Skip to content
2000
Volume 15, Issue 2
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

Objective

This review aims to evaluate the latest techniques used in formulating epigallocatechin gallate (EGCG), analyse the difficulties encountered in the process, and offer perspectives on potential future advancements in epigallocatechin gallate formulations for both nutraceutical and pharmaceutical applications.

Methods

This work provides a thorough literature review and examines current epigallocatechin gallate formulation strategies, assesses solubility improvement approaches, examines obstacles, and summarises results regarding benefits and drawbacks. In nutraceuticals and pharmaceuticals, it identifies knowledge gaps and suggests future research avenues.

Results

This comprehensive review presents a synthesis of pivotal discoveries about epigallocatechin gallate formulations, particularly emphasising notable progress in enhancing solubility and the concomitant obstacles encountered in this pursuit. This review weighs the benefits and drawbacks, shedding light on areas that need further investigation in the pharmaceutical and nutraceutical fields.

Conclusion

This review synthesises current research on formulations containing epigallocatechin gallate, focusing on their various applications and the obstacles accompanying their implementation. Despite facing various challenges, the methodologies that have been investigated demonstrate potential. The comprehensive evaluation of both strengths and limitations highlights the imperative nature of continuous research. The conclusion provides opportunities for research in pharmaceuticals and nutraceuticals, outlining future directions.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155295035240330065048
2025-02-01
2024-11-26
Loading full text...

Full text loading...

References

  1. MittalR.K. SharmaV. BiswasT. MishraI. Recent advances in nitrogen-containing heterocyclic scaffolds as antiviral agents.Med. Chem.202410.2174/0115734064280150231212113012
    [Google Scholar]
  2. MittalR.K. PurohitP. SankaranarayananM. Muzaffar-Ur-RehmanM. TaramelliD. SignoriniL. DolciM. BasilicoN. In-vitro antiviral activity and in-silico targeted study of quinoline-3-carboxylate derivatives against SARS-CoV-2 isolate.Mol. Divers.202351510.1007/s11030‑023‑10703‑w 37480422
    [Google Scholar]
  3. MittalR.K. PurohitP. AggarwalM. An eco-friendly synthetic approach through C (sp3)-H functionalization of the viral fusion “Spike Protein” inhibitors.Biointerface Res. Appl. Chem.202313269
    [Google Scholar]
  4. MittalR.K. AggarwalM. KhatanaK. PurohitP. Quinoline: Synthesis to application.Med. Chem.20221913146 35240965
    [Google Scholar]
  5. PurohitP. MittalR.K. SharmaV. A synergistic broad-spectrum viral entry blocker: in-silico Approach.Biointerface Res. Appl. Chem.2022131
    [Google Scholar]
  6. ZhangZ. QiuC. LiX. McClementsD.J. JiaoA. WangJ. JinZ. Advances in research on interactions between polyphenols and biology-based nano-delivery systems and their applications in improving the bioavailability of polyphenols.Trends Food Sci. Technol.202111649250010.1016/j.tifs.2021.08.009
    [Google Scholar]
  7. FarhanM. RizviA. AatifM. AhmadA. Current understanding of flavonoids in cancer therapy and prevention.Metabolites202313448110.3390/metabo13040481 37110140
    [Google Scholar]
  8. MittalR.K. MishraR. SharmaV. PurohitP. Bioactive exploration in functional foods: Unlocking nature’s treasures.Curr. Pharm. Biotechnol.2024 38031768
    [Google Scholar]
  9. SinghM.P. SoniK. BhamraR. MittalR.K. Superfood: Value and Need.Curr. Nutr. Food Sci.2022181656810.2174/1573401317666210420123013
    [Google Scholar]
  10. FarhanM. Green tea catechins: nature’s way of preventing and treating cancer.Int. J. Mol. Sci.202223181071310.3390/ijms231810713 36142616
    [Google Scholar]
  11. BelojevićG. Effects of polyphenols on human health.Galen Med. J.202327465210.5937/Galmed2307046B
    [Google Scholar]
  12. LevyE. DelvinE. MarcilV. SpahisS. Can phytotherapy with polyphenols serve as a powerful approach for the prevention and therapy tool of novel coronavirus disease 2019 (COVID-19)?Am. J. Physiol. Endocrinol. Metab.20203194E689E70810.1152/ajpendo.00298.2020 32755302
    [Google Scholar]
  13. LungJ. LinY.S. YangY.H. ChouY.L. ShuL.H. ChengY.C. LiuH.T. WuC.Y. The potential chemical structure of anti‐SARS‐CoV‐2 RNA‐dependent RNA polymerase.J. Med. Virol.202092669369710.1002/jmv.25761 32167173
    [Google Scholar]
  14. GielecińskaA. KciukM. MujwarS. CelikI. KołatD. Kałuzińska-KołatŻ. KontekR. Substances of natural origin in medicine: Plants vs.Cancer Cells202312798610.3390/cells12070986 37048059
    [Google Scholar]
  15. MittalR.K. MishraR. UddinR. SharmaV. Hydrogel breakthroughs in biomedicine: Recent advances and implications.Curr. Pharm. Biotechnol.20242510.2174/0113892010281021231229100228 38288792
    [Google Scholar]
  16. BiswasT. MittalR.K. SharmaV. MishraI. Nitrogen-fused heterocycles: Empowering anticancer drug discovery.Med. Chem.202410.2174/0115734064278334231211054053
    [Google Scholar]
  17. MittalR.K. MishraR. SharmaV. MishraI. 1,3,4-Thiadiazole: A versatile scaffold for drug discovery.Lett. Org. Chem.2023212110.2174/0115701786274678231124101033
    [Google Scholar]
  18. PurohitP. MittalR.K. KhatanaK. DNA minor groove-binding agent.Anticancer. Agents Med. Chem.2022222344348
    [Google Scholar]
  19. MittalR.K. PurohitP. Quinoline-3-carboxylate derivatives: A new hope as an antiproliferative agent.Anticancer. Agents Med. Chem.202020161981199110.2174/1871520620666200619175906
    [Google Scholar]
  20. MittalR.K. PurohitP. Quinoline-3-carboxylic acids: A step toward highly selective antiproliferative agent.Anticancer. Agents Med. Chem.202121131708171610.2174/1871520620999201124214112
    [Google Scholar]
  21. AkterR. UddinS.J. GriceI.D. TiralongoE. Cytotoxic activity screening of Bangladeshi medicinal plant extracts.J. Nat. Med.201468124625210.1007/s11418‑013‑0789‑5 23846168
    [Google Scholar]
  22. DuJ. LuX. LongZ. ZhangZ. ZhuX. YangY. XuJ. In vitro and in vivo anticancer activity of aconitine on melanoma cell line B16.Molecules201318175776710.3390/molecules18010757 23299553
    [Google Scholar]
  23. SvobodaG.H. PooreG.A. SimpsonP.J. BoderG.B. Alkaloids of Acronychia Baueri Schott I. Isolation of the alkaloids and a study of the antitumor and other biological properties of acronycine.J. Pharm. Sci.196655875876810.1002/jps.2600550803 5975286
    [Google Scholar]
  24. ThomsonM. AliM. Garlic [Allium sativum]: a review of its potential use as an anti-cancer agent.Curr. Cancer Drug Targets200331678110.2174/1568009033333736 12570662
    [Google Scholar]
  25. MilnerJ.A. A historical perspective on garlic and cancer.J. Nutr.200113131027S1031S10.1093/jn/131.3.1027S 11238810
    [Google Scholar]
  26. BianchiniF. VainioH. Allium vegetables and organosulfur compounds: Do they help prevent cancer?Environ. Health Perspect.2001109989390210.1289/ehp.01109893 11673117
    [Google Scholar]
  27. NakagawaH. TsutaK. KiuchiK. SenzakiH. TanakaK. HiokiK. TsuburaA. Growth inhibitory effects of diallyl disulfide on human breast cancer cell lines.Carcinogenesis200122689189710.1093/carcin/22.6.891 11375895
    [Google Scholar]
  28. LorenceA. Medina-BolivarF. NesslerC.L. Camptothecin and 10-hydroxycamptothecin from Camptotheca acuminata hairy roots.Plant Cell Rep.200422643744110.1007/s00299‑003‑0708‑4 13680137
    [Google Scholar]
  29. AhmadN.H. RahimR.A. MatI. Catharanthus roseus aqueous extract is cytotoxic to Jurkat leukaemic T-cells but induces the proliferation of normal peripheral blood mononuclear cells.Trop. Life Sci. Res.2010212101113 24575203
    [Google Scholar]
  30. ChinembiriT. du PlessisL. GerberM. HammanJ. du PlessisJ. Review of natural compounds for potential skin cancer treatment.Molecules2014198116791172110.3390/molecules190811679 25102117
    [Google Scholar]
  31. BaligaM.S. KatiyarS.K. Chemoprevention of photocarcinogenesis by selected dietary botanicals.Photochem. Photobiol. Sci.20065224325310.1039/b505311k 16465310
    [Google Scholar]
  32. KatiyarS. ElmetsC. KatiyarS. Green tea and skin cancer: Photoimmunology, angiogenesis and DNA repair.J. Nutr. Biochem.200718528729610.1016/j.jnutbio.2006.08.004 17049833
    [Google Scholar]
  33. ShiM. ShiY.L. LiX.M. YangR. CaiZ.Y. LiQ.S. MaS.C. YeJ.H. LuJ.L. LiangY.R. ZhengX.Q. Food-grade encapsulation systems for (−)-epigallocatechin gallate.Molecules201823244510.3390/molecules23020445 29462972
    [Google Scholar]
  34. CaiY. ZhangJ. ChenN.G. ShiZ. QiuJ. HeC. ChenM. Recent advances in anticancer activities and drug delivery systems of tannins.Med. Res. Rev.201737466570110.1002/med.21422 28004409
    [Google Scholar]
  35. ZhuQ.Y. ZhangA. TsangD. HuangY. ChenZ.Y. Stability of green tea catechins.J. Agric. Food Chem.199745124624462810.1021/jf9706080
    [Google Scholar]
  36. ThangapandiyanS. MiltonprabuS. Epigallocatechin gallate effectively ameliorates fluoride-induced oxidative stress and DNA damage in the liver of rats.Can. J. Physiol. Pharmacol.201391752853710.1139/cjpp‑2012‑0347 23826622
    [Google Scholar]
  37. GranjaA. FriasI. NevesA.R. PinheiroM. ReisS. Therapeutic potential of epigallocatechin gallate nanodelivery systems.BioMed Res. Int.20172017581379310.1155/2017/5813793
    [Google Scholar]
  38. ZhouY. TangJ. DuY. DingJ. LiuJ.Y. The green tea polyphenol EGCG potentiates the antiproliferative activity of sunitinib in human cancer cells.Tumour Biol.20163778555856610.1007/s13277‑015‑4719‑x 26733173
    [Google Scholar]
  39. TodenS. TranH.M. Tovar-CamargoO.A. OkugawaY. GoelA. Epigallocatechin-3-gallate targets cancer stem-like cells and enhances 5-fluorouracil chemosensitivity in colorectal cancer.Oncotarget2016713161581617110.18632/oncotarget.7567 26930714
    [Google Scholar]
  40. RahmaniA.H. Al shabrmi, F.M.; Allemailem, K.S.; Aly, S.M.; Khan, M.A. Implications of green tea and its constituents in the prevention of cancer via the modulation of cell signalling pathway.BioMed Res. Int.2015201511210.1155/2015/925640 25977926
    [Google Scholar]
  41. ShankarS. GanapathyS. SrivastavaR.K. Green tea polyphenols: biology and therapeutic implications in cancer.Front. Biosci.200712124881489910.2741/2435 17569617
    [Google Scholar]
  42. YamauchiR. SasakiK. YoshidaK. Identification of epigallocatechin-3-gallate in green tea polyphenols as a potent inducer of p53-dependent apoptosis in the human lung cancer cell line A549.Toxicol. In Vitro200923583483910.1016/j.tiv.2009.04.011 19406223
    [Google Scholar]
  43. AlamM. GoldbergL.H. SilapuntS. GardnerE.S. StromS.S. RademakerA.W. MargolisD.J. Delayed treatment and continued growth of nonmelanoma skin cancer.J. Am. Acad. Dermatol.201164583984810.1016/j.jaad.2010.06.028 21055843
    [Google Scholar]
  44. PerrottaR.E. GiordanoM. MalaguarneraM. Non-melanoma skin cancers in elderly patients.Crit. Rev. Oncol. Hematol.201180347448010.1016/j.critrevonc.2011.04.011 21602051
    [Google Scholar]
  45. GoktasZ. ZuY. AbbasiM. GalyeanS. WuD. FanZ. WangS. Recent advances in nanoencapsulation of phytochemicals to combat obesity and its comorbidities.J. Agric. Food Chem.202068318119813110.1021/acs.jafc.0c00131 32633507
    [Google Scholar]
  46. BozzutoG. MolinariA. Liposomes as nanomedical devices.Int. J. Nanomedicine20151097599910.2147/IJN.S68861 25678787
    [Google Scholar]
  47. AkbarzadehA. Rezaei-SadabadyR. DavaranS. JooS.W. ZarghamiN. HanifehpourY. SamieiM. KouhiM. Nejati-KoshkiK. Liposome: classification, preparation, and applications.Nanoscale Res. Lett.20138110210.1186/1556‑276X‑8‑102 23432972
    [Google Scholar]
  48. BardaniaH. ShojaosadatiS.A. KobarfardF. MorshediD. AliakbariF. TahooriM.T. RoshaniE. RGD-modified nano-liposomes encapsulated eptifibatide with proper hemocompatibility and cytotoxicity effect.Iran. J. Biotechnol.201917281310.21859/ijb.2008 31457055
    [Google Scholar]
  49. PanahiY. FarshbafM. MohammadhosseiniM. MirahadiM. KhalilovR. SaghfiS. AkbarzadehA. Recent advances on liposomal nanoparticles: Synthesis, characterization and biomedical applications.Artif. Cells Nanomed. Biotechnol.201745478879910.1080/21691401.2017.1282496 28278586
    [Google Scholar]
  50. JhaveriA.M. TorchilinV.P. Multifunctional polymeric micelles for delivery of drugs and siRNA.Front. Pharmacol.201457710.3389/fphar.2014.00077 24795633
    [Google Scholar]
  51. MajumderN.G. DasN. DasS.K. Polymeric micelles for anticancer drug delivery.Ther. Deliv.2020111061363510.4155/tde‑2020‑0008 32933425
    [Google Scholar]
  52. AbedanzadehM. SalmanpourM. FarjadianF. MohammadiS. TamaddonA.M. Curcumin loaded polymeric micelles of variable hydrophobic lengths by RAFT polymerization: Preparation and In-vitro characterization.J. Drug Deliv. Sci. Technol.20205810179310.1016/j.jddst.2020.101793
    [Google Scholar]
  53. MansooriB. MohammadiA. DavudianS. ShirjangS. BaradaranB. The different mechanisms of cancer drug resistance: a brief review.Adv. Pharm. Bull.20177333934810.15171/apb.2017.041 29071215
    [Google Scholar]
  54. ArrueboM. VilaboaN. Sáez-GutierrezB. LambeaJ. TresA. ValladaresM. González-FernándezÁ. Assessment of the evolution of cancer treatment therapies.Cancers2011333279333010.3390/cancers3033279 24212956
    [Google Scholar]
  55. JardimD.L. GoodmanA. de Melo GagliatoD. KurzrockR. The challenges of tumor mutational burden as an immunotherapy biomarker.Cancer Cell202139215417310.1016/j.ccell.2020.10.001 33125859
    [Google Scholar]
  56. CatanzaroE. CanistroD. PellicioniV. VivarelliF. FimognariC. Anticancer potential of allicin: A review.Pharmacol. Res.202217710611810.1016/j.phrs.2022.106118 35134476
    [Google Scholar]
  57. AkkolE.K. TatlıI.I. KaratoprakG.Ş. AğarO.T. YücelÇ. Sobarzo-SánchezE. CapassoR. Is emodin with anticancer effects completely innocent? Two sides of the coin.Cancers20211311273310.3390/cancers13112733 34073059
    [Google Scholar]
  58. DeyD. HasanM.M. BiswasP. PapadakosS.P. RayanR.A. TasnimS. BilalM. IslamM.J. ArsheF.A. ArshadE.M. FarzanaM. RahamanT.I. BaralS.K. PaulP. BibiS. RahmanM.A. KimB. Investigating the anticancer potential of salvicine as a modulator of topoisomerase II and ROS signaling cascade.Front. Oncol.20221289900910.3389/fonc.2022.899009 35719997
    [Google Scholar]
  59. TiwariA. MahadikK.R. GabheS.Y. Piperine: A comprehensive review of methods of isolation, purification, and biological properties.Medicine in Drug Discovery2020710002710.1016/j.medidd.2020.100027
    [Google Scholar]
  60. MitraS. AnandU. JhaN.K. ShekhawatM.S. SahaS.C. NongdamP. RengasamyK.R.R. ProćkówJ. DeyA. Anticancer applications and pharmacological properties of piperidine and piperine: a comprehensive review on molecular mechanisms and therapeutic perspectives.Front. Pharmacol.20221277241810.3389/fphar.2021.772418 35069196
    [Google Scholar]
  61. DuG.J. ZhangZ. WenX.D. YuC. CalwayT. YuanC.S. WangC.Z. Epigallocatechin Gallate (EGCG) is the most effective cancer chemopreventive polyphenol in green tea.Nutrients20124111679169110.3390/nu4111679 23201840
    [Google Scholar]
  62. BottenD. FugalloG. FraternaliF. MolteniC. Structural properties of green tea catechins.J. Phys. Chem. B201511940128601286710.1021/acs.jpcb.5b08737 26369298
    [Google Scholar]
  63. HollmanP.C.H. ArtsI.C.W. Flavonols, flavones and flavanols - nature, occurrence and dietary burden.J. Sci. Food Agric.20008071081109310.1002/(SICI)1097‑0010(20000515)80:7<1081:AID‑JSFA566>3.0.CO;2‑G
    [Google Scholar]
  64. GrahamH.N. Green tea composition, consumption, and polyphenol chemistry.Prev. Med.199221333435010.1016/0091‑7435(92)90041‑F 1614995
    [Google Scholar]
  65. IslamM. Cardiovascular effects of green tea catechins: progress and promise. Rec. Pat. Cardiov. Drug.Disc.201272889910.2174/157489012801227292
    [Google Scholar]
  66. ChuC. DengJ. ManY. QuY. Green tea extracts epigallocatechin-3-gallate for different treatments.BioMed Res. Int.20172017561564710.1155/2017/5615647
    [Google Scholar]
  67. SaitoS.T. WelzelA. SuyenagaE.S. BuenoF. A method for fast determination of epigallocatechin gallate (EGCG), epicatechin (EC), catechin (C) and caffeine (CAF) in green tea using HPLC.Food Sci. Technol. (Campinas)200626239440010.1590/S0101‑20612006000200023
    [Google Scholar]
  68. LiL. ChanT.H. Enantioselective synthesis of epigallocatechin-3-gallate (EGCG), the active polyphenol component from green tea.Org. Lett.20013573974110.1021/ol000394z 11259050
    [Google Scholar]
  69. BanerjeeS. ChatterjeeJ. Efficient extraction strategies of tea (Camellia sinensis) biomolecules.J. Food Sci. Technol.201552631583168 26028699
    [Google Scholar]
  70. MonsantoM.F. Separation of polyphenols from aqueous green and black tea.[Phd Thesis 1 (Research TU/e / Graduation TU/e), Chemical Engineering and Chemistry]Technische Universiteit Eindhoven2015
    [Google Scholar]
  71. EngQ.Y. ThanikachalamP.V. RamamurthyS. Molecular understanding of Epigallocatechin gallate (EGCG) in cardiovascular and metabolic diseases.J. Ethnopharmacol.201821029631010.1016/j.jep.2017.08.035 28864169
    [Google Scholar]
  72. HouZ. SangS. YouH. LeeM.J. HongJ. ChinK.V. YangC.S. Mechanism of action of (-)-epigallocatechin-3-gallate: auto-oxidation-dependent inactivation of epidermal growth factor receptor and direct effects on growth inhibition in human esophageal cancer KYSE 150 cells.Cancer Res.200565178049805610.1158/0008‑5472.CAN‑05‑0480 16140980
    [Google Scholar]
  73. ChungJ.Y. ParkJ.O. PhyuH. DongZ. YangC.S. Mechanisms of inhibition of the Ras‐MAP kinase signaling pathway in 30.7b Ras 12 cells by tea polyphenols (‐)‐epigallocatechin‐3‐gallate and theaflavin‐3,3′‐digallate.FASEB J.200115112022202410.1096/fj.01‑0031fje 11511526
    [Google Scholar]
  74. FangM.Z. WangY. AiN. HouZ. SunY. LuH. WelshW. YangC.S. Tea polyphenol (-)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines.Cancer Res.2003632275637570 14633667
    [Google Scholar]
  75. LeeM.J. LambertJ.D. PrabhuS. MengX. LuH. MaliakalP. HoC.T. YangC.S. Delivery of tea polyphenols to the oral cavity by green tea leaves and black tea extract.Cancer Epidemiol. Biomarkers Prev.200413113213710.1158/1055‑9965.EPI‑03‑0040 14744744
    [Google Scholar]
  76. LiangY.C. Lin-shiauS.Y. ChenC.F. LinJ.K. Suppression of extracellular signals and cell proliferation through EGF receptor binding by (−)-epigallocatechin gallate in human A431 epidermoid carcinoma cells.J. Cell. Biochem.1997671556510.1002/(SICI)1097‑4644(19971001)67:1<55:AID‑JCB6>3.0.CO;2‑V 9328839
    [Google Scholar]
  77. CorinaD. CodrutaS. DianaA. PopescuA. GhiulaiR. PavelI.Z. AvramS. DalianaM. DeheleanC. An Update on natural compounds and their modern formulations for the management of malignant melanoma. Nat. Prod. Cancer. Drug.Disc.2017521110.5772/67647
    [Google Scholar]
  78. JohnsonK.E. WilgusT.A. Multiple roles for VEGF in non-melanoma skin cancer: angiogenesis and beyond.J. Skin Cancer201220121610.1155/2012/483439 23125933
    [Google Scholar]
  79. ChenL. ZhangH.Y. Cancer preventive mechanisms of the green tea polyphenol (-)-epigallocatechin-3-gallate.Molecules200712594695710.3390/12050946 17873830
    [Google Scholar]
  80. KatiyarS.K. Green tea prevents non-melanoma skin cancer by enhancing DNA repair.Arch. Biochem. Biophys.2011508215215810.1016/j.abb.2010.11.015 21094124
    [Google Scholar]
  81. FangJ.Y. LeeW.R. ShenS.C. HuangY.L. Effect of liposome encapsulation of tea catechins on their accumulation in basal cell carcinomas.J. Dermatol. Sci.200642210110910.1016/j.jdermsci.2005.12.010 16423506
    [Google Scholar]
  82. AlmatroodiS.A. AlmatroudiA. KhanA.A. AlhumaydhiF.A. AlsahliM.A. RahmaniA.H. Potential therapeutic targets of epigallocatechin gallate (EGCG), the most abundant catechin in green tea, and its role in the therapy of various types of cancer.Molecules20202514314610.3390/molecules25143146 32660101
    [Google Scholar]
  83. MillsopJ.W. SivamaniR.K. FazelN. Botanical agents for the treatment of nonmelanoma skin cancer.Dermatol. Res. Pract.201320131910.1155/2013/837152 23983679
    [Google Scholar]
  84. XiaC. GuC. LiuG. ZhaoJ. WangS. YangC. ZhuY. DengJ. XiangZ. YuM. GuoY. WuY. ChenJ. Preparation of a novel brain-targeted EGCG liposome and its antioxidative neuroprotection.J. Funct. Foods202311110591110.1016/j.jff.2023.105911
    [Google Scholar]
  85. Food and Drug AdministrationLiposome Drug Products: Chemistry, Manufacturing, and Controls; Human Pharmacokinetics and Bioavailability; and Labeling Documentation—Guidance for Industry.US Food and Drug Administration2018
    [Google Scholar]
  86. MazurF. BallyM. StädlerB. ChandrawatiR. Liposomes and lipid bilayers in biosensors.Adv. Colloid Interface Sci.2017249889910.1016/j.cis.2017.05.020 28602208
    [Google Scholar]
  87. TahaE.I. El-AnaziM.H. El-BagoryI.M. BayomiM.A. Design of liposomal colloidal systems for ocular delivery of ciprofloxacin.Saudi Pharm. J.201422323123910.1016/j.jsps.2013.07.003 25061409
    [Google Scholar]
  88. HanY. GaoZ. ChenL. KangL. HuangW. JinM. WangQ. BaeY.H. Multifunctional oral delivery systems for enhanced bioavailability of therapeutic peptides/proteins.Acta Pharm. Sin. B20199590292210.1016/j.apsb.2019.01.004 31649842
    [Google Scholar]
  89. MirtalebM.S. ShahrakyM.K. EkramiE. MirtalebA. Advances in biological nano-phospholipid vesicles for transdermal delivery: A review on applications.J. Drug Deliv. Sci. Technol.20216110233110.1016/j.jddst.2021.102331
    [Google Scholar]
  90. MehtaP.P. GhoshalD. PawarA.P. KadamS.S. Dhapte-PawarV.S. Recent advances in inhalable liposomes for treatment of pulmonary diseases: Concept to clinical stance.J. Drug Deliv. Sci. Technol.20205610150910.1016/j.jddst.2020.101509
    [Google Scholar]
  91. YusufH. AliA.A. OrrN. TunneyM.M. McCarthyH.O. KettV.L. Novel freeze-dried DDA and TPGS liposomes are suitable for nasal delivery of vaccine.Int. J. Pharm.2017533117918610.1016/j.ijpharm.2017.09.011 28887219
    [Google Scholar]
  92. NiuM. LuY. HovgaardL. GuanP. TanY. LianR. QiJ. WuW. Hypoglycemic activity and oral bioavailability of insulin-loaded liposomes containing bile salts in rats: The effect of cholate type, particle size and administered dose.Eur. J. Pharm. Biopharm.201281226527210.1016/j.ejpb.2012.02.009 22369880
    [Google Scholar]
  93. WangN. WangT. LiT. DengY. Modulation of the physicochemical state of interior agents to prepare controlled release liposomes.Colloids Surf. B Biointerfaces200969223223810.1016/j.colsurfb.2008.11.033 19131224
    [Google Scholar]
  94. ZengH. QiY. ZhangZ. LiuC. PengW. ZhangY. Nanomaterials toward the treatment of Alzheimer’s disease: Recent advances and future trends.Chin. Chem. Lett.20213261857186810.1016/j.cclet.2021.01.014
    [Google Scholar]
  95. LiC. ZhangY. WanY. WangJ. LinJ. LiZ. HuangP. STING-activating drug delivery systems: Design strategies and biomedical applications.Chin. Chem. Lett.20213251615162510.1016/j.cclet.2021.01.001
    [Google Scholar]
  96. DagD. OztopM.H. Formation and characterization of green tea extract loaded liposomes.J. Food Sci.201782246347010.1111/1750‑3841.13615 28071801
    [Google Scholar]
  97. GerasimovO.V. BoomerJ.A. QuallsM.M. ThompsonD.H. Cytosolic drug delivery using pH- and light-sensitive liposomes.Adv. Drug Deliv. Rev.199938331733810.1016/S0169‑409X(99)00035‑6 10837763
    [Google Scholar]
  98. VoineaM. SimionescuM. Designing of ‘intelligent’ liposomes for efficient delivery of drugs.J. Cell. Mol. Med.20026446547410.1111/j.1582‑4934.2002.tb00450.x 12611636
    [Google Scholar]
  99. GharibA. FaezizadehZ. GodarzeeM. Therapeutic efficacy of epigallocatechin gallate-loaded nanoliposomes against burn wound infection by methicillin-resistant Staphylococcus aureus.Skin Pharmacol. Physiol.2013262687510.1159/000345761 23296023
    [Google Scholar]
  100. LuoX. GuanR. ChenX. TaoM. MaJ. ZhaoJ. Optimization on condition of epigallocatechin-3-gallate (EGCG) nanoliposomes by response surface methodology and cellular uptake studies in Caco-2 cells.Nanoscale Res. Lett.20149129110.1186/1556‑276X‑9‑291 24959109
    [Google Scholar]
  101. SongQ. LiD. ZhouY. YangJ. YangW. ZhouG. WenJ. Enhanced uptake and transport of (+)-catechin and (-)-epigallocatechin gallate in niosomal formulation by human intestinal Caco-2 cells.Int. J. Nanomedicine201492157216510.2147/IJN.S59331 24855353
    [Google Scholar]
  102. ChungJ.E. TanS. GaoS.J. YongvongsoontornN. KimS.H. LeeJ.H. ChoiH.S. YanoH. ZhuoL. KurisawaM. YingJ.Y. Self-assembled micellar nanocomplexes comprising green tea catechin derivatives and protein drugs for cancer therapy.Nat. Nanotechnol.201491190791210.1038/nnano.2014.208 25282044
    [Google Scholar]
  103. RashidinejadA. BirchE.J. Sun-WaterhouseD. EverettD.W. Delivery of green tea catechin and epigallocatechin gallate in liposomes incorporated into low-fat hard cheese.Food Chem.201415617618310.1016/j.foodchem.2014.01.115 24629955
    [Google Scholar]
  104. MüllerR.H. MäderK. GohlaS. Solid lipid nanoparticles (SLN) for controlled drug delivery a review of the state of the art.Eur. J. Pharm. Biopharm.200050116117710.1016/S0939‑6411(00)00087‑4 10840199
    [Google Scholar]
  105. MotaweaA. AhmedD.A.M. El-MansyA.A. SalehN.M. Crucial role of PLGA nanoparticles in mitigating the amiodarone-induced pulmonary toxicity.Int. J. Nanomedicine20211647134737 34267519
    [Google Scholar]
  106. DasS. NgW.K. TanR.B.H. Are nanostructured lipid carriers (NLCs) better than solid lipid nanoparticles (SLNs): Development, characterizations and comparative evaluations of clotrimazole-loaded SLNs and NLCs?Eur. J. Pharm. Sci.201247113915110.1016/j.ejps.2012.05.010 22664358
    [Google Scholar]
  107. ZhangJ. NieS. WangS. Nanoencapsulation enhances epigallocatechin-3-gallate stability and its antiatherogenic bioactivities in macrophages.J. Agric. Food Chem.201361389200920910.1021/jf4023004 24020822
    [Google Scholar]
  108. ZhangJ. NieS. Martinez-ZaguilanR. SennouneS.R. WangS. Formulation, characteristics and antiatherogenic bioactivities of CD36-targeted epigallocatechin gallate (EGCG)-loaded nanoparticles.J. Nutr. Biochem.201630142310.1016/j.jnutbio.2015.11.001 27012617
    [Google Scholar]
  109. ChenJ. WeiN. Lopez-GarciaM. AmbroseD. LeeJ. AnnelinC. PetersonT. Development and evaluation of resveratrol, Vitamin E, and epigallocatechin gallate loaded lipid nanoparticles for skin care applications.Eur. J. Pharm. Biopharm.201711728629110.1016/j.ejpb.2017.04.008 28411056
    [Google Scholar]
  110. FangueiroJ.F. CalpenaA.C. ClaresB. AndreaniT. EgeaM.A. VeigaF.J. GarciaM.L. SilvaA.M. SoutoE.B. Biopharmaceutical evaluation of epigallocatechin gallate-loaded cationic lipid nanoparticles (EGCG-LNs): in vivo, in vitro and ex vivo studies.Int. J. Pharm.20165021-216116910.1016/j.ijpharm.2016.02.039 26921515
    [Google Scholar]
  111. ZielińskaA. CarreiróF. OliveiraA.M. NevesA. PiresB. VenkateshD.N. DurazzoA. LucariniM. EderP. SilvaA.M. SantiniA. SoutoE.B. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology.Molecules20202516373110.3390/molecules25163731 32824172
    [Google Scholar]
  112. BeginesB. OrtizT. Pérez-ArandaM. MartínezG. MerineroM. Argüelles-AriasF. AlcudiaA. Polymeric nanoparticles for drug delivery: Recent developments and future prospects.Nanomaterials2020107140310.3390/nano10071403 32707641
    [Google Scholar]
  113. LiZ. HoW. BaiX. LiF. ChenY. ZhangX.Q. XuX. Nanoparticle depots for controlled and sustained gene delivery.J. Control. Release202032262263110.1016/j.jconrel.2020.03.021 32194173
    [Google Scholar]
  114. PradhanR. PaulS. DasB. SinhaS. DashS.R. MandalM. KunduC.N. Resveratrol nanoparticle attenuates metastasis and angiogenesis by deregulating inflammatory cytokines through inhibition of CAFs in oral cancer by CXCL-12/IL-6-dependent pathway.J. Nutr. Biochem.202311310925710.1016/j.jnutbio.2022.109257 36572069
    [Google Scholar]
  115. WangY. WanG. LiZ. ShiS. ChenB. LiC. ZhangL. WangY. PEGylated doxorubicin nanoparticles mediated by HN-1 peptide for targeted treatment of oral squamous cell carcinoma.Int. J. Pharm.20175251213110.1016/j.ijpharm.2017.04.027 28412450
    [Google Scholar]
  116. LiQ. LiuX. YanW. ChenY. Antitumor effect of poly lactic acid nanoparticles loaded with cisplatin and chloroquine on the oral squamous cell carcinoma.Aging20211322593260310.18632/aging.202297 33323546
    [Google Scholar]
  117. SoppimathK.S. AminabhaviT.M. KulkarniA.R. RudzinskiW.E. Biodegradable polymeric nanoparticles as drug delivery devices.J. Control. Release2001701-212010.1016/S0168‑3659(00)00339‑4 11166403
    [Google Scholar]
  118. DubeA. NicolazzoJ.A. LarsonI. Chitosan nanoparticles enhance the intestinal absorption of the green tea catechins (+)-catechin and (−)-epigallocatechin gallate.Eur. J. Pharm. Sci.201041221922510.1016/j.ejps.2010.06.010 20600878
    [Google Scholar]
  119. HongZ. XuY. YinJ.F. JinJ. JiangY. DuQ. Improving the effectiveness of (-)-epigallocatechin gallate (EGCG) against rabbit atherosclerosis by EGCG-loaded nanoparticles prepared from chitosan and polyaspartic acid.J. Agric. Food Chem.20146252126031260910.1021/jf504603n 25483592
    [Google Scholar]
  120. SannaV. PintusG. RoggioA.M. PunzoniS. PosadinoA.M. ArcaA. MarcedduS. BandieraP. UzzauS. SechiM. Targeted biocompatible nanoparticles for the delivery of (-)-epigallocatechin 3-gallate to prostate cancer cells.J. Med. Chem.20115451321133210.1021/jm1013715 21306166
    [Google Scholar]
  121. HsiehD.S. WangH. TanS.W. HuangY.H. TsaiC.Y. YehM.K. WuC.J. The treatment of bladder cancer in a mouse model by epigallocatechin-3-gallate-gold nanoparticles.Biomaterials201132307633764010.1016/j.biomaterials.2011.06.073 21782236
    [Google Scholar]
  122. KhoobchandaniM. KattiK. MaxwellA. FayW. KattiK. Laminin receptor-avid nanotherapeutic EGCg-AuNPs as a potential alternative therapeutic approach to prevent restenosis.Int. J. Mol. Sci.201617331610.3390/ijms17030316 26938531
    [Google Scholar]
  123. HsiehD.S. LuH.C. ChenC.C. WuC.J. YehM.K. The preparation and characterization of gold-conjugated polyphenol nanoparticles as a novel delivery system.Int. J. Nanomedicine2012716231633 22615529
    [Google Scholar]
  124. AvadhaniK.S. ManikkathJ. TiwariM. ChandrasekharM. GodavarthiA. VidyaS.M. HariharapuraR.C. KalthurG. UdupaN. MutalikS. Skin delivery of epigallocatechin-3-gallate (EGCG) and hyaluronic acid loaded nano-transfersomes for antioxidant and anti-aging effects in UV radiation induced skin damage.Drug Deliv.2017241617410.1080/10717544.2016.1228718 28155509
    [Google Scholar]
  125. MuraC. NácherA. MerinoV. Merino-SanjuánM. ManconiM. LoyG. FaddaA.M. Díez-SalesO. Design, characterization and In vitro evaluation of 5-aminosalicylic acid loaded N-succinyl-chitosan microparticles for colon specific delivery.Colloids Surf. B Biointerfaces20129419920510.1016/j.colsurfb.2012.01.030 22341520
    [Google Scholar]
  126. WuY. LuZ. LiY. YangJ. ZhangX. Surface modification of iron oxide-based magnetic nanoparticles for cerebral theranostics: Application and prospection.Nanomaterials2020108144110.3390/nano10081441 32722002
    [Google Scholar]
  127. ZhangG. ZhangJ. Enhanced oral bioavailability of EGCG using pH-sensitive polymeric nanoparticles: Characterization and in vivo investigation on nephrotic syndrome rats.Drug Des. Devel. Ther.2018122509251810.2147/DDDT.S172919 30147298
    [Google Scholar]
  128. MengD. ZhuL. ZhangL. MaT. ZhangY. ChenL. ShanY. WangY. WangZ. ZhouZ. YangR. Succinylated ferritin as a novel nanocage-like vehicle of polyphenol: Structure, stability, and absorption analysis.Food Chem.202136113006910.1016/j.foodchem.2021.130069 34058660
    [Google Scholar]
  129. PujaraN. GiriR. WongK.Y. QuZ. RewatkarP. MoniruzzamanM. BegunJ. RossB.P. McGuckinM. PopatA. pH – Responsive colloidal carriers assembled from β-lactoglobulin and Epsilon poly-L-lysine for oral drug delivery.J. Colloid Interface Sci.2021589455510.1016/j.jcis.2020.12.054 33450459
    [Google Scholar]
  130. SuryawanshiJ.S. Phytosome: an emerging trend in herbal drug treatment.J Med Genet Genomics.201136109114
    [Google Scholar]
  131. NeelamK VijayS LalitS Various techniques for the modification of starch and the applications of its derivatives.Int. res. j. pharm.2012352531
    [Google Scholar]
  132. KarthivashanG. MasarudinM.J. Umar KuraA. AbasF. FakuraziS. Optimization, formulation, and characterization of multiflavonoids-loaded flavanosome by bulk or sequential technique.Int. J. Nanomedicine2016113417343410.2147/IJN.S112045 27555765
    [Google Scholar]
  133. AnwarE. FarhanaN. Formulation and evaluation of phytosome-loaded maltodextrin-gum Arabic microsphere system for delivery of Camellia sinensis extract.J. Young Pharm.2018102S56S6210.5530/jyp.2018.2s.11
    [Google Scholar]
  134. LazzeroniM. Guerrieri-GonzagaA. GandiniS. JohanssonH. SerranoD. CazzanigaM. AristarcoV. MacisD. MoraS. CaldarellaP. PaganiG. PruneriG. RivaA. PetrangoliniG. MorazzoniP. DeCensiA. BonanniB. A presurgical study of lecithin formulation of green tea extract in women with early breast cancer.Cancer Prev. Res.201710636337010.1158/1940‑6207.CAPR‑16‑0298 28400479
    [Google Scholar]
  135. FreitasL.B.O. CorgosinhoL.M. FariaJ.A.Q.A. dos SantosV.M. ResendeJ.M. LealA.S. GomesD.A. SousaE.M.B. Multifunctional mesoporous silica nanoparticles for cancer-targeted, controlled drug delivery and imaging.Microporous Mesoporous Mater.201724227128310.1016/j.micromeso.2017.01.036
    [Google Scholar]
  136. FulazS. HiebnerD. BarrosC.H.N. DevlinH. VitaleS. QuinnL. CaseyE. Ratiometric imaging of the in situ pH distribution of biofilms by use of fluorescent mesoporous silica nanosensors.ACS Appl. Mater. Interfaces20191136326793268810.1021/acsami.9b09978 31418546
    [Google Scholar]
  137. TsouC.J. HungY. MouC.Y. Hollow mesoporous silica nanoparticles with tunable shell thickness and pore size distribution for application as broad-ranging pH nanosensor.Microporous Mesoporous Mater.201419018118810.1016/j.micromeso.2014.02.011
    [Google Scholar]
  138. KaczmarekM. Lanthanide-sensitized luminescence and chemiluminescence in the systems containing most often used medicines; a review.J. Lumin.202022211717410.1016/j.jlumin.2020.117174
    [Google Scholar]
  139. TalluryP. PaytonK. SantraS. Silica-based multimodal/multifunctional nanoparticles for bioimaging and biosensing applications.Nanomedicine200834579592
    [Google Scholar]
  140. MuruganB. SagadevanS. J, A.L.; Fatimah, I.; Fatema, K.N.; Oh, W.C.; Mohammad, F.; Johan, M.R. Role of mesoporous silica nanoparticles for the drug delivery applications.Mater. Res. Express202071010200210.1088/2053‑1591/abbf7e
    [Google Scholar]
  141. BorawakeD.D. PandeV.V. GiriM.A. Mesoporous silica nanoparticles as theranostic platform for smart drug delivery: A review.J. Nanomed. Nanosci.2017125100025
    [Google Scholar]
  142. AbeerM.M. RewatkarP. QuZ. TalekarM. KleitzF. SchmidR. LindénM. KumeriaT. PopatA. Silica nanoparticles: A promising platform for enhanced oral delivery of macromolecules.J. Control. Release202032654455510.1016/j.jconrel.2020.07.021 32687941
    [Google Scholar]
  143. AlizadehL. AlizadehE. ZarebkohanA. AhmadiE. Rahmati-YamchiM. SalehiR. AS1411 aptamer-functionalized chitosan-silica nanoparticles for targeted delivery of epigallocatechin gallate to the SKOV-3 ovarian cancer cell lines.J. Nanopart. Res.2020221510.1007/s11051‑019‑4735‑7
    [Google Scholar]
  144. McClementsD.J. Advances in nanoparticle and microparticle delivery systems for increasing the dispersibility, stability, and bioactivity of phytochemicals.Biotechnol. Adv.20203810728710.1016/j.biotechadv.2018.08.004 30086329
    [Google Scholar]
  145. SelvamuthukumarS. VelmuruganR. Nanostructured Lipid Carriers: A potential drug carrier for cancer chemotherapy.Lipids Health Dis.201211115910.1186/1476‑511X‑11‑159 23167765
    [Google Scholar]
  146. RadhakrishnanR. KulhariH. PoojaD. GudemS. BhargavaS. ShuklaR. SistlaR. Encapsulation of biophenolic phytochemical EGCG within lipid nanoparticles enhances its stability and cytotoxicity against cancer.Chem. Phys. Lipids2016198516010.1016/j.chemphyslip.2016.05.006 27234272
    [Google Scholar]
  147. WangS. SuR. NieS. SunM. ZhangJ. WuD. Moustaid-MoussaN. Application of nanotechnology in improving bioavailability and bioactivity of diet-derived phytochemicals.J. Nutr. Biochem.201425436337610.1016/j.jnutbio.2013.10.002 24406273
    [Google Scholar]
  148. ZhangB. YaoR. HuC. MaitzM.F. WuH. LiuK. YangL. LuoR. WangY. Epigallocatechin gallate mediated sandwich-like coating for mimicking endothelium with sustained therapeutic nitric oxide generation and heparin release.Biomaterials202126912041810.1016/j.biomaterials.2020.120418 33143876
    [Google Scholar]
/content/journals/npj/10.2174/0122103155295035240330065048
Loading
/content/journals/npj/10.2174/0122103155295035240330065048
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test