Skip to content
2000
Volume 15, Issue 4
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

Fibrosis of the liver is the most common pathological feature of many chronic liver diseases, progressing to cirrhosis and eventually liver cancer. Currently, only individual genes or proteins are targeted by synthetic drugs used to treat liver fibrosis, they have limited therapeutic effect, and are associated with many side effects. In contrast, natural products have shown great advantages and potential in the treatment of liver fibrosis due to their structural diversity, high multi-target activity and low toxicity and side effects. Therefore, this review concludes the pathological mechanism of liver fibrosis and the cellular and signaling pathways involved, provides new ideas for anti-liver fibrosis research and introduces common natural products and their anti-hepatic fibrosis mechanisms.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155293866240522085229
2024-06-04
2025-03-30
Loading full text...

Full text loading...

References

  1. PengW. ChengS. BaoZ. WangY. ZhouW. WangJ. YangQ. ChenC. WangW. Advances in the research of nanodrug delivery system for targeted treatment of liver fibrosis.Biomed. Pharmacother.202113711134210.1016/j.biopha.2021.111342 33581652
    [Google Scholar]
  2. PowellE.E. WongV.W.S. RinellaM. Non-alcoholic fatty liver disease.Lancet2021397102902212222410.1016/S0140‑6736(20)32511‑3 33894145
    [Google Scholar]
  3. ZoubekM.E. TrautweinC. StrnadP. Reversal of liver fibrosis: From fiction to reality.Best Pract. Res. Clin. Gastroenterol.201731212914110.1016/j.bpg.2017.04.005 28624101
    [Google Scholar]
  4. BaiX. SuG. ZhaiS. Recent advances in nanomedicine for the diagnosis and therapy of liver fibrosis.Nanomaterials20201010194510.3390/nano10101945 33003520
    [Google Scholar]
  5. ZhouC. ZhouJ. HanN. LiuZ. XiaoB. YinJ. Beneficial effects of neomangiferin on high fat diet-induced nonalcoholic fatty liver disease in rats.Int. Immunopharmacol.201525121822810.1016/j.intimp.2015.01.027 25661699
    [Google Scholar]
  6. ZuberR. ModrianskýM. DvořákZ. RohovskýP. UlrichováJ. ŠimánekV. AnzenbacherP. Effect of Silybin and its congeners on human liver microsomal cytochrome P450 activities.Phytother. Res.200216763263810.1002/ptr.1000 12410543
    [Google Scholar]
  7. ShanL. LiuZ. CiL. ShuaiC. LvX. LiJ. Research progress on the anti-hepatic fibrosis action and mechanism of natural products.Int. Immunopharmacol.20197510576510.1016/j.intimp.2019.105765 31336335
    [Google Scholar]
  8. CarpinoG. MoriniS. GinannicorradiniS. FranchittoA. MerliM. SicilianoM. GentiliF. OnettimudaA. BerlocoP. RossiM. AttiliA.F. GaudioE. Alpha-SMA expression in hepatic stellate cells and quantitative analysis of hepatic fibrosis in cirrhosis and in recurrent chronic hepatitis after liver transplantation.Dig. Liver Dis.200537534935610.1016/j.dld.2004.11.009 15843085
    [Google Scholar]
  9. ZhouJ. CuiS. HeQ. GuoY. PanX. ZhangP. HuangN. GeC. WangG. GonzalezF.J. WangH. HaoH. SUMOylation inhibitors synergize with FXR agonists in combating liver fibrosis.Nat. Commun.202011124010.1038/s41467‑019‑14138‑6 31932588
    [Google Scholar]
  10. SozioM. LiangpunsakulS. CrabbD. The role of lipid metabolism in the pathogenesis of alcoholic and nonalcoholic hepatic steatosis.Semin. Liver Dis.201030437839010.1055/s‑0030‑1267538
    [Google Scholar]
  11. ZwartjesM.S.Z. GerdesV.E.A. NieuwdorpM. The role of gut microbiota and its produced metabolites in obesity, dyslipidemia, adipocyte dysfunction, and its interventions.Metabolites202111853110.3390/metabo11080531 34436472
    [Google Scholar]
  12. YuZ. XuC. SongB. ZhangS. ChenC. LiC. ZhangS. Tissue fibrosis induced by radiotherapy: Current understanding of the molecular mechanisms, diagnosis and therapeutic advances.J. Transl. Med.202321170810.1186/s12967‑023‑04554‑0 37814303
    [Google Scholar]
  13. ParolaM. MarraF. PinzaniM. Myofibroblast like cells and liver fibrogenesis: Emerging concepts in a rapidly moving scenario.Mol. Aspects Med.2008291-2586610.1016/j.mam.2007.09.002 18022682
    [Google Scholar]
  14. YangW. HeH. WangT. SuN. ZhangF. JiangK. ZhuJ. ZhangC. NiuK. WangL. YuanX. LiuN. LiL. WeiW. HuJ. Single-cell transcriptomic analysis reveals a hepatic stellate cell-activation roadmap and myofibroblast origin during liver fibrosis in mice.Hepatology20217452774279010.1002/hep.31987
    [Google Scholar]
  15. ZhangC.Y. YuanW.G. HeP. LeiJ.H. WangC.X. Liver fibrosis and hepatic stellate cells: Etiology, pathological hallmarks and therapeutic targets.World J. Gastroenterol.20162248105121052210.3748/wjg.v22.i48.10512 28082803
    [Google Scholar]
  16. SenooH. MezakiY. FujiwaraM. The stellate cell system (vitamin A-storing cell system).Anat. Sci. Int.201792438745510.1007/s12565‑017‑0395‑9 28299597
    [Google Scholar]
  17. JosanS. BillingsleyK. OrdunaJ. ParkJ.M. LuongR. YuL. HurdR. PfefferbaumA. SpielmanD. MayerD. Assessing inflammatory liver injury in an acute CCl 4 model using dynamic 3D metabolic imaging of hyperpolarized [1-13C]pyruvate.NMR Biomed.201528121671167710.1002/nbm.3431 26474216
    [Google Scholar]
  18. LepreuxS. Human liver myofibroblasts during development and diseases with a focus on portal (myo)fibroblasts.Front. Physiol.2015617310.3389/fphys.2015.00173
    [Google Scholar]
  19. van der HeideD. WeiskirchenR. BansalR. Therapeutic targeting of hepatic macrophages for the treatment of liver diseases.Front. Immunol.201910285210.3389/fimmu.2019.02852 31849997
    [Google Scholar]
  20. LiP. HeK. LiJ. LiuZ. GongJ. The role of Kupffer cells in hepatic diseases.Mol. Immunol.20178522222910.1016/j.molimm.2017.02.018 28314211
    [Google Scholar]
  21. WangR. ZhangS. LiuY. LiH. GuanS. ZhuL. JiaL. LiuZ. XuH. The role of macrophage polarization and related key molecules in pulmonary inflammation and fibrosis induced by coal dust dynamic inhalation exposure in Sprague-Dawley rats.Cytokine202417315641910.1016/j.cyto.2023.156419 37976700
    [Google Scholar]
  22. ArtyomovM.N. SergushichevA. SchillingJ.D. Integrating immunometabolism and macrophage diversity.Semin. Immunol.201628541742410.1016/j.smim.2016.10.004 27771140
    [Google Scholar]
  23. IwaisakoK. JiangC. ZhangM. CongM. Moore-MorrisT.J. ParkT.J. LiuX. XuJ. WangP. PaikY.H. MengF. AsagiriM. MurrayL.A. HofmannA.F. IidaT. GlassC.K. BrennerD.A. KisselevaT. Origin of myofibroblasts in the fibrotic liver in mice.Proc. Natl. Acad. Sci.201411132E3297E330510.1073/pnas.1400062111 25074909
    [Google Scholar]
  24. KumarV. XinX. MaJ. TanC. OsnaN. MahatoR.I. Therapeutic targets, novel drugs, and delivery systems for diabetes associated NAFLD and liver fibrosis.Adv. Drug Deliv. Rev.202117611388810.1016/j.addr.2021.113888 34314787
    [Google Scholar]
  25. BoonM.R. van der HorstG. van der PluijmG. TamsmaJ.T. SmitJ.W.A. RensenP.C.N. Bone morphogenetic protein 7: A broad-spectrum growth factor with multiple target therapeutic potency.Cytokine Growth Factor Rev.201122422122910.1016/j.cytogfr.2011.08.001 21924665
    [Google Scholar]
  26. DrabschY. ten DijkeP. TGF-β signalling and its role in cancer progression and metastasis.Cancer Metastasis Rev.2012313-455356810.1007/s10555‑012‑9375‑7 22714591
    [Google Scholar]
  27. KanzlerS. LohseA.W. KeilA. HenningerJ. DienesH.P. SchirmacherP. Rose-JohnS. Meyer Zum BüschenfeldeK.H. BlessingM. TGF-beta1 in liver fibrosis: An inducible transgenic mouse model to study liver fibrogenesis.Am. J. Physiol.19992764G1059G106810.1152/ajpgi.1999.276.4.G1059
    [Google Scholar]
  28. LanH.Y. Tubular epithelial-myofibroblast transdifferentiation mechanisms in proximal tubule cells.Curr. Opin. Nephrol. Hypertens.2003121252910.1097/00041552‑200301000‑00005 12496662
    [Google Scholar]
  29. CalabreseF. ValenteM. GiacomettiC. PettenazzoE. BenvegnuL. AlbertiA. GattaA. PontissoP. Parenchymal transforming growth factor beta‐1: Its type II receptor and Smad signaling pathway correlate with inflammation and fibrosis in chronic liver disease of viral etiology.J. Gastroenterol. Hepatol.200318111302130810.1046/j.1440‑1746.2003.03162.x 14535988
    [Google Scholar]
  30. MussoG. De MichieliF. BongiovanniD. ParenteR. FramarinL. LeoneN. BerruttiM. GambinoR. CassaderM. CohneyS. PaschettaE. New pharmacologic agents that target inflammation and fibrosis in nonalcoholic steatohepatitis related kidney disease.Clin. Gastroenterol. Hepatol.201715797298510.1016/j.cgh.2016.08.002 27521506
    [Google Scholar]
  31. SchwarzkopfK. BojungaJ. RüschenbaumS. MartinezY. MückeM.M. SeegerF. SchoelzelF. ZeuzemS. Friedrich-RustM. LangeC.M. Use of antiplatelet agents is inversely associated with liver fibrosis in patients with cardiovascular disease.Hepatol. Commun.20182121601160910.1002/hep4.1254 30556044
    [Google Scholar]
  32. LiJ. GuoC. WuJ. The agonists of peroxisome proliferator-activated receptor-γ for liver fibrosis.Drug Des. Devel. Ther.2021152619262810.2147/DDDT.S310163 34168433
    [Google Scholar]
  33. KarimianG. Mohammadi-KarakaniA. SotoudehM. Ghazi-KhansariM. GhobadiG. ShakibaB. Attenuation of hepatic fibrosis through captopril and enalapril in the livers of bile duct ligated rats.Biomed. Pharmacother.200862531231610.1016/j.biopha.2007.10.020 18191530
    [Google Scholar]
  34. FujitaK. NozakiY. WadaK. YonedaM. EndoH. TakahashiH. IwasakiT. InamoriM. AbeY. KobayashiN. KirikoshiH. KubotaK. SaitoS. NagashimaY. NakajimaA. Effectiveness of antiplatelet drugs against experimental non-alcoholic fatty liver disease.Gut200857111583159110.1136/gut.2007.144550 18596193
    [Google Scholar]
  35. ZhouJ. HuangN. GuoY. CuiS. GeC. HeQ. PanX. WangG. WangH. HaoH. Combined obeticholic acid and apoptosis inhibitor treatment alleviates liver fibrosis.Acta Pharm. Sin. B20199352653610.1016/j.apsb.2018.11.004 31193776
    [Google Scholar]
  36. ChenD.Q. FengY.L. CaoG. ZhaoY.Y. Natural products as a source for antifibrosis therapy.Trends Pharmacol. Sci.2018391193795210.1016/j.tips.2018.09.002 30268571
    [Google Scholar]
  37. LingL. LiG. WangG. MengD. LiZ. ZhangC. Carvedilol improves liver cirrhosis in rats by inhibiting hepatic stellate cell activation, proliferation, invasion and collagen synthesis.Mol. Med. Rep.20192021605161210.3892/mmr.2019.10401 31257490
    [Google Scholar]
  38. AzizsoltaniA. HatamiB. ZaliM.R. MahdaviV. BaghaeiK. AlizadehE. Obeticholic acid-loaded exosomes attenuate liver fibrosis through dual targeting of the FXR signaling pathway and ECM remodeling.Biomed. Pharmacother.202316811577710.1016/j.biopha.2023.115777 37913732
    [Google Scholar]
  39. TrebickaJ. HennenbergM. OdenthalM. ShirK. KleinS. GranzowM. VogtA. DienesH.P. LammertF. ReichenJ. HellerJ. SauerbruchT. Atorvastatin attenuates hepatic fibrosis in rats after bile duct ligation via decreased turnover of hepatic stellate cells.J. Hepatol.201053470271210.1016/j.jhep.2010.04.025 20633948
    [Google Scholar]
  40. SalahM.M. AshourA.A. AbdelghanyT.M. Abdel-AzizA.A.H. SalamaS.A. Pirfenidone alleviates concanavalin A-induced liver fibrosis in mice.Life Sci.201923911698210.1016/j.lfs.2019.116982 31639402
    [Google Scholar]
  41. YiE. LiuR. WenY. YinC. Telmisartan attenuates hepatic fibrosis in bile duct-ligated rats.Acta Pharmacol. Sin.201233121518152410.1038/aps.2012.115 23103625
    [Google Scholar]
  42. XiY. XuP.F. Therapeutic potentials of fasudil in liver fibrosis.World J. Gastroenterol.202127457859786110.3748/wjg.v27.i45.7859 34963748
    [Google Scholar]
  43. FanK. WuK. LinL. GeP. DaiJ. HeX. HuK. ZhangL. Metformin mitigates carbon tetrachloride-induced TGF-β1/Smad3 signaling and liver fibrosis in mice.Biomed. Pharmacother.20219042142610.1016/j.biopha.2017.03.079
    [Google Scholar]
  44. LuW. GaoY.H. WangZ.Z. CaiY.S. YangY.Q. MiaoY.Q. PeiF. LiuX.E. ZhuangH. Effects of Anluohuaxianwan on transforming growth factor-β1 and related signaling pathways in rats with carbon tetrachloride-induced liver fibrosis.Zhonghua Gan Zang Bing Za Zhi201725425726210.3760/cma.j.issn.1007‑3418.2017.04.005 28494543
    [Google Scholar]
  45. YuZ. GuoJ. LiuY. WangM. LiuZ. GaoY. HuangL. Nano delivery of simvastatin targets liver sinusoidal endothelial cells to remodel tumor microenvironment for hepatocellular carcinoma.J. Nanobiotechnology2022201910.1186/s12951‑021‑01205‑8 34983554
    [Google Scholar]
  46. QuY. ZongL. XuM. DongY. LuL. Effects of 18α-glycyrrhizin on TGF-β1/Smad signaling pathway in rats with carbon tetrachloride-induced liver fibrosis.Int. J. Clin. Exp. Pathol.20158212921301 25973013
    [Google Scholar]
  47. TranH.T. VongL.B. NishikawaY. NagasakiY. Sorafenib-loaded silica-containing redox nanoparticles for oral anti-liver fibrosis therapy.J. Control. Release202234588089110.1016/j.jconrel.2022.04.002 35395328
    [Google Scholar]
  48. ShenB. DengL. LiuY. LiR. ShenC. LiuX. LiY. YuanH. Effects of novel fufang biejia ruangan tablets with sheep placenta as substitute for hominis placenta on CCl4-induced liver fibrosis.Chin. Herb. Med.2022141104110
    [Google Scholar]
  49. SunY. XuL. CaiQ. WangM. WangX. WangS. NiZ. Research progress on the pharmacological effects of matrine.Front. Neurosci.20221697737410.3389/fnins.2022.977374 36110092
    [Google Scholar]
  50. MorsyM.A. NairA.B. Prevention of rat liver fibrosis by selective targeting of hepatic stellate cells using hesperidin carriers.Int. J. Pharm.20185521-224125010.1016/j.ijpharm.2018.10.003 30291958
    [Google Scholar]
  51. PavanatoA. TuñónM.J. Sánchez-CamposS. MarroniC.A. LlesuyS. González-GallegoJ. MarroniN. Effects of quercetin on liver damage in rats with carbon tetrachloride-induced cirrhosis.Dig. Dis. Sci.200348482482910.1023/A:1022869716643 12741479
    [Google Scholar]
  52. RuiY.C. Advances in pharmacological studies of silymarin.Mem. Inst. Oswaldo Cruz199186Suppl. 2798510.1590/S0074‑02761991000600020 1842018
    [Google Scholar]
  53. ElshazlyS.M. MahmoudA.A.A. Antifibrotic activity of hesperidin against dimethylnitrosamine-induced liver fibrosis in rats.Naunyn Schmiedebergs Arch. Pharmacol.2014387655956710.1007/s00210‑014‑0968‑2 24627177
    [Google Scholar]
  54. ChirumboloS. BjørklundG. Quercetin in the experimental liver fibrosis induced by carbon tetrachloride (CCl4).Int. Immunopharmacol.20185525425610.1016/j.intimp.2017.12.022 29287251
    [Google Scholar]
  55. QiaoH. TongY. HanH. XuW. RenZ. OuyangJ. ChenY. A novel therapeutic regimen for hepatic fibrosis using the combination of mesenchymal stem cells and baicalin.Pharmazie20116613743 21391433
    [Google Scholar]
  56. EzhilarasanD. KarthikeyanS. VivekanandanP. Ameliorative effect of silibinin against N-nitrosodimethylamine-induced hepatic fibrosis in rats.Environ. Toxicol. Pharmacol.20123431004101310.1016/j.etap.2012.07.004 22986105
    [Google Scholar]
  57. LiuC.Y. GuZ.L. ZhouW.X. GuoC.Y. Effect of Astragalus complanatus flavonoid on anti-liver fibrosis in rats.World J. Gastroenterol.200511375782578610.3748/wjg.v11.i37.5782 16270385
    [Google Scholar]
  58. HuangG-R. WeiS-J. HuangY-Q. XingW. WangL-Y. LiangL-L. Mechanism of combined use of vitamin D and puerarin in anti-hepatic fibrosis by regulating the Wnt/β-catenin signalling pathway.World J. Gastroenterol.2018243641784185
    [Google Scholar]
  59. LiuN. LiuM. JiangM. LiZ. ChenW. WangW. FuX. QiM. AliM.H. ZouN. LiuQ. TangH. ChuS. Isoliquiritigenin alleviates the development of alcoholic liver fibrosis by inhibiting ANXA2.Biomed. Pharmacother.202315911417310.1016/j.biopha.2022.114173 36680814
    [Google Scholar]
  60. Hernández-AquinoE. ZarcoN. Casas-GrajalesS. Ramos-TovarE. Flores-BeltránR.E. ArauzJ. ShibayamaM. FavariL. TsutsumiV. SegoviaJ. MurielP. Naringenin prevents experimental liver fibrosis by blocking TGFβ-Smad3 and JNK-Smad3 pathways.World J. Gastroenterol.201723244354436810.3748/wjg.v23.i24.4354 28706418
    [Google Scholar]
  61. Hernández-AquinoE. MurielP. Beneficial effects of naringenin in liver diseases: Molecular mechanisms.World J. Gastroenterol.201824161679170710.3748/wjg.v24.i16.1679 29713125
    [Google Scholar]
  62. ElfekyM.G. MantawyE.M. GadA.M. FawzyH.M. El-DemerdashE. Mechanistic aspects of antifibrotic effects of honokiol in Con A-induced liver fibrosis in rats: Emphasis on TGF-β/SMAD/MAPK signaling pathways.Life Sci.202024011709610.1016/j.lfs.2019.117096 31760097
    [Google Scholar]
  63. ParkE.J. ZhaoY.Z. KimY.H. LeeB.H. SohnD.H. Honokiol induces apoptosis via cytochrome c release and caspase activation in activated rat hepatic stellate cells In vitro.Planta Med.2005711828410.1055/s‑2005‑837757 15678380
    [Google Scholar]
  64. ChenQ. ZhangH. CaoY. LiY. SunS. ZhangJ. ZhangG. SchisandrinB. Schisandrin B attenuates CCl4-induced liver fibrosis in rats by regulation of Nrf2-ARE and TGF-β/Smad signaling pathways.Drug Des. Devel. Ther.2017112179219110.2147/DDDT.S137507 28794616
    [Google Scholar]
  65. ZhangH. JuB. ZhangX. ZhuY. NieY. XuY. LeiQ. Magnolol attenuates concanavalin a‐induced hepatic fibrosis, inhibits CD 4 + T Helper 17 (Th17) Cell differentiation and suppresses hepatic stellate cell activation: Blockade of Smad3/Smad4 signalling.Basic Clin. Pharmacol. Toxicol.2017120656057010.1111/bcpt.12749 28032440
    [Google Scholar]
  66. Żyżyńska-GranicaB. TrzaskowskiB. NiewieczerzałS. FilipekS. Zegrocka-StendelO. DutkiewiczM. KrzeczyńskiP. KowalewskaM. KoziakK. Pharmacophore guided discovery of small-molecule interleukin 15 inhibitors.Eur. J. Med. Chem.201713654354710.1016/j.ejmech.2017.05.034 28535470
    [Google Scholar]
  67. JeongM.J. KimS.R. JungU.J. Schizandrin A supplementation improves nonalcoholic fatty liver disease in mice fed a high-fat and high-cholesterol diet.Nutr. Res.201964647110.1016/j.nutres.2019.01.001
    [Google Scholar]
  68. LiX. ZhaoY. GongS. SongT. GeJ. LiJ. ZhangJ. FuK. ZhengY. MaL. SchisandrinB. Schisandrin B ameliorates acute liver injury by regulating EGFR-mediated activation of autophagy.Bioorg. Chem.202313010627210.1016/j.bioorg.2022.106272 36403334
    [Google Scholar]
  69. JiangY. WangY. TanH. YuT. FanX. ChenP. ZengH. HuangM. BiH. SchisandrolB. Schisandrol B protects against acetaminophen-induced acute hepatotoxicity in mice via activation of the NRF2/ARE signaling pathway.Acta Pharmacol. Sin.201637338238910.1038/aps.2015.120 26806302
    [Google Scholar]
  70. YangS. LiD. YuZ. LiY. WuM. Multi-pharmacology of berberine in atherosclerosis and metabolic diseases: Potential contribution of gut microbiota.Front. Pharmacol.202112709629
    [Google Scholar]
  71. YiJ. WuS. TanS. QinY. WangX. JiangJ. LiuH. WuB. Berberine alleviates liver fibrosis through inducing ferrous redox to activate ROS-mediated hepatic stellate cells ferroptosis.Cell Death Discov.20217137410.1038/s41420‑021‑00768‑7 34864819
    [Google Scholar]
  72. XuJ. LiC. LiZ. YangC. LeiL. RenW. SuY. ChenC. Protective effects of oxymatrine against lipopolysaccharide/D galactosamine induced acute liver failure through oxidative damage, via activation of Nrf2/HO 1 and modulation of inflammatory TLR4 signaling pathways.Mol. Med. Rep.20171711907191210.3892/mmr.2017.8060 29138821
    [Google Scholar]
  73. Li, D.-G Progress in Studies of Tetrandrine against Hepatofibrosis.World J. Gastroenterol.19984537737910.3748/wjg.v4.i5.377
    [Google Scholar]
  74. SunX. Exploring the mechanism of anti-hepatic fibrosis action of cuspidata alkaloid A in rats based on TGF-β1/Smads and ERK/MAPK signaling pathways.2019112Available from: https://kns.cnki.net/kcms2/article/abstract
    [Google Scholar]
  75. ErakyS.M. El-MeseryM. El-KarefA. EissaL.A. El-GayarA.M. Silymarin and caffeine combination ameliorates experimentally-induced hepatic fibrosis through down-regulation of LPAR1 expression.Biomed. Pharmacother.2018101495710.1016/j.biopha.2018.02.064 29477472
    [Google Scholar]
  76. GuiH. ZhaoC. WangY. GuH. WangW. CaiW. GuoQ. BaoS. XuL. XieQ. Histological outcome of fuzheng huayu plus entecavir combination therapy in chronic hepatitis B patients with significant liver fibrosis.J. Clin. Transl. Hepatol.2020831810.14218/JCTH.2020.00004 33083250
    [Google Scholar]
  77. HeC. WangW. WeiG. WangY. WeiY. WangJ. ZhangZ. Sodium alginate combined with oxymatrine ameliorates CCl4-induced chemical hepatic fibrosis in mice.Int Immunopharmacol.2023125Pt A11114410.1016/j.intimp.2023.111144
    [Google Scholar]
  78. LuoS. YangY. ZhaoT. ZhangR. FangC. LiY. ZhangZ. GongT. Albumin-based silibinin nanocrystals targeting activated hepatic stellate cells for liver fibrosis therapy.ACS Appl. Mater. Interfaces20231567747775810.1021/acsami.2c19269 36719351
    [Google Scholar]
/content/journals/npj/10.2174/0122103155293866240522085229
Loading
/content/journals/npj/10.2174/0122103155293866240522085229
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test