.) Kunth through liquid-liquid partitioning. J. Appl. Res. Med. Aromat. Plants 2022 30 100392 10.1016/j.jarmap.2022.100392
    [Google Scholar]
  56. Sales P.M. Souza P.M. Simeoni L.A. Magalhães P.O. Silveira D. α-Amylase inhibitors: A review of raw material and isolated compounds from plant source. J. Pharm. Pharm. Sci. 2012 15 1 141 183 10.18433/J35S3K 22365095
    [Google Scholar]
  57. Hidayati S. Mayasari S.S. Setyaningrum L. Wardani A.D. Aini Q. In vitro antidiabetic activity of Peperomia pellucida extract and fraction by alpha-amylase inhibition pathway. Pharmaciana 2022 10.12928/pharmaciana.v12i2.21874
    [Google Scholar]
  58. Hossain U. Das A.K. Ghosh S. Sil P.C. An overview on the role of bioactive α-glucosidase inhibitors in ameliorating diabetic complications. Food Chem. Toxicol. 2020 145 111738 10.1016/j.fct.2020.111738 32916220
    [Google Scholar]
  59. Teruna H.Y. Hendra R. Almurdani M. IAI special edition: α-Glucosidase inhibitory activities of Loranthus ferrugineus and Peperomia pellucida extracts. Pharmacy Education 2022 22 2 5 8
    [Google Scholar]
  60. Oliveira A.P. Ferreira J.G. Riboira S. Andrade P.B. Valentão P. Bioactive natural products from piper betle l. leaves and their α-glucosidase inhibitory potential. Rec. Nat. Prod. 2016 10 6 771
    [Google Scholar]
  61. Kaur N. Kumar V. Nayak S.K. Wadhwa P. Kaur P. Sahu S.K. Alpha‐amylase as molecular target for treatment of diabetes mellitus: A comprehensive review. Chem. Biol. Drug Des. 2021 98 4 539 560 10.1111/cbdd.13909 34173346
    [Google Scholar]
  62. Unuofin J.O. Lebelo S.L. Antioxidant effects and mechanisms of medicinal plants and their bioactive compounds for the prevention and treatment of type 2 diabetes: An updated review. Oxid Med Cell Longev. 2020 2020 1356893 10.1155/2020/1356893
    [Google Scholar]
  63. Tabish S.A. Is diabetes becoming the biggest epidemic of the twenty-first century? Int. J. Health Sci. 2007 1 2 V VIII 21475425
    [Google Scholar]
/content/journals/npj/10.2174/2210315514666230808153921
Loading
/content/journals/npj/10.2174/2210315514666230808153921
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test