Skip to content
2000
Volume 15, Issue 2
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

Lung carcinoma is the most ubiquitous and fundamental cause of cancer-related mortality globally. The conventional therapeutic approaches for lung cancer have consistently encountered several challenges and complexities, prompting the exploration of novel tactics for the detection and management of cancer. Lung cancer is a highly preventable disease, and early-stage detection significantly improves patient’s survival rates. Several distinct medicinal substances from plants aid in treating human illnesses and promoting good health. Plants, including , ., are utilized as medicines to treat lung cancer. It can be effectively treated using plant secondary metabolites like flavonoids, phenolics, terpenoids, steroids, alkaloids, and polyphenols. This review describes the structures of plant metabolites and the process by which they induce apoptosis against lung cancer. This data will assist in the comprehensive awareness and understanding of the factors that combat phytochemicals against lung cancers and the production of new anti-cancer medications.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155293700240408043538
2025-02-01
2025-01-24
Loading full text...

Full text loading...

References

  1. ParkinP.P. Statistics, Global cancer 2002.CA Cancer J. Clin.2005557410810.3322/canjclin.55.2.74 15761078
    [Google Scholar]
  2. DhanamaniM. M.; Lakshmi Devi, S. Ethnomedicinal plants for cancer therapy.Hygeia J D Med201131110
    [Google Scholar]
  3. Stewart, P. B.W. and Kleihues, “International agency for research on cancer (IARC).World Cancer Rep201435110.5860/CHOICE.37‑3382
    [Google Scholar]
  4. FerlayJ. ShinH.R. BrayF. FormanD. MathersC. ParkinD.M. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008.Int. J. Cancer2010127122893291710.1002/ijc.25516 21351269
    [Google Scholar]
  5. PoreM.M. HiltermannT.J.N. KruytF.A.E. Targeting apoptosis pathways in lung cancer.Cancer Lett.2013332235936810.1016/j.canlet.2010.09.012 20974517
    [Google Scholar]
  6. GiladS. Lithwick-YanaiG. BarshackI. BenjaminS. KrivitskyI. EdmonstonT.B. BibboM. ThurmC. HorowitzL. HuangY. FeinmesserM. HouJ.S. St CyrB. BurnsteinI. GiboriH. DromiN. SandenM. KushnirM. AharonovR. Classification of the four main types of lung cancer using a microRNA-based diagnostic assay.J. Mol. Diagn.201214551051710.1016/j.jmoldx.2012.03.004 22749746
    [Google Scholar]
  7. MckeownD. Air Pollution Burden of Illness from Traffic in Toronto Toronto Public Heal2007
    [Google Scholar]
  8. HechtS.S. TrickerA.R. Nitrosamines derived from nicotine and other tobacco alkaloids Anal.Determ. Nicotine Relat. Compd. their Metab.199942148810.1016/B978‑044450095‑3/50012‑7
    [Google Scholar]
  9. TurnerM.C. KrewskiD. PopeC.A.III ChenY. GapsturS.M. ThunM.J. Long-term ambient fine particulate matter air pollution and lung cancer in a large cohort of never-smokers.Am. J. Respir. Crit. Care Med.2011184121374138110.1164/rccm.201106‑1011OC 21980033
    [Google Scholar]
  10. AhmedK. Abdullah-Al-EmranA-A-E. JesminT. MuktiR.F. RahmanM.Z. AhmedF. Early detection of lung cancer risk using data mining.Asian Pac. J. Cancer Prev.201314159559810.7314/APJCP.2013.14.1.595 23534801
    [Google Scholar]
  11. XuR. ChoM. Genetic and metabolic effects of chemical carcinogens: a complex interplay.J. Clin. Exp. Pathol.2013s210.4172/2161‑0681.S2‑e001
    [Google Scholar]
  12. BrennerD.R. BoffettaP. DuellE.J. BickeböllerH. RosenbergerA. McCormackV. MuscatJ.E. YangP. WichmannH.E. Brueske-HohlfeldI. SchwartzA.G. CoteM.L. TjønnelandA. FriisS. Le MarchandL. ZhangZ.F. MorgensternH. Szeszenia-DabrowskaN. LissowskaJ. ZaridzeD. RudnaiP. FabianovaE. ForetovaL. JanoutV. BenckoV. SchejbalovaM. BrennanP. MatesI.N. LazarusP. FieldJ.K. RajiO. McLaughlinJ.R. LiuG. WienckeJ. NeriM. UgoliniD. AndrewA.S. LanQ. HuW. OrlowI. ParkB.J. HungR.J. Previous lung diseases and lung cancer risk: a pooled analysis from the International Lung Cancer Consortium.Am. J. Epidemiol.2012176757358510.1093/aje/kws151 22986146
    [Google Scholar]
  13. D’ArcangeloM. CappuzzoF. K-Ras mutations in non-small-cell lung cancer: prognostic and predictive value.ISRN Mol. Biol.201220121810.5402/2012/837306 27398239
    [Google Scholar]
  14. JohnsonJ.L. PillaiS. ChellappanS.P. Genetic and biochemical alterations in non-small cell lung cancer.Biochem. Res. Int.2012201211810.1155/2012/940405 22928112
    [Google Scholar]
  15. LiuH. RadiskyD.C. YangD. XuR. RadiskyE.S. BissellM.J. BishopJ.M. MYC suppresses cancer metastasis by direct transcriptional silencing of αv and β3 integrin subunits.Nat. Cell Biol.201214656757410.1038/ncb2491 22581054
    [Google Scholar]
  16. SpencerC.A. GroudineM. Control of c-myc regulation in normal and neoplastic cells.Adv. Cancer Res.19915614810.1016/S0065‑230X(08)60476‑5 2028839
    [Google Scholar]
  17. NesbitC.E. MYC oncogenes and human neoplastic disease.Oncogene199918193004301610.1038/sj.onc.1202746
    [Google Scholar]
  18. PrinsJ. The myc family of oncogenes and their presence and importance in small-cell lung carcinoma and other tumour typesAnticancer Res.1993135 A13731385
    [Google Scholar]
  19. EagleL.R. YinX. BrothmanA.R. WilliamsB.J. AtkinN.B. ProchownikE.V. Mutation of the MXI1 gene in prostate cancer.Nat. Genet.19959324925510.1038/ng0395‑249 7773287
    [Google Scholar]
  20. HowingtonJ.A. Treatment of stage I and II non-small cell lung cancer: Diagnosis and management of lung cancer American college of chest physicians evidence-based clinical practice guidelines,2013143. (5)(SUPPL)10.1378/chest.12‑2359
    [Google Scholar]
  21. ZappaC. MousaS.A. Non-small cell lung cancer: current treatment and future advances.Transl. Lung Cancer Res.20165328830010.21037/tlcr.2016.06.07 27413711
    [Google Scholar]
  22. VinodS.K. HauE. Radiotherapy treatment for lung cancer: Current status and future directions.Respirology202025S2Suppl. 2617110.1111/resp.13870 32516852
    [Google Scholar]
  23. AlbergA.J. Epidemiology of lung cancer: ACCP evidence-based clinical practice guidelines (2nd edition)Chest2007132pp. (3)(SUPPL.)29S-55S.10.1378/chest.07‑1347
    [Google Scholar]
  24. BrökerL.E. GiacconeG. The role of new agents in the treatment of non-small cell lung cancer.Eur. J. Cancer200238182347236110.1016/S0959‑8049(02)00457‑4 12460778
    [Google Scholar]
  25. JeongS.J. KohW. KimB. KimS.H. Are there new therapeutic options for treating lung cancer based on herbal medicines and their metabolites?J. Ethnopharmacol.2011138365266110.1016/j.jep.2011.10.018 22032843
    [Google Scholar]
  26. WuQ. KangY. ZhangH. WangH. LiuY. WangJ. The anticancer effects of hispolon on lung cancer cells.Biochem. Biophys. Res. Commun.2014453338539110.1016/j.bbrc.2014.09.098 25268766
    [Google Scholar]
  27. ElmoreS. Apoptosis: a review of programmed cell death.Toxicol. Pathol.200735449551610.1080/01926230701320337 17562483
    [Google Scholar]
  28. ZamanS. WangR. GandhiV. Targeting the apoptosis pathway in hematologic malignancies.Leuk. Lymphoma20145591980199210.3109/10428194.2013.855307 24295132
    [Google Scholar]
  29. LopezJ. TaitS.W.G. Mitochondrial apoptosis: killing cancer using the enemy within.Br. J. Cancer2015112695796210.1038/bjc.2015.85 25742467
    [Google Scholar]
  30. HassanM. WatariH. AbuAlmaatyA. OhbaY. SakuragiN. Apoptosis and molecular targeting therapy in cancer.BioMed Res. Int.2014201412310.1155/2014/150845 25013758
    [Google Scholar]
  31. HassenS. AliN. ChowdhuryP. Molecular signaling mechanisms of apoptosis in hereditary non-polyposis colorectal cancer.World J. Gastrointest. Pathophysiol.201233717910.4291/wjgp.v3.i3.71 22737591
    [Google Scholar]
  32. WeyhenmeyerB. MurphyA.C. PrehnJ.H. MurphyB.M. Targeting the anti-apoptotic Bcl-2 family members for the treatment of cancer.Exp. Oncol.2012343192199 23070004
    [Google Scholar]
  33. HuQ. WuD. ChenW. YanZ. ShiY. Proteolytic processing of the caspase-9 zymogen is required for apoptosome-mediated activation of caspase-9.J. Biol. Chem.201328821151421514710.1074/jbc.M112.441568 23572523
    [Google Scholar]
  34. HongB. HeuvelA. PrabhuV. ZhangS. El-DeiryW. Targeting tumor suppressor p53 for cancer therapy: strategies, challenges and opportunities.Curr. Drug Targets2014151808910.2174/1389450114666140106101412 24387333
    [Google Scholar]
  35. AdebayoS.A. DzoyemJ.P. ShaiL.J. EloffJ.N. The anti-inflammatory and antioxidant activity of 25 plant species used traditionally to treat pain in southern African.BMC Complement. Altern. Med.201515115910.1186/s12906‑015‑0669‑5 26014115
    [Google Scholar]
  36. SinghS. SharmaB. KanwarS.S. KumarA. Lead phytochemicals for anticancer drug development.Front. Plant Sci.20167November166710.3389/fpls.2016.01667 27877185
    [Google Scholar]
  37. HuangJ. LiJ.X. MaL.R. XuD.H. WangP. LiL.Q. YuL.L. LiY. LiR.Z. ZhangH. ZhengY.H. TangL. YanP.Y. Traditional herbal medicine: A potential therapeutic approach for adjuvant treatment of non-small cell lung cancer in the future.Integr. Cancer Ther.20222110.1177/15347354221144312 36567455
    [Google Scholar]
  38. Kojima-YuasaA. HuangX. Matsui-YuasaI. Synergistic anticancer activities of natural substances in human hepatocellular carcinoma.Diseases20153426028110.3390/diseases3040260 28943624
    [Google Scholar]
  39. ZhouY. PengY. MaoQ.Q. LiX. ChenM.W. SuJ. TianL. MaoN.Q. LongL.Z. QuanM.F. LiuF. ZhouS.F. ZhaoY.X. Casticin induces caspase-mediated apoptosis via activation of mitochondrial pathway and upregulation of DR5 in human lung cancer cells.Asian Pac. J. Trop. Med.20136537237810.1016/S1995‑7645(13)60041‑3 23608376
    [Google Scholar]
  40. MouH. ZhengY. ZhaoP. BaoH. FangW. XuN. Celastrol induces apoptosis in non-small-cell lung cancer A549 cells through activation of mitochondria- and Fas/FasL-mediated pathways.Toxicol. In Vitro20112551027103210.1016/j.tiv.2011.03.023 21466843
    [Google Scholar]
  41. VazJ.A. AlmeidaG.M. FerreiraI.C.F.R. MartinsA. VasconcelosM.H. Clitocybe alexandri extract induces cell cycle arrest and apoptosis in a lung cancer cell line: Identification of phenolic acids with cytotoxic potential.Food Chem.2012132148248610.1016/j.foodchem.2011.11.031 26434319
    [Google Scholar]
  42. YangC.L. MaY.G. XueY.X. LiuY.Y. XieH. QiuG.R. Curcumin induces small cell lung cancer NCI-H446 cell apoptosis via the reactive oxygen species-mediated mitochondrial pathway and not the cell death receptor pathway.DNA Cell Biol.201231213915010.1089/dna.2011.1300 21711158
    [Google Scholar]
  43. ChengA.S. ChangW.C. ChengY.H. ChenK.Y. ChenK.H. ChangT.L. The effects of Davallic acid from Davallia divaricata Blume on apoptosis induction in A549 lung cancer cells.Molecules20121711129381294910.3390/molecules171112938 23117433
    [Google Scholar]
  44. YuX. LinH. WangY. LvW. ZhangS. QianY. DengX. FengN. YuH. QianB. D-limonene exhibits antitumor activity by inducing autophagy and apoptosis in lung cancer.OncoTargets Ther.2018111833184710.2147/OTT.S155716 29670359
    [Google Scholar]
  45. BalachandranC. SangeethaB. DuraipandiyanV. RajM.K. IgnacimuthuS. Al-DhabiN.A. BalakrishnaK. ParthasarathyK. ArulmozhiN.M. ArasuM.V. A flavonoid isolated from Streptomyces sp. (ERINLG-4) induces apoptosis in human lung cancer A549 cells through p53 and cytochrome c release caspase dependant pathway.Chem. Biol. Interact.2014224243510.1016/j.cbi.2014.09.019 25289772
    [Google Scholar]
  46. AbotalebM. SamuelS. VargheseE. VargheseS. KubatkaP. LiskovaA. BüsselbergD. Flavonoids in cancer and apoptosis.Cancers20181112810.3390/cancers11010028 30597838
    [Google Scholar]
  47. SinghT. SharmaS.D. KatiyarS.K. Grape proanthocyanidins induce apoptosis by loss of mitochondrial membrane potential of human non-small cell lung cancer cells in vitro and in vivo.PLoS One2011611e2744410.1371/journal.pone.0027444 22087318
    [Google Scholar]
  48. M EstrelaL.R. Natural Polyphenols and Apoptosis Induction in Cancer Therapy.J. Carcinog. Mutagen.20135600410.4172/2157‑2518.S6‑004
    [Google Scholar]
  49. WangF. MaoY. YouQ. HuaD. CaiD. Piperlongumine induces apoptosis and autophagy in human lung cancer cells through inhibition of PI3K/Akt/mTOR pathway.Int. J. Immunopathol. Pharmacol.201528336237310.1177/0394632015598849 26246196
    [Google Scholar]
  50. LiangH. LaiB. YuanQ. Sulforaphane induces cell-cycle arrest and apoptosis in cultured human lung adenocarcinoma LTEP-A2 cells and retards growth of LTEP-A2 xenografts in vivo.J. Nat. Prod.200871111911191410.1021/np800233q 18855447
    [Google Scholar]
  51. FangH. DeClerckY.A. Targeting the tumor microenvironment: from understanding pathways to effective clinical trials.Cancer Res.201373164965497710.1158/0008‑5472.CAN‑13‑0661 23913938
    [Google Scholar]
  52. HanahanD. WeinbergR.A. Hallmarks of cancer: the next generation.Cell2011144564667410.1016/j.cell.2011.02.013 21376230
    [Google Scholar]
  53. NajafiM. GoradelN.H. FarhoodB. SalehiE. SolhjooS. TooleeH. KharazinejadE. MortezaeeK. Tumor microenvironment: Interactions and therapy.J. Cell. Physiol.201923455700572110.1002/jcp.27425 30378106
    [Google Scholar]
  54. MalpeliG. BarbiS. GrecoC. ZupoS. BertolasoA. ScupoliM.T. KramperaM. KamgaP.T. CroceC.M. ScarpaA. ZamòA. MicroRNA signatures and Foxp3+ cell count correlate with relapse occurrence in follicular lymphoma.Oncotarget2018928199611997910.18632/oncotarget.24987 29731996
    [Google Scholar]
  55. AvanziM.P. YekuO. LiX. WijewarnasuriyaD.P. van LeeuwenD.G. CheungK. ParkH. PurdonT.J. DaniyanA.F. SpitzerM.H. BrentjensR.J. Engineered tumor-targeted T cells mediate enhanced anti-tumor efficacy both directly and through activation of the endogenous immune system.Cell Rep.20182372130214110.1016/j.celrep.2018.04.051 29768210
    [Google Scholar]
  56. LingC. YueX. LingC. Three advantages of using traditional Chinese medicine to prevent and treat tumor.J. Integr. Med.201412433133510.1016/S2095‑4964(14)60038‑8 25074882
    [Google Scholar]
  57. WangL. WuW. ZhuX. NgW. GongC. YaoC. NiZ. YanX. FangC. ZhuS. The ancient Chinese decoction Yu-ping-Feng suppresses orthotopic Lewis lung cancer tumor growth through increasing M1 macrophage polarization and CD4+ T cell cytotoxicity.Front. Pharmacol.201910133310.3389/fphar.2019.01333 31780946
    [Google Scholar]
  58. ChenY. WuH. JiaoA. TongJ. ZhuJ. ZhangM. LiZ. LiP. Chinese herbal prescription QYSL prevents progression of lung cancer by targeting tumor microenvironment.Oncologie202224229530710.32604/oncologie.2022.022116
    [Google Scholar]
  59. ParkH.R. LeeE.J. MoonS.C. ChungT.W. KimK.J. YooH.S. ChoC.K. HaK.T. Inhibition of lung cancer growth by HangAmDan-B is mediated by macrophage activation to M1 subtype.Oncol. Lett.20171342330233610.3892/ol.2017.5730 28454399
    [Google Scholar]
  60. XuF. CuiW. ZhaoZ. GongW. WeiY. LiuJ. LiM. LiQ. YanC. QiuJ. LiuB. DongJ. Targeting tumor microenvironment: effects of Chinese herbal formulae on macrophage-mediated lung cancer in mice.Evid. Based Complement. Alternat. Med.2017201711210.1155/2017/7187168 28630636
    [Google Scholar]
  61. ParkC.R. LeeJ.S. SonC.G. LeeN.H. A survey of herbal medicines as tumor microenvironment‐modulating agents.Phytother. Res.2021351789410.1002/ptr.6784 32658314
    [Google Scholar]
  62. RenD. VilleneuveN.F. JiangT. WuT. LauA. ToppinH.A. ZhangD.D. Brusatol enhances the efficacy of chemotherapy by inhibiting the Nrf2-mediated defense mechanism.Proc. Natl. Acad. Sci. USA201110841433143810.1073/pnas.1014275108 21205897
    [Google Scholar]
  63. ZhaoL. WenQ. YangG. HuangZ. ShenT. LiH. RenD. Apoptosis induction of dehydrobruceine B on two kinds of human lung cancer cell lines through mitochondrial-dependent pathway.Phytomedicine201623211412210.1016/j.phymed.2015.12.019 26926172
    [Google Scholar]
  64. KangK.A. PiaoM.J. Madduma HewageS.R.K. RyuY.S. OhM.C. KwonT.K. ChaeS. HyunJ.W. Fisetin induces apoptosis and endoplasmic reticulum stress in human non-small cell lung cancer through inhibition of the MAPK signaling pathway.Tumour Biol.20163779615962410.1007/s13277‑016‑4864‑x 26797785
    [Google Scholar]
  65. ShresthaG. St. ClairL.L. Lichens: A promising source of antibiotic and anticancer drugs.Phytochem. Rev.201312122924410.1007/s11101‑013‑9283‑7
    [Google Scholar]
  66. ZálešákF. BonD.J.Y.D. PospíšilJ. Lignans and Neolignans: Plant secondary metabolites as a reservoir of biologically active substances.Pharmacol. Res.201914610428410.1016/j.phrs.2019.104284 31136813
    [Google Scholar]
  67. MonteiroL.S. BastosK.X. Barbosa-FilhoJ.M. de Athayde-FilhoP.F. DinizM.F.F.M. SobralM.V. Medicinal plants and other living organisms with antitumor potential against lung cancer Evidence-based Complement.Evid. Based Complement. Alternat. Med.2014201411510.1155/2014/604152
    [Google Scholar]
  68. ChoiJ.Y. HongW.G. ChoJ.H. KimE.M. KimJ. JungC.H. HwangS.G. UmH.D. ParkJ.K. Podophyllotoxin acetate triggers anticancer effects against non-small cell lung cancer cells by promoting cell death via cell cycle arrest, ER stress and autophagy.Int. J. Oncol.20154741257126510.3892/ijo.2015.3123 26314270
    [Google Scholar]
  69. Gali-MuhtasibH. HmadiR. KarehM. TohmeR. DarwicheN. Cell death mechanisms of plant-derived anticancer drugs: beyond apoptosis.Apoptosis201520121531156210.1007/s10495‑015‑1169‑2 26362468
    [Google Scholar]
  70. HabliZ. ToumiehG. FatfatM. RahalO. Gali-MuhtasibH. Emerging cytotoxic alkaloids in the battle against cancer: Overview of molecular mechanisms.Molecules201722225010.3390/molecules22020250 28208712
    [Google Scholar]
  71. SundukovY.N. First record of the ground beetle Trechoblemus postilenatus (Coleoptera, Carabidae) in Primorskii krai.Far East. Entomol.2019165April1610.1002/tox
    [Google Scholar]
  72. PoornimaP. WengC.F. PadmaV.V. Neferine, an alkaloid from lotus seed embryo, inhibits human lung cancer cell growth by MAPK activation and cell cycle arrest.Biofactors201440112113110.1002/biof.1115 23983146
    [Google Scholar]
  73. MaJ. LiuJ. LuC. CaiD. Pachymic acid induces apoptosis via activating ROS-dependent JNK and ER stress pathways in lung cancer cells.Cancer Cell Int.20151517810.1186/s12935‑015‑0230‑0 26244039
    [Google Scholar]
  74. Albert YenY. HerenyiovaM. WeberG. Quercetin: Synergistic action with carboxyamidotriazole in human breast carcinoma cells.Life Sci.199557131285129210.1016/0024‑3205(95)02085‑W 7674820
    [Google Scholar]
  75. DoraiT. AggarwalB.B. Role of chemopreventive agents in cancer therapy.Cancer Lett.2004215212914010.1016/j.canlet.2004.07.013 15488631
    [Google Scholar]
  76. ChenS.C. ChungK.T. Mutagenicity and antimutagenicity studies of tannic acid and its related compounds.Food Chem. Toxicol.20003811510.1016/S0278‑6915(99)00114‑3 10685008
    [Google Scholar]
  77. BorsW. MichelC. Chemistry of the antioxidant effect of polyphenols.Ann. N. Y. Acad. Sci.20029571576910.1111/j.1749‑6632.2002.tb02905.x 12074961
    [Google Scholar]
  78. FergusonL.R. Role of plant polyphenols in genomic stability.Mutat. Res.20014751-28911110.1016/S0027‑5107(01)00073‑2 11295156
    [Google Scholar]
  79. LeeS.J. KoW.G. KimJ.H. SungJ.H. LeeS-J. MoonC-K. LeeB-H. Induction of apoptosis by a novel intestinal metabolite of ginseng saponin via cytochrome c-mediated activation of caspase-3 protease.Biochem. Pharmacol.200060567768510.1016/S0006‑2952(00)00362‑2 10927026
    [Google Scholar]
  80. OdashimaS. OhtaT. KohnoH. MatsudaT. KitagawaI. AbeH. ArichiS. Control of phenotypic expression of cultured B16 melanoma cells by plant glycosides.Cancer Res.198545627812784 3986809
    [Google Scholar]
  81. BerhowM.A. WagnerE.D. VaughnS.F. PlewaM.J. Characterization and antimutagenic activity of soybean saponins.Mutat. Res.20004481112210.1016/S0027‑5107(99)00225‑0 10751618
    [Google Scholar]
  82. WangG. MiskiminsR. MiskiminsW.K. Mimosine arrests cells in G1 by enhancing the levels of p27(Kip1).Exp. Cell Res.20002541647110.1006/excr.1999.4743 10623466
    [Google Scholar]
  83. MikhailovI. RussevG. AnachkovaB. Treatment of mammalian cells with mimosine generates DNA breaks.Mutat. Res. DNA Repair2000459429930610.1016/S0921‑8777(00)00007‑0 10844243
    [Google Scholar]
  84. LinH. FalchettoR. MoscaP.J. ShabanowitzJ. HuntD.F. HamlinJ.L. Mimosine targets serine hydroxymethyltransferase.J. Biol. Chem.199627152548255610.1074/jbc.271.5.2548 8576220
    [Google Scholar]
  85. WangL.K. JohnsonR.K. HechtS.M. Inhibition of topoisomerase I function by nitidine and fagaronine.Chem. Res. Toxicol.19936681381810.1021/tx00036a010 8117920
    [Google Scholar]
  86. RayS. HazraB. MittraB. DasA. MajumderH.K. Diospyrin, a bisnaphthoquinone: a novel inhibitor of type I DNA topoisomerase of Leishmania donovani.Mol. Pharmacol.199854699499910.1124/mol.54.6.994 9855627
    [Google Scholar]
  87. PrescottT.A.K. SadlerI.H. KiapranisR. MaciverS.K. Lunacridine from Lunasia amara is a DNA intercalating topoisomerase II inhibitor.J. Ethnopharmacol.2007109228929410.1016/j.jep.2006.07.036 16963212
    [Google Scholar]
  88. FujiiN. YamashitaY. ArimaY. NagashimaM. NakanoH. Induction of topoisomerase II-mediated DNA cleavage by the plant naphthoquinones plumbagin and shikonin.Antimicrob. Agents Chemother.199236122589259410.1128/AAC.36.12.2589 1336338
    [Google Scholar]
  89. hua Meng, L. Salvicine, a novel DNA topoisomerase II inhibitor, exerting its effects by trapping enzyme-DNA cleavage complexes.Biochem. Pharmacol.200162673374110.1016/S0006‑2952(01)00732‑8
    [Google Scholar]
  90. ChowdhuryA.R. SharmaS. MandalS. GoswamiA. MukhopadhyayS. MajumderH.K. Luteolin, an emerging anti-cancer flavonoid, poisons eukaryotic DNA topoisomerase I.Biochem. J.2002366265366110.1042/bj20020098 12027807
    [Google Scholar]
  91. TolomeoM. GrimaudoS. CristinaA.D. RobertiM. PizziraniD. MeliM. DusonchetL. GebbiaN. AbbadessaV. CrostaL. BarucchelloR. GrisoliaG. InvidiataF. SimoniD. Pterostilbene and 3′-hydroxypterostilbene are effective apoptosis-inducing agents in MDR and BCR-ABL-expressing leukemia cells.Int. J. Biochem. Cell Biol.20053781709172610.1016/j.biocel.2005.03.004 15878840
    [Google Scholar]
  92. SchneiderJ.G. AlosiJ.A. McDonaldD.E. McFaddenD.W. Pterostilbene inhibits lung cancer through induction of apoptosis.J. Surg. Res.20101611182210.1016/j.jss.2009.06.027 20031166
    [Google Scholar]
  93. RoyS. MohammadT. GuptaP. DahiyaR. ParveenS. LuqmanS. HasanG.M. HassanM.I. Discovery of harmaline as a potent inhibitor of sphingosine kinase-1: a chemopreventive role in lung cancer.ACS Omega2020534215502156010.1021/acsomega.0c02165 32905276
    [Google Scholar]
  94. Birsu CincinZ. UnluM. KiranB. Sinem BirellerE. BaranY. CakmakogluB. Anti-proliferative, apoptotic and signal transduction effects of hesperidin in non-small cell lung cancer cells.Cell Oncol. (Dordr.)201538319520410.1007/s13402‑015‑0222‑z 25860498
    [Google Scholar]
  95. HsiangY.H. HertzbergR. HechtS. LiuL.F. Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I.J. Biol. Chem.198526027148731487810.1016/S0021‑9258(17)38654‑4 2997227
    [Google Scholar]
  96. ZhangG. WangC. SunM. LiJ. WangB. JinC. HuaP. SongG. ZhangY. NguyenL.L.H. CuiR. LiuR. WangL. ZhangX. Cinobufagin inhibits tumor growth by inducing intrinsic apoptosis through AKT signaling pathway in human nonsmall cell lung cancer cells.Oncotarget2016720289352894610.18632/oncotarget.7898 26959116
    [Google Scholar]
  97. Abd MalekS.N. YongW.K. HoY.F. Xanthohumol induces apoptosis and S phase cell cycle arrest in A549 non-small cell lung cancer cells.Pharmacogn. Mag.20151144Suppl. 227510.4103/0973‑1296.166069 26664015
    [Google Scholar]
  98. LiangC.H. ShiuL.Y. ChangL.C. SheuH.M. KuoK.W. Solamargine upregulation of Fas, downregulation of HER2, and enhancement of cytotoxicity using epirubicin in NSCLC cells.Mol. Nutr. Food Res.2007518999100510.1002/mnfr.200700044 17639997
    [Google Scholar]
  99. Klimaszewska-WiśniewskaA. Hałas-WiśniewskaM. IzdebskaM. GagatM. GrzankaA. GrzankaD. Antiproliferative and antimetastatic action of quercetin on A549 non-small cell lung cancer cells through its effect on the cytoskeleton.Acta Histochem.201711929911210.1016/j.acthis.2016.11.003 27887793
    [Google Scholar]
  100. LlorensF. MiróF.A. CasañasA. RoherN. GarciaL. PlanaM. GómezN. ItarteE. Unbalanced activation of ERK1/2 and MEK1/2 in apigenin-induced HeLa cell death.Exp. Cell Res.20042991152610.1016/j.yexcr.2004.05.006 15302569
    [Google Scholar]
  101. YinF. Apigenin inhibits growth and induces G2/M arrest by modulating cyclin-CDK regulators and ERK MAP kinase activation in breast carcinoma cellsAnticancer Res.2001211 A413420
    [Google Scholar]
  102. BaoY.Y. ZhouS.H. LuZ.J. FanJ. HuangY.P. Inhibiting GLUT-1 expression and PI3K/Akt signaling using apigenin improves the radiosensitivity of laryngeal carcinoma in vivo.Oncol. Rep.20153441805181410.3892/or.2015.4158 26238658
    [Google Scholar]
  103. HuangY.T. KuoM.L. LiuJ.Y. HuangS.Y. LinJ.K. Inhibitions of protein kinase C and proto-oncogene expressions in NIH 3t3 cells by apigenin.Eur. J. Cancer199632114615110.1016/0959‑8049(95)00540‑4 8695223
    [Google Scholar]
  104. BaoY.Y. ZhouS.H. FanJ. WangQ.Y. Anticancer mechanism of apigenin and the implications of GLUT-1 expression in head and neck cancers.Future Oncol.2013991353136410.2217/fon.13.84 23980682
    [Google Scholar]
  105. FangJ. XiaC. CaoZ. ZhengJ.Z. ReedE. JiangB.H. Apigenin inhibits VEGF and HIF‐1 expression via PI3K/AKT/p70S6K1 and HDM2/p53 pathways.FASEB J.200519334235310.1096/fj.04‑2175com 15746177
    [Google Scholar]
  106. AgulloG. Gamet-PayrastreL. ManentiS. VialaC. RémésyC. ChapH. PayrastreB. Relationship between flavonoid structure and inhibition of phosphatidylinositol 3-kinase: A comparison with tyrosine kinase and protein kinase C inhibition.Biochem. Pharmacol.199753111649165710.1016/S0006‑2952(97)82453‑7 9264317
    [Google Scholar]
  107. MaL. LiW. WangR. NanY. WangQ. LiuW. JinF. Resveratrol enhanced anticancer effects of cisplatin on non-small cell lung cancer cell lines by inducing mitochondrial dysfunction and cell apoptosis.Int. J. Oncol.20154741460146810.3892/ijo.2015.3124 26314326
    [Google Scholar]
  108. LawA.M.K. Valdes-MoraF. Gallego-OrtegaD. Myeloid-derived suppressor cells as a therapeutic target for cancer.Cells20209356110.3390/cells9030561 32121014
    [Google Scholar]
  109. ZhaoY. ShaoQ. ZhuH. XuH. LongW. YuB. ZhouL. XuH. WuY. SuZ. Resveratrol ameliorates Lewis lung carcinoma‐bearing mice development, decreases granulocytic myeloid‐derived suppressor cell accumulation and impairs its suppressive ability.Cancer Sci.201810992677268610.1111/cas.13720 29959821
    [Google Scholar]
  110. WuT. LiuW. GuoW. ZhuX. Silymarin suppressed lung cancer growth in mice via inhibiting myeloid-derived suppressor cells.Biomed. Pharmacother.20168146046710.1016/j.biopha.2016.04.039 27261626
    [Google Scholar]
  111. QuJ. LiuL. XuQ. RenJ. XuZ. DouH. ShenS. HouY. MouY. WangT. CARD9 prevents lung cancer development by suppressing the expansion of myeloid‐derived suppressor cells and IDO production.Int. J. Cancer201914582225223710.1002/ijc.32355 31008530
    [Google Scholar]
  112. IshiguroS. UpretiD. RobbenN. BurghartR. LoydM. OgunD. LeT. DelzeitJ. NakashimaA. ThakkarR. NakashimaA. SuzukiK. ComerJ. TamuraM. Water extract from Euglena gracilis prevents lung carcinoma growth in mice by attenuation of the myeloid-derived cell population.Biomed. Pharmacother.202012711016610.1016/j.biopha.2020.110166 32361165
    [Google Scholar]
  113. Shapouri-MoghaddamA. MohammadianS. VaziniH. TaghadosiM. EsmaeiliS.A. MardaniF. SeifiB. MohammadiA. AfshariJ.T. SahebkarA. Macrophage plasticity, polarization, and function in health and disease.J. Cell. Physiol.201823396425644010.1002/jcp.26429 29319160
    [Google Scholar]
  114. CondeelisJ. PollardJ.W. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis.Cell2006124226326610.1016/j.cell.2006.01.007 16439202
    [Google Scholar]
  115. WanL.Q. TanY. JiangM. HuaQ. The prognostic impact of traditional Chinese medicine monomers on tumor-associated macrophages in non-small cell lung cancer.Chin. J. Nat. Med.2019171072973710.1016/S1875‑5364(19)30089‑5 31703753
    [Google Scholar]
  116. NathS. MukherjeeP. MUC1: a multifaceted oncoprotein with a key role in cancer progression.Trends Mol. Med.201420633234210.1016/j.molmed.2014.02.007 24667139
    [Google Scholar]
  117. HuangW.C. ChanM.L. ChenM.J. TsaiT.H. ChenY.J. Modulation of macrophage polarization and lung cancer cell stemness by MUC1 and development of a related small-molecule inhibitor pterostilbene.Oncotarget2016726393633937510.18632/oncotarget.8101 27276704
    [Google Scholar]
  118. JinJ. LinJ. XuA. LouJ. QianC. LiX. WangY. YuW. TaoH. CCL2: An important mediator between tumor cells and host cells in tumor microenvironment.Front. Oncol.20211172291610.3389/fonc.2021.722916 34386431
    [Google Scholar]
  119. LiH. HuangN. ZhuW. WuJ. YangX. TengW. TianJ. FangZ. LuoY. ChenM. LiY. Modulation the crosstalk between tumor-associated macrophages and non-small cell lung cancer to inhibit tumor migration and invasion by ginsenoside Rh2.BMC Cancer201818157910.1186/s12885‑018‑4299‑4 29783929
    [Google Scholar]
  120. FerlayJ. SoerjomataramI. DikshitR. EserS. MathersC. RebeloM. ParkinD.M. FormanD. BrayF. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012.Int. J. Cancer20151365E359E38610.1002/ijc.29210 25220842
    [Google Scholar]
  121. LirdprapamongkolK. Vanillin enhances TRAIL-induced apoptosis in cancer cells through inhibition of NF-κB activation.In Vivo2010244501506
    [Google Scholar]
  122. BezerraD.P. SoaresA.K.N. de SousaD.P. Overview of the role of vanillin on redox status and cancer development.Oxid. Med. Cell. Longev.201620161910.1155/2016/9734816 28077989
    [Google Scholar]
  123. Corominas-FajaB. Oliveras-FerrarosC. CuyàsE. Segura-CarreteroA. JovenJ. Martin-CastilloB. Barrajón-CatalánE. MicolV. Bosch-BarreraJ. Menendez MenendezJ. Stem cell-like ALDH bright cellular states in EGFR-mutant non-small cell lung cancer: A novel mechanism of acquired resistance to erlotinib targetable with the natural polyphenol silibinin.Cell Cycle201312213390340410.4161/cc.26417 24047698
    [Google Scholar]
  124. GaoJ. LiuJ. XieF. LuY. YinC. ShenX. Co-delivery of docetaxel and salinomycin to target both breast cancer cells and stem cells by plga/tpgs nanoparticles.Int. J. Nanomedicine2019149199921610.2147/IJN.S230376 32063706
    [Google Scholar]
  125. WangY. Effects of salinomycin on cancer stem cell in human lung adenocarcinoma A549 cells.Med. Chem.20117210611110.2174/157340611794859307 21222617
    [Google Scholar]
  126. MokhtariR.B. HomayouniT.S. BaluchN. MorgatskayaE. KumarS. DasB. YegerH. Combination therapy in combating cancer.Oncotarget2017823380223804310.18632/oncotarget.16723 28410237
    [Google Scholar]
  127. KesarwaniK. GuptaR. MukerjeeA. Bioavailability enhancers of herbal origin: An overview.Asian Pac. J. Trop. Biomed.20133425326610.1016/S2221‑1691(13)60060‑X 23620848
    [Google Scholar]
/content/journals/npj/10.2174/0122103155293700240408043538
Loading
/content/journals/npj/10.2174/0122103155293700240408043538
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): anticancer; apoptosis; herbal plants; Lung cancer; NSCLC; plant secondary metabolites; SCLC
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test