Skip to content
2000
Volume 15, Issue 4
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

A seizure is the brain's uncontrolled, abnormal electrical activity, which may result in altered states of consciousness, behavior, memory, or emotion. Seizures start biologically with the activation of susceptible brain neurons, which causes synchronized discharges of larger groups of connected neurons. A few potential causes of seizures include medications, genetics, electrolyte abnormalities, sleep state, infections, brain inflammation, and injuries. Medicinal plants are a rich source of various chemical molecules with distinct structures and biological activity. Most plants contain active components, including coumarin, glycosides, alkaloids, terpenoids, flavonoids, peptidoglycans, and other elements often associated with the effects of antiseizures. Isolating and identifying biologically active compounds and molecules from nature have resulted in the development of novel treatments, which in turn have contributed to the advancement of the health and pharmaceutical sectors throughout the history of humanity. In this review, we thoroughly summarize the information on the anti-seizure activities of medicinal plants and bioactive chemicals, focusing on molecular targets and cellular signaling pathways. All available research has contributed to medicinal plants as a reasonable option for seizure prevention and treatment, as well as drug development and manufacturing. To better comprehend the underlying molecular mechanisms, more research is required. If these mechanisms are discovered, it will be easier to identify new targets and create innovative anti-seizure therapeutic drugs to enhance patient survival and life quality. This work is expected to provide insights and ideas for the further research of Bioactive compounds from medicinal plants, their qualities, and the scientific basis for their improved clinical use.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155289394240522110321
2024-06-04
2025-03-30
Loading full text...

Full text loading...

References

  1. AslamMS AhmadMS Worldwide importance of medicinal plants: Current and historical perspectives. Recent Adv Biol Med201622016909
    [Google Scholar]
  2. RehmanF. KalsoomM. AdnanM. Fazeli-NasabB. NazN. IlahiH. AliM.F. IlyasM. YousafG. ToorM.D. Importance of medicinal plants in human and plant pathology: A review.Int. J. Pharm. Biomed. Res.20218211110.18782/2394‑3726.1110
    [Google Scholar]
  3. RadhaM.K. KumarM. PuriS. PundirA. BangarS.P. ChanganS. ChoudharyP. ParameswariE. AlhaririA. SamotaM.K. DamaleR.D. SinghS. BerwalM.K. DhumalS. BhoiteA.G. SenapathyM. SharmaA. BhushanB. MekhemarM. Evaluation of nutritional, phytochemical, and mineral composition of selected medicinal plants for therapeutic uses from cold desert of western himalaya.Plants2021107142910.3390/plants10071429 34371632
    [Google Scholar]
  4. DagliN. DagliR. MahmoudR. BaroudiK. Essential oils, their therapeutic properties, and implication in dentistry: A review.J. Int. Soc. Prev. Community Dent.20155533534010.4103/2231‑0762.165933 26539382
    [Google Scholar]
  5. ShoeibiA. GhassemiN. AlizadehsaniR. RouhaniM. Hosseini-NejadH. KhosraviA. PanahiazarM. NahavandiS. A comprehensive comparison of handcrafted features and convolutional autoencoders for epileptic seizures detection in EEG signals.Expert Syst. Appl.202116311378810.1016/j.eswa.2020.113788
    [Google Scholar]
  6. BhattacharyyaA. PachoriR. UpadhyayA. AcharyaU. Tunable-Q wavelet transform based multiscale entropy measure for automated classification of epileptic EEG signals.Appl. Sci.20177438510.3390/app7040385
    [Google Scholar]
  7. PascenteR. FrigerioF. RizziM. PorcuL. BoidoM. DavidsJ. ZabenM. TolomeoD. FilibianM. GrayW.P. VezzaniA. RavizzaT. Cognitive deficits and brain myo-Inositol are early biomarkers of epileptogenesis in a rat model of epilepsy.Neurobiol. Dis.20169314615510.1016/j.nbd.2016.05.001 27173096
    [Google Scholar]
  8. LiuA.H. ChuM. WangY.P. Up-regulation of Trem2 inhibits hippocampal neuronal apoptosis and alleviates oxidative stress in epilepsy via the PI3K/Akt pathway in mice.Neurosci. Bull.201935347148510.1007/s12264‑018‑0324‑5 30684126
    [Google Scholar]
  9. YuB. YuanB. DaiJ.K. ChengT. XiaS.N. HeL.J. YuanY.T. ZhangY.F. XuH.T. XuF.Q. LiangZ.F. QiuZ.L. Reversal of social recognition deficit in adult mice with MECP2 duplication via normalization of MeCP2 in the medial prefrontal cortex.Neurosci. Bull.202036657058410.1007/s12264‑020‑00467‑w 32144612
    [Google Scholar]
  10. FeiF. WangX. WangY. ChenZ. Dissecting the role of subiculum in epilepsy: Research update and translational potential.Prog. Neurobiol.202120110202910.1016/j.pneurobio.2021.102029 33636224
    [Google Scholar]
  11. IoriV. FrigerioF. VezzaniA. Modulation of neuronal excitability by immune mediators in epilepsy.Curr. Opin. Pharmacol.20162611812310.1016/j.coph.2015.11.002 26629681
    [Google Scholar]
  12. PaudelY.N. ShaikhM.F. ShahS. KumariY. OthmanI. Role of inflammation in epilepsy and neurobehavioral comorbidities: Implication for therapy.Eur. J. Pharmacol.201883714515510.1016/j.ejphar.2018.08.020 30125565
    [Google Scholar]
  13. RabieiZ. Anticonvulsant effects of medicinal plants with emphasis on mechanisms of action.Asian Pac. J. Trop. Biomed.20177216617210.1016/j.apjtb.2016.11.028
    [Google Scholar]
  14. EkorM. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety.Front. Pharmacol.2014417710.3389/fphar.2013.00177 24454289
    [Google Scholar]
  15. GuerriniR. ContiV. MantegazzaM. BalestriniS. GalanopoulouA.S. BenfenatiF. Developmental and epileptic encephalopathies: From genetic heterogeneity to phenotypic continuum.Physiol. Rev.2023103143351310.1152/physrev.00063.2021 35951482
    [Google Scholar]
  16. StafstromCE Pathophysiological mechanisms of seizures and epilepsy: A primer.Epilepsy: mechanisms, models, and translational perspectives.201031910.1201/9781420085594‑c1
    [Google Scholar]
  17. BerkovicS.F. Genetics of epilepsy in clinical practice.Epilepsy Curr.201515419219610.5698/1535‑7511‑15.4.192 26316866
    [Google Scholar]
  18. OlsonH.E. PoduriA. Epilepsy: When to perform a genetic analysis.Epilepsy.Wiley Online Library201415916610.1002/9781118456989.ch22
    [Google Scholar]
  19. PitkänenA. LukasiukK. DudekF.E. StaleyK.J. Epileptogenesis.Cold Spring Harb. Perspect. Med.2015510a02282210.1101/cshperspect.a022822 26385090
    [Google Scholar]
  20. PoduriA. LowensteinD. Epilepsy genetics—past, present, and future.Curr. Opin. Genet. Dev.201121332533210.1016/j.gde.2011.01.005 21277190
    [Google Scholar]
  21. MullenS.A. CarvillG.L. BellowsS. BaylyM.A. BerkovicS.F. DibbensL.M. SchefferI.E. MeffordH.C. DibbensL.M. SchefferI.E. MeffordH.C. Copy number variants are frequent in genetic generalized epilepsy with intellectual disability.Neurology201381171507151410.1212/WNL.0b013e3182a95829 24068782
    [Google Scholar]
  22. Casillas-EspinosaP.M. AliI. O’BrienT.J. Neurodegenerative pathways as targets for acquired epilepsy therapy development.Epilepsia Open20205213815410.1002/epi4.12386 32524040
    [Google Scholar]
  23. VezzaniA. Epilepsy and inflammation in the brain: Overview and pathophysiology.Epilepsy Curr.2014142_suppl )(Suppl.3710.5698/1535‑7511‑14.s2.3 24955068
    [Google Scholar]
  24. AlyuF. DikmenM. Inflammatory aspects of epileptogenesis: Contribution of molecular inflammatory mechanisms.Acta Neuropsychiatr.201729111610.1017/neu.2016.47 27692004
    [Google Scholar]
  25. VivianiB. BartesaghiS. GardoniF. VezzaniA. BehrensM.M. BartfaiT. BinagliaM. CorsiniE. Di LucaM. GalliC.L. MarinovichM. Interleukin-1β enhances NMDA receptor-mediated intracellular calcium increase through activation of the Src family of kinases.J. Neurosci.200323258692870010.1523/JNEUROSCI.23‑25‑08692.2003 14507968
    [Google Scholar]
  26. StellwagenD. MalenkaR.C. Synaptic scaling mediated by glial TNF-α.Nature200644070871054105910.1038/nature04671 16547515
    [Google Scholar]
  27. KubotaK. InoueK. HashimotoR. KumamotoN. KosugaA. TatsumiM. KamijimaK. KunugiH. IwataN. OzakiN. TakedaM. TohyamaM. Tumor necrosis factor receptor‐associated protein 1 regulates cell adhesion and synaptic morphology via modulation of N‐cadherin expression.J. Neurochem.2009110249650810.1111/j.1471‑4159.2009.06099.x 19490362
    [Google Scholar]
  28. TakeuchiH. JinS. WangJ. ZhangG. KawanokuchiJ. KunoR. SonobeY. MizunoT. SuzumuraA. Tumor necrosis factor-α induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner.J. Biol. Chem.200628130213622136810.1074/jbc.M600504200 16720574
    [Google Scholar]
  29. GalicM.A. RiaziK. PittmanQ.J. Cytokines and brain excitability.Front. Neuroendocrinol.201233111612510.1016/j.yfrne.2011.12.002 22214786
    [Google Scholar]
  30. StellwagenD. BeattieE.C. SeoJ.Y. MalenkaR.C. Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-α.J. Neurosci.200525123219322810.1523/JNEUROSCI.4486‑04.2005 15788779
    [Google Scholar]
  31. PostnikovaT.Y. ZubarevaO.E. KovalenkoA.A. KimK.K. MagazanikL.G. ZaitsevA.V. Status epilepticus impairs synaptic plasticity in rat hippocampus and is followed by changes in expression of NMDA receptors.Biochemistry (Mosc.)201782328229010.1134/S0006297917030063 28320269
    [Google Scholar]
  32. HanT. QinY. MouC. WangM. JiangM. LiuB. Seizure induced synaptic plasticity alteration in hippocampus is mediated by IL-1β receptor through PI3K/Akt pathway.Am. J. Transl. Res.201681044994509 27830035
    [Google Scholar]
  33. RosetiC. van VlietE.A. CifelliP. RuffoloG. BaayenJ.C. Di CastroM.A. BertolliniC. LimatolaC. AronicaE. VezzaniA. PalmaE. GABAA currents are decreased by IL-1β in epileptogenic tissue of patients with temporal lobe epilepsy: Implications for ictogenesis.Neurobiol. Dis.20158231132010.1016/j.nbd.2015.07.003 26168875
    [Google Scholar]
  34. ShiL. ChenR. ZhangH. JiangC. GongJ. Cerebrospinal fluid neuron specific enolase, interleukin-1β and erythropoietin concentrations in children after seizures.Childs Nerv. Syst.201733580581110.1007/s00381‑017‑3359‑4 28236069
    [Google Scholar]
  35. GruolD.L. IL-6 regulation of synaptic function in the CNS.Neuropharmacology201596Pt A425410.1016/j.neuropharm.2014.10.023 25445486
    [Google Scholar]
  36. ErtaM. QuintanaA. HidalgoJ. Interleukin-6, a major cytokine in the central nervous system.Int. J. Biol. Sci.2012891254126610.7150/ijbs.4679 23136554
    [Google Scholar]
  37. LevinS.G. GodukhinO.V. Modulating effect of cytokines on mechanisms of synaptic plasticity in the brain.Biochemistry201782326427410.1134/S000629791703004X 28320267
    [Google Scholar]
  38. ShinE.J. JeongJ.H. ChungY.H. KimW.K. KoK.H. BachJ.H. HongJ.S. YonedaY. KimH.C. Role of oxidative stress in epileptic seizures.Neurochem. Int.201159212213710.1016/j.neuint.2011.03.025 21672578
    [Google Scholar]
  39. ForcadosG.E. JamesD.B. SallauA.B. MuhammadA. MabetaP. Oxidative stress and carcinogenesis: Potential of phytochemicals in breast cancer therapy.Nutr. Cancer201769336537410.1080/01635581.2017.1267777 28103111
    [Google Scholar]
  40. PisoschiA.M. PopA. The role of antioxidants in the chemistry of oxidative stress: A review.Eur. J. Med. Chem.201597557410.1016/j.ejmech.2015.04.040 25942353
    [Google Scholar]
  41. UnuofinJ.O. LebeloS.L. Antioxidant effects and mechanisms of medicinal plants and their bioactive compounds for the prevention and treatment of type 2 diabetes: An updated review.Oxid. Med. Cell. Longev.2020202013610.1155/2020/1356893 32148647
    [Google Scholar]
  42. AguiarC.C.T. AlmeidaA.B. AraújoP.V.P. Oxidative stress and epilepsy: Literature review.Oxid. Med. Cell. Longev.20122012795259
    [Google Scholar]
  43. SmithZ.Z. BenisonA.M. BercumF.M. DudekF.E. BarthD.S. Progression of convulsive and nonconvulsive seizures during epileptogenesis after pilocarpine-induced status epilepticus.J. Neurophysiol.201811951818183510.1152/jn.00721.2017 29442558
    [Google Scholar]
  44. HannanS. FaulknerM. AristovichK. AveryJ. WalkerM. HolderD. Imaging fast electrical activity in the brain during ictal epileptiform discharges with electrical impedance tomography.Neuroimage Clin.20182067468410.1016/j.nicl.2018.09.004 30218899
    [Google Scholar]
  45. Ten DonkelaarH.J. ten DonkelaarH.J. CataniM. van DomburgP. ElingP.A. KüstersB. The cerebral cortex and complex cerebral functions.Clinical neuroanatomy: Brain circuitry and its disorders.ChamSpringer202083195210.1007/978‑3‑030‑41878‑6_15
    [Google Scholar]
  46. GantarS. Differences during quiet standing when breathing abdominally.2016
  47. MaW. LiC. CongL. Factors affecting interictal unilateral and bilateral discharges and ictal diffusion patterns of scalp electroencephalogram in temporal lobe epilepsy.Neurol. Sci.202243150751510.1007/s10072‑021‑05293‑0 33942172
    [Google Scholar]
  48. BairdA. Sex in the Brain: How Seizures, Strokes, Dementia, Tumors, and Trauma Can Change Your Sex Life.Columbia University Press202010.7312/bair19590
    [Google Scholar]
  49. KurahashiH. HiroseS. Autosomal dominant nocturnal frontal lobe epilepsy.2018 Available from: https://medlineplus.gov/genetics/condition/autosomal-dominant-nocturnal-frontal-lobe-epilepsy/#:~:text=Description&text=Autosomal%20dominant%20nocturnal%20frontal%20lobe%20epilepsy%20(ADNFLE)%20is%20an%20uncommon,have%20seizures%20during%20the%20day
  50. BruchasM.R. RothB.L. New technologies for elucidating opioid receptor function.Trends Pharmacol. Sci.201637427928910.1016/j.tips.2016.01.001 26833118
    [Google Scholar]
  51. YuY. NguyenD.T. JiangJ. G protein-coupled receptors in acquired epilepsy: Druggability and translatability.Prog. Neurobiol.201918310168210.1016/j.pneurobio.2019.101682 31454545
    [Google Scholar]
  52. SolliE. ColwellN.A. SayI. HoustonR. JohalA.S. PakJ. TomyczL. Deciphering the surgical treatment gap for drug‐resistant epilepsy (DRE): A literature review.Epilepsia20206171352136410.1111/epi.16572 32558937
    [Google Scholar]
  53. DaiH. WangP. MaoH. MaoX. TanS. ChenZ. Dynorphin activation of kappa opioid receptor protects against epilepsy and seizure-induced brain injury via PI3K/Akt/Nrf2/HO-1 pathway.Cell Cycle201918222623710.1080/15384101.2018.1562286 30595095
    [Google Scholar]
  54. SilvaA.R. GrossoC. Delerue-MatosC. RochaJ.M. Comprehensive review on the interaction between natural compounds and brain receptors: Benefits and toxicity.Eur. J. Med. Chem.20191748711510.1016/j.ejmech.2019.04.028 31029947
    [Google Scholar]
  55. AgostinhoA.S. MietzschM. ZangrandiL. KmiecI. MuttiA. KrausL. FidzinskiP. SchneiderU.C. HoltkampM. HeilbronnR. SchwarzerC. Dynorphin‐based “release on demand” gene therapy for drug‐resistant temporal lobe epilepsy.EMBO Mol. Med.20191110e996310.15252/emmm.201809963 31486590
    [Google Scholar]
  56. Righes MarafigaJ. Vendramin PasquettiM. CalcagnottoM.E. GABAergic interneurons in epilepsy: More than a simple change in inhibition.Epilepsy Behav.2021121Pt B10693510.1016/j.yebeh.2020.106935 32035792
    [Google Scholar]
  57. LakatosM. BaranyiM. ErőssL. NardaiS. TörökT.L. SperlághB. ViziE.S. Roles played by the Na+/Ca2+ exchanger and hypothermia in the prevention of ischemia-induced carrier-mediated efflux of catecholamines into the extracellular space: implications for stroke therapy.Neurochem. Res.2020451163310.1007/s11064‑019‑02842‑0 31346893
    [Google Scholar]
  58. FujitaW. Aiming at ideal therapeutics-MOPr/DOPr or MOPr-DOPr heteromertargeting ligand.Curr. Top. Med. Chem.202020312843285110.2174/1568026620666200423095231 32324516
    [Google Scholar]
  59. BediniA. Di Cesare MannelliL. MicheliL. BaiulaM. VacaG. De MarcoR. GentilucciL. GhelardiniC. SpampinatoS. Functional selectivity and antinociceptive effects of a novel KOPr agonist.Front. Pharmacol.20201118810.3389/fphar.2020.00188 32210803
    [Google Scholar]
  60. ZhangJ. ZhangC. ChenX. WangB. MaW. YangY. ZhengR. HuangZ. PKA-RIIβ autophosphorylation modulates PKA activity and seizure phenotypes in mice.Commun. Biol.20214126310.1038/s42003‑021‑01748‑4 33398033
    [Google Scholar]
  61. OhtakeN. SaitoM. EtoM. SekiK. Exendin-4 promotes the membrane trafficking of the AMPA receptor GluR1 subunit and ADAM10 in the mouse neocortex.Regul. Pept.2014190-19111110.1016/j.regpep.2014.04.003 24769307
    [Google Scholar]
  62. SandersonJ.L. Dell’AcquaM.L. AKAP signaling complexes in regulation of excitatory synaptic plasticity.Neuroscientist201117332133610.1177/1073858410384740 21498812
    [Google Scholar]
  63. LiuS. ZhengP. Altered PKA modulation in the Na v 1.1 epilepsy variant I1656M.J. Neurophysiol.201311092090209810.1152/jn.00921.2012 23945787
    [Google Scholar]
  64. CarlsonS.L. O’BuckleyT.K. ThomasR. ThieleT.E. MorrowA.L. Altered GABAA receptor expression and seizure threshold following acute ethanol challenge in mice lacking the RIIβ subunit of PKA.Neurochem. Res.20143961079108710.1007/s11064‑013‑1167‑0 24104609
    [Google Scholar]
  65. ShiY. ZhangL. TengJ. MiaoW. HMGB1 mediates microglia activation via the TLR4/NF-κB pathway in coriaria lactone induced epilepsy.Mol. Med. Rep.20181745125513110.3892/mmr.2018.8485 29393419
    [Google Scholar]
  66. MarosoM. BalossoS. RavizzaT. LiuJ. AronicaE. IyerA.M. RossettiC. MolteniM. CasalgrandiM. ManfrediA.A. BianchiM.E. VezzaniA. Toll-like receptor 4 and high-mobility group box-1 are involved in ictogenesis and can be targeted to reduce seizures.Nat. Med.201016441341910.1038/nm.2127 20348922
    [Google Scholar]
  67. Branco-MadeiraF. LambrechtB.N. High mobility group box‐1 recognition: The beginning of a RAGEless era?EMBO Mol. Med.20102619319510.1002/emmm.201000077 20535746
    [Google Scholar]
  68. RanaA. MustoA.E. The role of inflammation in the development of epilepsy.J. Neuroinflammation201815114410.1186/s12974‑018‑1192‑7 29764485
    [Google Scholar]
  69. ZhaoJ. ZhengY. LiuK. ChenJ. LaiN. FeiF. ShiJ. XuC. WangS. NishiboriM. WangY. ChenZ. HMGB1 is a therapeutic target and biomarker in diazepam-refractory status epilepticus with wide time window.Neurotherapeutics202017271072110.1007/s13311‑019‑00815‑3 31802434
    [Google Scholar]
  70. DaiS. ZhengY. WangY. ChenZ. HMGB1, neuronal excitability and epilepsy.Acta Epileptol.2021311310.1186/s42494‑021‑00048‑y
    [Google Scholar]
  71. TangD. KangR. LiveseyK.M. ChehC.W. FarkasA. LoughranP. HoppeG. BianchiM.E. TraceyK.J. ZehH.J.III LotzeM.T. Endogenous HMGB1 regulates autophagy.J. Cell Biol.2010190588189210.1083/jcb.200911078 20819940
    [Google Scholar]
  72. GhitA. AssalD. Al-ShamiA.S. HusseinD.E.E. GABAA receptors: Structure, function, pharmacology, and related disorders.J. Genet. Eng. Biotechnol.202119112310.1186/s43141‑021‑00224‑0 34417930
    [Google Scholar]
  73. GoodkinH.P. JoshiS. MtchedlishviliZ. BrarJ. KapurJ. Subunit-specific trafficking of GABA(A) receptors during status epilepticus.J. Neurosci.200828102527253810.1523/JNEUROSCI.3426‑07.2008 18322097
    [Google Scholar]
  74. GidalB. DetynieckiK. Rescue therapies for seizure clusters: Pharmacology and target of treatments.Epilepsia202263S1Suppl. 1S34S4410.1111/epi.17341 35999174
    [Google Scholar]
  75. Ochoa-de la PazL.D. Gulias-CañizoR. Ruíz-LeyjaE.D. Sánchez-CastilloH. ParodíJ. The role of GABA neurotransmitter in the human central nervous system, physiology, and pathophysiology.Mex J Neurosci2021222677610.24875/RMN.20000050
    [Google Scholar]
  76. ParsonsA.L.M. BucknorE.M.V. CastroflorioE. SoaresT.R. OliverP.L. RialD. The interconnected mechanisms of oxidative stress and neuroinflammation in epilepsy.Antioxidants202211115710.3390/antiox11010157 35052661
    [Google Scholar]
  77. BelelliD. LambertJ.J. Neurosteroids: Endogenous regulators of the GABAA receptor.Nat. Rev. Neurosci.20056756557510.1038/nrn1703 15959466
    [Google Scholar]
  78. GreenfieldL.J. Jr Molecular mechanisms of antiseizure drug activity at GABAA receptors.Seizure201322858960010.1016/j.seizure.2013.04.015 23683707
    [Google Scholar]
  79. HanadaT. Ionotropic glutamate receptors in epilepsy: A review focusing on AMPA and NMDA receptors.Biomolecules202010346410.3390/biom10030464 32197322
    [Google Scholar]
  80. CelliR. FornaiF. Targeting ionotropic glutamate receptors in the treatment of epilepsy.Curr. Neuropharmacol.202119674776510.2174/18756190MTA5DNTcey 32867642
    [Google Scholar]
  81. CelliR. SantoliniI. Van LuijtelaarG. NgombaR.T. BrunoV. NicolettiF. Targeting metabotropic glutamate receptors in the treatment of epilepsy: Rationale and current status.Expert Opin. Ther. Targets201923434135110.1080/14728222.2019.1586885 30801204
    [Google Scholar]
  82. XiaoF. KoeppM.J. ZhouD. Pharmaco-fMRI: A tool to predict the response to antiepileptic drugs in epilepsy.Front. Neurol.201910120310.3389/fneur.2019.01203 31798524
    [Google Scholar]
  83. AuditeauE. ChassagneF. BourdyG. BounluM. JostJ. LunaJ. RatsimbazafyV. PreuxP.M. BoumedieneF. Herbal medicine for epilepsy seizures in Asia, Africa and Latin America: A systematic review.J. Ethnopharmacol.201923411915310.1016/j.jep.2018.12.049 30610931
    [Google Scholar]
  84. SackeimH.A. DecinaP. ProhovnikI. MalitzS. ResorS.R. Anticonvulsant and antidepressant properties of electroconvulsive therapy: A proposed mechanism of action.Biol. Psychiatry1983181113011310 6317065
    [Google Scholar]
  85. KaprońB. ŁuszczkiJ. PanethA. WujecM. SiwekA. KarczT. MordylB. Głuch-LutwinM. GrybośA. NowakG. PająkK. JóźwiakK. TomczykowskiA. PlechT. Molecular mechanism of action and safety of 5-(3-chlorophenyl)-4-hexyl-2,4-dihydro-3 H -1,2,4-triazole-3-thione - a novel anticonvulsant drug candidate.Int. J. Med. Sci.201714874174910.7150/ijms.20001 28824309
    [Google Scholar]
  86. GhasemiM. MehranfardN. Mechanisms underlying anticonvulsant and proconvulsant actions of norepinephrine.Neuropharmacology201813729730810.1016/j.neuropharm.2018.05.015 29778946
    [Google Scholar]
  87. ManchishiS.M. Recent advances in antiepileptic herbal medicine.Curr. Neuropharmacol.20181617983 28521703
    [Google Scholar]
  88. FaheemM. AmeerS. KhanA.W. HaseebM. RazaQ. Ali ShahF. KhusroA. AartiC. Umar Khayam SahibzadaM. El-Saber BatihaG. KoiralaN. AdnanM. AlghamdiS. AssaggafH. AlsiwiehriN.O. A comprehensive review on antiepileptic properties of medicinal plants.Arab. J. Chem.202215110347810.1016/j.arabjc.2021.103478
    [Google Scholar]
  89. AhmadN. Hui-YinY. Makmor-BakryM. Mechanisms of natural products as potential antiepileptic drugs.Pak. J. Pharm. Sci.202235410431053 36008901
    [Google Scholar]
  90. CzapińskiP. BlaszczykB. CzuczwarS. Mechanisms of action of antiepileptic drugs.Curr. Top. Med. Chem.20055131410.2174/1568026053386962 15638774
    [Google Scholar]
  91. Borowicz-ReuttK.K. Effects of antiarrhythmic drugs on antiepileptic drug action—a critical review of experimental findings.Int. J. Mol. Sci.2022235289110.3390/ijms23052891 35270033
    [Google Scholar]
  92. Goldschen-OhmM.P. Benzodiazepine modulation of GABAA receptors: A mechanistic perspective.Biomolecules20221212178410.3390/biom12121784 36551212
    [Google Scholar]
  93. RíosJ.L. SchinellaG.R. MoragregaI. Phenolics as GABAA receptor ligands: An updated review.Molecules2022276177010.3390/molecules27061770 35335130
    [Google Scholar]
  94. SivakumarS. GhasemiM. SchachterS.C. Targeting NMDA receptor complex in management of epilepsy.Pharmaceuticals20221510129710.3390/ph15101297 36297409
    [Google Scholar]
  95. De SousaD.P. Analgesic-like activity of essential oils constituents.Molecules20111632233225210.3390/molecules16032233 21383660
    [Google Scholar]
  96. de SousaD.P. NóbregaF.F.F. SantosC.C.M.P. de AlmeidaR.N. Anticonvulsant activity of the linalool enantiomers and racemate: Investigation of chiral influence.Nat. Prod. Commun.20105121934578X100050110.1177/1934578X1000501201 21299105
    [Google Scholar]
  97. da FonsêcaD.V. da Silva Maia Bezerra FilhoC. LimaT.C. de AlmeidaR.N. de SousaD.P. Anticonvulsant essential oils and their relationship with oxidative stress in epilepsy.Biomolecules201991283510.3390/biom9120835 31817682
    [Google Scholar]
  98. NóbregaF.F.F. SalvadoriM.G.S.S. MassonC.J. MelloC.F. NascimentoT.S. Leal-CardosoJ.H. de SousaD.P. AlmeidaR.N. Monoterpenoid terpinen-4-ol exhibits anticonvulsant activity in behavioural and electrophysiological studies.Oxid. Med. Cell. Longev.201420141910.1155/2014/703848 25180069
    [Google Scholar]
  99. ModareskiaM. FattahiM. MirjaliliM.H. Thymol screening, phenolic contents, antioxidant and antibacterial activities of Iranian populations of Trachyspermum ammi (L.) Sprague (Apiaceae).Sci. Rep.20221211564510.1038/s41598‑022‑19594‑7 36123425
    [Google Scholar]
  100. SanchetiJ. ShaikhM.F. ChaudhariR. SomaniG. PatilS. JainP. SathayeS. Characterization of anticonvulsant and antiepileptogenic potential of thymol in various experimental models.Naunyn Schmiedebergs Arch. Pharmacol.20143871596610.1007/s00210‑013‑0917‑5 24065087
    [Google Scholar]
  101. LinckV.M. da SilvaA.L. FigueiróM. CaramãoE.B. MorenoP.R.H. ElisabetskyE. Effects of inhaled Linalool in anxiety, social interaction and aggressive behavior in mice.Phytomedicine2010178-967968310.1016/j.phymed.2009.10.002 19962290
    [Google Scholar]
  102. BatistaP.A. de Paula WernerM.F. OliveiraE.C. BurgosL. PereiraP. da Silva BrumL.F. StoryG.M. SantosA.R.S. The antinociceptive effect of (-)-linalool in models of chronic inflammatory and neuropathic hypersensitivity in mice.J. Pain201011111222122910.1016/j.jpain.2010.02.022 20452289
    [Google Scholar]
  103. Souto-MaiorF.N. FonsêcaD.V. SalgadoP.R.R. MonteL.O. de SousaD.P. de AlmeidaR.N. Antinociceptive and anticonvulsant effects of the monoterpene linalool oxide.Pharm. Biol.2017551636710.1080/13880209.2016.1228682 27622736
    [Google Scholar]
  104. ChenQ.X. MiaoJ.K. LiC. LiX.W. WuX.M. ZhangX. Anticonvulsant activity of acute and chronic treatment with a-asarone from Acorus gramineus in seizure models.Biol. Pharm. Bull.2013361233010.1248/bpb.b12‑00376 23075695
    [Google Scholar]
  105. BahrT.A. RodriguezD. BeaumontC. AllredK. The effects of various essential oils on epilepsy and acute seizure: A systematic review. Evid. base Compl.Alternative Med201920196216745
    [Google Scholar]
  106. DemyttenaereJ.C.R. WillemenH.M. Biotransformation of linalool to furanoid and pyranoid linalool oxides by Aspergillus niger.Phytochemistry19984761029103610.1016/S0031‑9422(98)80066‑6 9564732
    [Google Scholar]
  107. HilmerJ.M. GatfieldI.L. Process for the preparation of linalool oxide or linalool oxide-containing mixtures.U.S. Patent 6703218B2.2004
  108. EvtuguinD. TomásJ. SilvaA.S. NetoC. Characterization of an acetylated heteroxylan from Eucalyptus globulus Labill.Carbohydr. Res.2003338759760410.1016/S0008‑6215(02)00529‑3 12644372
    [Google Scholar]
  109. LimaD.K.S. BallicoL.J. Rocha LapaF. GonçalvesH.P. de SouzaL.M. IacominiM. WernerM.F.P. BaggioC.H. PereiraI.T. da SilvaL.M. FacundoV.A. SantosA.R.S. Evaluation of the antinociceptive, anti-inflammatory and gastric antiulcer activities of the essential oil from Piper aleyreanum C.DC in rodents.J. Ethnopharmacol.2012142127428210.1016/j.jep.2012.05.016 22588049
    [Google Scholar]
  110. XuL. LouQ. ChengC. LuM. SunJ. Gut-associated bacteria of dendroctonus valens and their involvement in verbenone production.Microb. Ecol.20157041012102310.1007/s00248‑015‑0625‑4 25985770
    [Google Scholar]
  111. de MeloC.G.F. SalgadoP.R.R. da FonsêcaD.V. BragaR.M. FilhoM.R.D.C. de FariasI.E.V. de Luna Freire PessôaH. LimaE.M. do AmaralI.P.G. de SousaD.P. de AlmeidaR.N. Anticonvulsive activity of (1S)-(−)-verbenone involving RNA expression of BDNF, COX-2, and c-fos.Naunyn Schmiedebergs Arch. Pharmacol.2017390986386910.1007/s00210‑017‑1388‑x 28577050
    [Google Scholar]
  112. MartensS. MithöferA. Flavones and flavone synthases.Phytochemistry200566202399240710.1016/j.phytochem.2005.07.013 16137727
    [Google Scholar]
  113. YangL. YangC. LiC. ZhaoQ. LiuL. FangX. ChenX.Y. Recent advances in biosynthesis of bioactive compounds in traditional Chinese medicinal plants.Sci. Bull.201661131710.1007/s11434‑015‑0929‑2 26844006
    [Google Scholar]
  114. JangraS. BudhwarV. Ethno medicinal plants with anticonvulsant activity through GABAergic mechanism-A review.IJNPR2022133274286
    [Google Scholar]
  115. BenameurT. GiacomucciG. PanaroM.A. RuggieroM. TrottaT. MondaV. PizzolorussoI. LofrumentoD.D. PorroC. MessinaG. New promising therapeutic avenues of Curcumin in brain diseases.Molecules202127123610.3390/molecules27010236 35011468
    [Google Scholar]
  116. IsholaI.O. TotaS. AdeyemiO.O. AgbajeE.O. NarenderT. ShuklaR. Protective effect of Cnestis ferruginea and its active constituent on scopolamine-induced memory impairment in mice: A behavioral and biochemical study.Pharm. Biol.201351782583510.3109/13880209.2013.767360 23627469
    [Google Scholar]
  117. ToyodaH. KatagiriA. KatoT. SatoH. Intranasal administration of rotenone reduces GABAergic inhibition in the mouse insular cortex leading to impairment of LTD and conditioned taste aversion memory.Int. J. Mol. Sci.202022125910.3390/ijms22010259 33383859
    [Google Scholar]
  118. DinizT.C. SilvaJ.C. The role of flavonoids on oxidative stress in epilepsy.Oxid. Med. Cell. Longev.20152015171756
    [Google Scholar]
  119. ÇiçekS. Structure-dependent activity of natural GABA (A) receptor modulators.Molecules2018237151210.3390/molecules23071512 29932138
    [Google Scholar]
  120. QuZ. JiaL. XieT. ZhenJ. SiP. CuiZ. XueY. SunC. WangW. (−)-Epigallocatechin-3-Gallate protects against lithium-pilocarpine-induced epilepsy by inhibiting the toll-like receptor 4 (TLR4)/Nuclear factor-κb (NF-κB) signaling pathway.Med. Sci. Monit.2019251749175810.12659/MSM.915025 30843525
    [Google Scholar]
  121. JahanS. RedhuN.S. SiddiquiA.J. IqbalD. KhanJ. BanawasS. AlaidarousM. AlshehriB. MirS.A. AdnanM. PantA.B. Nobiletin as a neuroprotectant against NMDA receptors: An in silico approach.Pharmaceutics2022146112310.3390/pharmaceutics14061123 35745697
    [Google Scholar]
  122. CaiY. YangZ. Ferroptosis and its role in epilepsy.Front. Cell. Neurosci.20211569688910.3389/fncel.2021.696889 34335189
    [Google Scholar]
  123. ChattopadhyayaB. Di CristoG. WuC.Z. KnottG. KuhlmanS. FuY. PalmiterR.D. HuangZ.J. GAD67-mediated GABA synthesis and signaling regulate inhibitory synaptic innervation in the visual cortex.Neuron200754688990310.1016/j.neuron.2007.05.015 17582330
    [Google Scholar]
  124. AsehindeS. AjayiA. BakreA. OmorogbeO. AdebesinA. UmukoroS. Effects of Jobelyn® on isoniazid-induced seizures, biomarkers of oxidative stress and glutamate decarboxylase activity in mice.Basic Clin. Neurosci.20189638939610.32598/bcn.9.6.389 30719253
    [Google Scholar]
  125. MoghbelinejadS. AlizadehS. MohammadiG. KhodabandehlooF. RashvandZ. NajafipourR. Nassiri-AslM. The effects of quercetin on the gene expression of the GABAA receptor α5 subunit gene in a mouse model of kainic acid-induced seizure.J. Physiol. Sci.201767233934310.1007/s12576‑016‑0497‑5 27743178
    [Google Scholar]
  126. Nassiri-AslM. HajialiF. TaghilooM. AbbasiE. MohseniF. YousefiF. Comparison between the effects of quercetin on seizure threshold in acute and chronic seizure models.Toxicol. Ind. Health201632593694410.1177/0748233713518603 24442347
    [Google Scholar]
  127. VieiraE.K. BonaS. Di NasoF.C. PorawskiM. TieppoJ. MarroniN.P. Quercetin treatment ameliorates systemic oxidative stress in cirrhotic rats.ISRN Gastroenterol.201120111610.5402/2011/604071 21991520
    [Google Scholar]
  128. ZhouJ. ZhouS. GaoY. ZengS. Modulatory effects of quercetin on hypobaric hypoxic rats.Eur. J. Pharmacol.20126742-345045410.1016/j.ejphar.2011.11.028 22127324
    [Google Scholar]
  129. AbdallaF.H. SchmatzR. CardosoA.M. CarvalhoF.B. BaldissarelliJ. de OliveiraJ.S. RosaM.M. Gonçalves NunesM.A. RubinM.A. da CruzI.B.M. BarbisanF. DresslerV.L. PereiraL.B. SchetingerM.R.C. MorschV.M. GonçalvesJ.F. MazzantiC.M. Quercetin protects the impairment of memory and anxiogenic-like behavior in rats exposed to cadmium: Possible involvement of the acetylcholinesterase and Na+,K+-ATPase activities.Physiol. Behav.201413515216710.1016/j.physbeh.2014.06.008 24952260
    [Google Scholar]
  130. Nassiri-AslM. MoghbelinejadS. AbbasiE. YonesiF. HaghighiM.R. LotfizadehM. BazahangP. Effects of quercetin on oxidative stress and memory retrieval in kindled rats.Epilepsy Behav.201328215115510.1016/j.yebeh.2013.04.019 23747498
    [Google Scholar]
  131. NieoczymD. SocałaK. RaszewskiG. WlaźP. Effect of quercetin and rutin in some acute seizure models in mice.Prog. Neuropsychopharmacol. Biol. Psychiatry201454505810.1016/j.pnpbp.2014.05.007 24857758
    [Google Scholar]
  132. JoshiD. NaiduP.S. SinghA. KulkarniS.K. Protective effect of quercetin on alcohol abstinence-induced anxiety and convulsions.J. Med. Food20058339239610.1089/jmf.2005.8.392 16176153
    [Google Scholar]
  133. NitsinskayaL.E. EkimovaI.V. GuzhovaI.V. FeizulaevB.A. PastukhovY.F. Effects of quercetin on the severity of chemically induced convulsions and 70-kDal heat shock protein content in brain structures in rats.Neurosci. Behav. Physiol.201141768068610.1007/s11055‑011‑9472‑z
    [Google Scholar]
  134. NakhaeeS. FarrokhfallK. Miri-MoghaddamE. FoadoddiniM. AskariM. MehrpourO. The effects of quercetin on seizure, inflammation parameters and oxidative stress in acute on chronic tramadol intoxication.BMC Pharmacol. Toxicol.20212215910.1186/s40360‑021‑00532‑8 34666816
    [Google Scholar]
  135. XieR. ZhaoW. LoweS. BentleyR. HuG. MeiH. JiangX. SunC. WuY. Yueying liu, Quercetin alleviates kainic acid-induced seizure by inhibiting the Nrf2-mediated ferroptosis pathway.Free Radic. Biol. Med.202219121222610.1016/j.freeradbiomed.2022.09.001 36087883
    [Google Scholar]
  136. SefilF. KahramanI. DokuyucuR. GokceH. OzturkA. TutukO. AydinM. OzkanU. PinarN. Ameliorating effect of quercetin on acute pentylenetetrazole induced seizures in rats.Int. J. Clin. Exp. Med.20147924712477 25356099
    [Google Scholar]
  137. LianX.Y. ZhangZ.Z. StringerJ.L. Anticonvulsant activity of ginseng on seizures induced by chemical convulsants.Epilepsia2005461152210.1111/j.0013‑9580.2005.40904.x 15660764
    [Google Scholar]
  138. HeD.Y. DaiS.M. Anti-inflammatory and immunomodulatory effects of paeonia lactiflora pall., a traditional chinese herbal medicine.Front. Pharmacol.201121010.3389/fphar.2011.00010 21687505
    [Google Scholar]
  139. ThoutaS. ZhangY. GarciaE. SnutchT.P. Kv1.1 channels mediate network excitability and feed-forward inhibition in local amygdala circuits.Sci. Rep.20211111518010.1038/s41598‑021‑94633‑3 34312446
    [Google Scholar]
  140. D’AdamoM.C. LiantonioA. RollandJ.F. PessiaM. ImbriciP. Kv1. 1 channelopathies: Pathophysiological mechanisms and therapeutic approaches.Int. J. Mol. Sci.2020218293510.3390/ijms21082935 32331416
    [Google Scholar]
  141. ZhuH.L. WanJ.B. WangY.T. LiB.C. XiangC. HeJ. LiP. Medicinal compounds with antiepileptic/anticonvulsant activities.Epilepsia201455131610.1111/epi.12463 24299155
    [Google Scholar]
  142. EfimovaS.S. ZakharovaA.A. OstroumovaO.S. Alkaloids modulate the functioning of ion channels produced by antimicrobial agents via an influence on the lipid host.Front. Cell Dev. Biol.2020853710.3389/fcell.2020.00537 32695785
    [Google Scholar]
  143. ShaoH. YangY. QiA. HongP. ZhuG. CaoX. JiW. ZhuZ. Gastrodin reduces the severity of status epilepticus in the rat pilocarpine model of temporal lobe epilepsy by inhibiting Nav1. 6 sodium currents.Neurochem. Res.201742236037410.1007/s11064‑016‑2079‑6 27743286
    [Google Scholar]
  144. RogawskiM.A. TaylorC.P. Calcium channel α2–δ subunit, a new antiepileptic drug target.Epilepsy Res.2006693183 16835945
    [Google Scholar]
  145. TorresF. BruckerN. AndradeS. KawanoD. GarciaS. PoserG. Eifler-LimaV. New insights into the chemistry and antioxidant activity of coumarins.Curr. Top. Med. Chem.201414222600262310.2174/1568026614666141203144551 25478878
    [Google Scholar]
  146. WooT.S. YoonS.Y. PenaI.C.D. ChoiJ-Y. LeeH-L. ChoiY-J. LeeY-S. RyuJ-H. ChoiJ-S. CheongJ-H. Anticonvulsant effect of Artemisia capillaris Herba in mice.Biomol. Ther.201119334234710.4062/biomolther.2011.19.3.342
    [Google Scholar]
  147. HeL.Y. HuM.B. LiR.L. ZhaoR. FanL.H. HeL. LuF. YeX. HuangY. WuC.J. Natural medicines for the treatment of epilepsy: Bioactive components, pharmacology and mechanism.Front. Pharmacol.20211260404010.3389/fphar.2021.604040 33746751
    [Google Scholar]
  148. GershenzonJ. DudarevaN. The function of terpene natural products in the natural world.Nat. Chem. Biol.20073740841410.1038/nchembio.2007.5 17576428
    [Google Scholar]
  149. de CamposD.L. QueirozL.Y. Fontes-JuniorE.A. PinheiroB.G. da SilvaJ.K.R. MaiaC.S.F. MaiaJ.G.S. Aniba canelilla (Kunth) Mez essential oil and its primary constituent, 1-nitro-2-phenylethane, inhibits acetylcholinesterase and reverse memory impairment in rodents.J. Ethnopharmacol.202330311603610.1016/j.jep.2022.116036 36493997
    [Google Scholar]
  150. Mc CaughranJ.A.Jr CorcoranM.E. WadaJ.A. Anticonvulsant activity of Δ8- and Δ9-tetrahydrocannabinol in rats.Pharmacol. Biochem. Behav.19742222723310.1016/0091‑3057(74)90057‑4 4829599
    [Google Scholar]
  151. Quintans-JúniorL.J. GuimarãesA.G. AraújoB.E. OliveiraG.F. SantanaM.T. MoreiraF.V. Carvacrol, (-)-borneol and citral reduce convulsant activity in rodents.Afr. J. Biotechnol.201093965666572
    [Google Scholar]
  152. KurekJ. Alkaloids: Their importance in Nature and Human life: BoD–Books on Demand.IntechOpen2019
    [Google Scholar]
  153. Gutiérrez-GrijalvaE.P. López-MartínezL.X. Contreras-AnguloL.A. Elizalde-RomeroC.A. HerediaJ.B. Plant alkaloids: Structures and bioactive properties. Plant-derived bioactives.Springer20208511710.1007/978‑981‑15‑2361‑8_5
    [Google Scholar]
  154. KushidaH. MatsumotoT. IkarashiY. Properties, pharmacology, and pharmacokinetics of active indole and oxindole alkaloids in uncaria hook.Front. Pharmacol.20211268867010.3389/fphar.2021.688670 34335255
    [Google Scholar]
  155. ZengP. WangX.M. YeC.Y. SuH.F. TianQ. The main alkaloids in Uncaria rhynchophylla and their anti-Alzheimer’s disease mechanism determined by a network pharmacology approach.Int. J. Mol. Sci.2021227361210.3390/ijms22073612 33807157
    [Google Scholar]
  156. SinghS. SinghT.G. Imatinib attenuates pentylenetetrazole kindled and pilocarpine induced recurrent spontaneous seizures in mice.Neurochem. Res.2022117 36239857
    [Google Scholar]
  157. WangL. ZhangJ. HongY. FengY. ChenM. WangY. Phytochemical and pharmacological review of da chuanxiong formula: A famous herb pair composed of chuanxiong rhizoma and gastrodiae rhizoma for headache.Evid. Based Complement. Alternat. Med.2013201311610.1155/2013/425369 24066012
    [Google Scholar]
  158. JiangH. YangL. HouA. ZhangJ. WangS. ManW. ZhengS. YuH. WangX. YangB. WangQ. KuangH. Botany, traditional uses, phytochemistry, analytical methods, processing, pharmacology and pharmacokinetics of Bupleuri Radix: A systematic review.Biomed. Pharmacother.202013111067910.1016/j.biopha.2020.110679 32858498
    [Google Scholar]
  159. YuanB. YangR. MaY. ZhouS. ZhangX. LiuY. A systematic review of the active saikosaponins and extracts isolated from Radix Bupleuri and their applications.Pharm. Biol.201755162063510.1080/13880209.2016.1262433 27951737
    [Google Scholar]
  160. YuY.H. XieW. BaoY. LiH.M. HuS.J. XingJ.L. Saikosaponin a mediates the anticonvulsant properties in the HNC models of AE and SE by inhibiting NMDA receptor current and persistent sodium current.PLoS One2012711e5069410.1371/journal.pone.0050694 23209812
    [Google Scholar]
  161. YeM. BiY.F. DingL. ZhuW.W. GaoW. Saikosaponin a functions as anti-epileptic effect in pentylenetetrazol induced rats through inhibiting mTOR signaling pathway.Biomed. Pharmacother.20168128128710.1016/j.biopha.2016.04.012 27261605
    [Google Scholar]
  162. HongY. DengN. JinH.N. XuanZ.Z. QianY.X. WuZ. XieW. Saikosaponin A modulates remodeling of Kv4.2-mediated A-type voltage-gated potassium currents in rat chronic temporal lobe epilepsy.Drug Des. Devel. Ther.2018122945295810.2147/DDDT.S166408 30254424
    [Google Scholar]
  163. Senthil KumarK.B. Rajkapoor effect of Oxalis corniculata L. extracts on antioxidant enzymes levels in rat brain after induction of seizures by MES and PTZ.Int. J. Biopharm.2010125861
    [Google Scholar]
  164. KumarK.J.S. RajkapoorB. Eds.; Study on phytochemical profile and anti-epileptic activity of Oxalis corniculata L.2010
    [Google Scholar]
  165. CampêloL.M.L. LimaS.G. FeitosaC.M. FreitasR.M. Evaluation of central nervous system effects of Citrus limon essential oil in mice.Rev. Bras. Farmacogn.201121466867310.1590/S0102‑695X2011005000086
    [Google Scholar]
  166. Al-SnafiD.A.E. Nutritional value and pharmacological importance of citrus species grown in Iraq.IOSR J. Pharm.2016687610810.9790/3013‑0680176108
    [Google Scholar]
  167. VyawahareN. NikamA. SharmaR. DeshpandeM. TarnalliA. BodhankarS. Effect of Clitoria ternatea extract on radial arm maze task performance and central cholinergic activity in rats.J Cell Tissue Res200771949952
    [Google Scholar]
  168. HuangC. LiW.G. ZhangX.B. WangL. XuT.L. WuD. LiY. α-asarone from Acorus gramineus alleviates epilepsy by modulating A-Type GABA receptors.Neuropharmacology20136511110.1016/j.neuropharm.2012.09.001 22975146
    [Google Scholar]
  169. LiuH. SongZ. LiaoD.G. ZhangT.Y. LiuF. ZhuangK. LuoK. YangL. HeJ. LeiJ.P. Anticonvulsant and sedative effects of eudesmin isolated from Acorus tatarinowii on mice and rats.Phytother. Res.2015297996100310.1002/ptr.5337 25851178
    [Google Scholar]
  170. LiuD.H. AgboE. ZhangS.H. ZhuJ.L. Anticonvulsant and neuroprotective effects of paeonol in epileptic rats.Neurochem. Res.201944112556256510.1007/s11064‑019‑02874‑6 31520267
    [Google Scholar]
  171. HsuH.C. TangN.Y. LiuC.H. HsiehC.L. Antiepileptic effect of uncaria rhynchophylla and rhynchophylline involved in the initiation of c-Jun N-terminal kinase phosphorylation of mapk signal pathways in acute seizures of kainic acid-treated rats.Evid. Based Complement. Alternat. Med.201320131910.1155/2013/961289 24381640
    [Google Scholar]
  172. HsiehC.L. HoT.Y. SuS.Y. LoW.Y. LiuC.H. TangN.Y. Uncaria rhynchophylla and Rhynchophylline inhibit c-Jun N-terminal kinase phosphorylation and nuclear factor-kappaB activity in kainic acid-treated rats.Am. J. Chin. Med.200937235136010.1142/S0192415X09006898 19507277
    [Google Scholar]
  173. LinY.W. HsiehC.L. Oral Uncaria rhynchophylla (UR) reduces kainic acid-induced epileptic seizures and neuronal death accompanied by attenuating glial cell proliferation and S100B proteins in rats.J. Ethnopharmacol.2011135231332010.1016/j.jep.2011.03.018 21402140
    [Google Scholar]
  174. LiuC.H. LinY.W. TangN.Y. LiuH.J. HsiehC.L. Neuroprotective effect of Uncaria rhynchophylla in kainic acid-induced epileptic seizures by modulating hippocampal mossy fiber sprouting, neuron survival, astrocyte proliferation, and S100B expression.Evid. Based Complement. Alternat. Med.20122012194790 21837247
    [Google Scholar]
  175. TangN.Y. LinY.W. HoT.Y. ChengC.Y. ChenC.H. HsiehC.L. Long-term intake of Uncaria rhynchophylla reduces S100B and RAGE protein levels in kainic acid-induced epileptic seizures rats.Evid. Based Complement. Alternat. Med.2017201711410.1155/2017/9732854 28386293
    [Google Scholar]
  176. PraveenK. NagaP. MuraliK. SwarnalathaM. Evaluation of antiepileptic activity of methanolic extract of Brassica nigra seeds in mice.IJPI201337384
    [Google Scholar]
  177. KiasalariZ. KhaliliM. RoghaniM. SadeghianA. Antiepileptic and antioxidant effect of Brassica nigra on pentylenetetrazol-induced kindling in mice.Iran. J. Pharm. Res.201211412091217 24250555
    [Google Scholar]
  178. AL SNAFI AE. The pharmacological importance of Brassica nigra and Brassica rapa grown in Iraq.J of Pharm Biology.20155240253
    [Google Scholar]
  179. RajabianA. HosseiniA. HosseiniM. SadeghniaH.R. A review of potential efficacy of saffron (Crocus sativus L.) in cognitive dysfunction and seizures.Prev. Nutr. Food Sci.201924436337210.3746/pnf.2019.24.4.363 31915630
    [Google Scholar]
  180. SgobioC. GhiglieriV. CostaC. BagettaV. SiliquiniS. BaroneI. Di FilippoM. GardoniF. GundelfingerE.D. Di LucaM. PicconiB. CalabresiP. Hippocampal synaptic plasticity, memory, and epilepsy: Effects of long-term valproic acid treatment.Biol. Psychiatry201067656757410.1016/j.biopsych.2009.11.008 20074705
    [Google Scholar]
  181. HosseinzadehH. SadeghniaH.R. GhaeniF.A. MotamedshariatyV.S. MohajeriS.A. Effects of saffron (Crocus sativus L.) and its active constituent, crocin, on recognition and spatial memory after chronic cerebral hypoperfusion in rats.Phytother. Res.201226338138610.1002/ptr.3566 21774008
    [Google Scholar]
  182. HosseinzadehH. SadeghniaH.R. Protective effect of safranal on pentylenetetrazol-induced seizures in the rat: Involvement of GABAergic and opioids systems.Phytomedicine200714425626210.1016/j.phymed.2006.03.007 16707256
    [Google Scholar]
  183. MazumderA.G. SharmaP. PatialV. SinghD. Crocin attenuates kindling development and associated cognitive impairments in mice via inhibiting reactive oxygen species-mediated NF-κB activation.Basic Clin. Pharmacol. Toxicol.2017120542643310.1111/bcpt.12694 27800651
    [Google Scholar]
  184. HassanzadehM. SharifiN. MaherniaS. RahimiN. DehpourA.R. AmanlouM. Effects of onopordia, a novel isolated compound from Onopordon acanthium, on pentylenetetrazole-induced seizures in mice: Possible involvement of nitric oxide pathway.J. Tradit. Complement. Med.2021111222610.1016/j.jtcme.2019.11.005 33511058
    [Google Scholar]
  185. YangR. WangM.Z. ChengY.X. Comparison study of supercritical-CO2 fluid extractions of pinellia rhizoma on anticonvulsant action.Chin. J. Exp. Trad. Med. Formul.2012186214219
    [Google Scholar]
  186. ChengY.X. WangM.Z. YangR. Synergistic effect of pinellia total alkaloids and uncaria total alkaloids on anticonvulsant action in mice and rats.J. Chin. Pharm. Sci.2007162139145
    [Google Scholar]
  187. GuY.T. MaY.G. WangM.Z. The effects of pinellia total alkaloids on the amino acid concentration and the GABAA receptor expression in hippocampus region of epileptic rats.J. Chin. Pharm. Sci.2009183252256
    [Google Scholar]
  188. DengC.X. Effects of pinellia total alkaloids on neuroethology, brain histopathology and BDNF/Trk-B expression in epileptic arts.Jilin J Chin Med.2021411216521656
    [Google Scholar]
  189. WongS.B. HungW-C. MinM-Y. The role of gastrodin on hippocampal neurons after N-methyl-D-aspartate excitotoxicity and experimental temporal lobe seizures.Chin. J. Physiol.201659315616410.4077/CJP.2016.BAE385 27188468
    [Google Scholar]
  190. LiuY. GaoJ. PengM. MengH. MaH. CaiP. XuY. ZhaoQ. SiG. A review on central nervous system effects of gastrodin.Front. Pharmacol.201892410.3389/fphar.2018.00024 29456504
    [Google Scholar]
  191. TangC. WangL. LiuX. ChengM. QuY. XiaoH. Comparative pharmacokinetics of gastrodin in rats after intragastric administration of free gastrodin, parishin and Gastrodia elata extract.J. Ethnopharmacol.2015176495410.1016/j.jep.2015.10.007 26471288
    [Google Scholar]
  192. MatiasM. SilvestreS. FalcãoA. AlvesG. Gastrodia elata and epilepsy: Rationale and therapeutic potential.Phytomedicine201623121511152610.1016/j.phymed.2016.09.001 27765372
    [Google Scholar]
  193. MEIm, X.D.; Cao, Y.F.; Che, Y.Y.; Li, J.; Shang, Z.P.; Zhao, W.J.; Qiao, Y.J.; Zhang, J.Y. Danshen: A phytochemical and pharmacological overview.Chin. J. Nat. Med.2019171598010.1016/S1875‑5364(19)30010‑X 30704625
    [Google Scholar]
  194. LiuW. GeT. PanZ. LengY. LvJ. LiB. The effects of herbal medicine on epilepsy.Oncotarget2017829483854839710.18632/oncotarget.16801 28423368
    [Google Scholar]
  195. BuenafeO.E. Orellana-PaucarA. MaesJ. HuangH. YingX. De BorggraeveW. CrawfordA.D. LuytenW. EsguerraC.V. de WitteP. Tanshinone IIA exhibits anticonvulsant activity in zebrafish and mouse seizure models.ACS Chem. Neurosci.20134111479148710.1021/cn400140e 23937066
    [Google Scholar]
/content/journals/npj/10.2174/0122103155289394240522110321
Loading
/content/journals/npj/10.2174/0122103155289394240522110321
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test