Skip to content
2000
Volume 15, Issue 4
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

Introduction

Metabolic dysfunction-associated fatty liver disease (MAFLD) is the most common chronic liver disease progressing towards a substantial global health concern. A multitude of therapeutic agents are being used to treat MAFLD. The high prevalence and adverse effects of drugs have increased the global popularity of herbal medicines (HMs) as effective therapeutic agents to treat MAFLD. Among the causes of pathogenesis, insulin resistance (IR) plays a crucial role in MAFLD. Hence, the amelioration of IR has emerged as a promising target for potential therapeutic approaches in MAFLD.

Aim

This study aimed to explore and mechanisms that unveil recent advances in HMs that target the amelioration of IR in MAFLD.

Materials and Methods

Electronic databases, including PubMed and MEDLINE, were used to search literature for HMs in the management or treatment of NAFLD published up to March, 2023. The three primary search terms were “MAFLD” “NAFLD” and “HM”. MeSH of NAFLD, such as (Non-alcoholic fatty liver disease, Non-alcoholic Steatohepatitis) and HM (Medicinal plants, Plant extracts), and keywords were used to optimize the search strategy.

Results

HMs act on a multitude of molecular pathways that increase insulin sensitization including upregulation of the secretion and activation of insulin receptor substrate (IRS) proteins, upregulation of phosphatidylinositol 3-kinase (PI3K)/AKT (also known as PKB or protein kinase B) signaling pathway, activation of the 5' AMP-activated protein kinase (AMPK) pathway and modulation of enzymes of glucose homeostasis, regeneration of the pancreatic β-cell mass, modulation of secretion of adipokines, enhancement of the uptake of glucose into tissues increased expression of GLUT in tissues, and upregulation of FGF1/FGF1R signaling pathway.

Conclusion

HMs possess a multitude of potential actions that reduce the IR and improve glucose homeostasis. Hence, HMs are a promising resource as effective medications for the treatment of MAFLD.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155308948240528050738
2024-06-04
2025-03-30
Loading full text...

Full text loading...

References

  1. BalmerM.L. DufourJ.F. Nicht-alkoholische Steatohepatitis - von NAFLD zu MAFLD. Ther. Umsch.2011684183188[Nonalcoholic steatohepatitis - from NAFLD to MAFLD].10.1024/0040‑5930/a000148
    [Google Scholar]
  2. BellentaniS. TiribelliC. Is it time to change NAFLD and NASH nomenclature?Lancet Gastroenterol. Hepatol.20172854754810.1016/S2468‑1253(17)30146‑2 28691681
    [Google Scholar]
  3. SanyalA.J. BruntE.M. KleinerD.E. KowdleyK.V. ChalasaniN. LavineJ.E. RatziuV. McCulloughA. Endpoints and clinical trial design for nonalcoholic steatohepatitis.Hepatology201154134435310.1002/hep.24376 21520200
    [Google Scholar]
  4. YounossiZ. TackeF. ArreseM. Chander SharmaB. MostafaI. BugianesiE. Wai-Sun WongV. YilmazY. GeorgeJ. FanJ. VosM.B. Global Perspectives on Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis.Hepatology20196962672268210.1002/hep.30251 30179269
    [Google Scholar]
  5. EslamM. NewsomeP.N. SarinS.K. AnsteeQ.M. TargherG. Romero-GomezM. Zelber-SagiS. Wai-Sun WongV. DufourJ.F. SchattenbergJ.M. KawaguchiT. ArreseM. ValentiL. ShihaG. TiribelliC. Yki-JärvinenH. FanJ.G. GrønbækH. YilmazY. Cortez-PintoH. OliveiraC.P. BedossaP. AdamsL.A. ZhengM.H. FouadY. ChanW.K. Mendez-SanchezN. AhnS.H. CasteraL. BugianesiE. RatziuV. GeorgeJ. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement.J. Hepatol.202073120220910.1016/j.jhep.2020.03.039 32278004
    [Google Scholar]
  6. FouadY. WakedI. BollipoS. GomaaA. AjlouniY. AttiaD. What’s in a name? Renaming ‘NAFLD’ to ‘MAFLD’.Liver Int.20204061254126110.1111/liv.14478 32301554
    [Google Scholar]
  7. LinS. HuangJ. WangM. KumarR. LiuY. LiuS. WuY. WangX. ZhuY. Comparison of MAFLD and NAFLD diagnostic criteria in real world.Liver Int.20204092082208910.1111/liv.14548 32478487
    [Google Scholar]
  8. NiriellaM.A. EdiriweeraD.S. KasturiratneA. De SilvaS.T. DassanayakaA.S. De SilvaA.P. KatoN. PathmeswaranA. WickramasingheA.R. de SilvaH.J. Outcomes of NAFLD and MAFLD: Results from a community-based, prospective cohort study.PLoS One2021162e024576210.1371/journal.pone.0245762 33534815
    [Google Scholar]
  9. ChanK.E. KohT.J.L. TangA.S.P. QuekJ. YongJ.N. TayP. TanD.J.H. LimW.H. LinS.Y. HuangD. ChanM. KhooC.M. ChewN.W.S. KaewdechA. ChamroonkulN. DanY.Y. NoureddinM. MuthiahM. EslamM. NgC.H. Global prevalence and clinical characteristics of metabolic-associated fatty liver disease: A meta-analysis and systematic review of 10 739 607 individuals.J. Clin. Endocrinol. Metab.202210792691270010.1210/clinem/dgac321 35587339
    [Google Scholar]
  10. MyersS. Neyroud-CasparI. SpahrL. GkouvatsosK. FournierE. GiostraE. MaginiG. FrossardJ.L. BascaronM.E. VernazN. ZampaglioneL. NegroF. GoossensN. NAFLD and MAFLD as emerging causes of HCC: A populational study.JHEP Reports20213210023110.1016/j.jhepr.2021.100231 33748726
    [Google Scholar]
  11. GillM.G. MajumdarA. Metabolic associated fatty liver disease: Addressing a new era in liver transplantation.World J. Hepatol.202012121168118110.4254/wjh.v12.i12.1168 33442446
    [Google Scholar]
  12. MundiM.S. VelapatiS. PatelJ. KelloggT.A. Abu DayyehB.K. HurtR.T. Evolution of NAFLD and its management.Nutr. Clin. Pract.2020351728410.1002/ncp.10449 31840865
    [Google Scholar]
  13. CaiY. LiangQ. ChenW. ChenM. ChenR. ZhangY. XiaoY. ChenL. Evaluation of HuoXueHuaYu therapy for nonalcoholic fatty liver disease: a systematic review and meta-analysis of randomized controlled trial.BMC Complement. Altern. Med.201919117810.1186/s12906‑019‑2596‑3 31324247
    [Google Scholar]
  14. SaadatiS. HatamiB. YariZ. ShahrbafM.A. EghtesadS. MansourA. PoustchiH. HedayatiM. Aghajanpoor-pashaM. SadeghiA. HekmatdoostA. The effects of curcumin supplementation on liver enzymes, lipid profile, glucose homeostasis, and hepatic steatosis and fibrosis in patients with non-alcoholic fatty liver disease.Eur. J. Clin. Nutr.201973344144910.1038/s41430‑018‑0382‑9 30610213
    [Google Scholar]
  15. PanahiY. KianpourP. MohtashamiR. JafariR. Simental-MendíaL.E. SahebkarA. Curcumin lowers serum lipids and uric acid in subjects with nonalcoholic fatty liver disease: A randomized controlled trial.J. Cardiovasc. Pharmacol.201668322322910.1097/FJC.0000000000000406 27124606
    [Google Scholar]
  16. ShiC. TianJ. RenD. WeiH. ZhangL. WangQ. YangK. Methodological reporting of randomized trials in five leading Chinese nursing journals.PLoS One2014911e11300210.1371/journal.pone.0113002 25415382
    [Google Scholar]
  17. TangY. Curcumin targets multiple pathways to halt hepatic stellate cell activation: updated mechanisms in vitro and in vivo.Dig. Dis. Sci.20156061554156410.1007/s10620‑014‑3487‑6 25532502
    [Google Scholar]
  18. WangL. JiaZ. WangB. ZhangB. Berberine inhibits liver damage in rats with non-alcoholic fatty liver disease by regulating TLR4/MyD88/NF-κB pathway.Turk. J. Gastroenterol.2021311290290910.5152/tjg.2020.19568 33626003
    [Google Scholar]
  19. KangH. KoppulaS. Houttuynia cordata attenuates lipid accumulation via activation of AMP-activated protein kinase signaling pathway in HepG2 cells.Am. J. Chin. Med.201442365166410.1142/S0192415X14500426 24871657
    [Google Scholar]
  20. KangO.H. KimS.B. SeoY.S. JoungD.K. MunS.H. ChoiJ.G. LeeY.M. KangD.G. LeeH.S. KwonD.Y. Curcumin decreases oleic acid-induced lipid accumulation via AMPK phosphorylation in hepatocarcinoma cells.Eur. Rev. Med. Pharmacol. Sci.2013171925782586 24142602
    [Google Scholar]
  21. ChenS. LiJ. ZhouH. LinM. LiuY. ZhangY. ZhaoZ. LiG. LiuJ. Study on effects of Zhi Zi (Fructus gardeniae) on non-alcoholic fatty liver disease in the rat.J. Tradit. Chin. Med.2012321828610.1016/S0254‑6272(12)60037‑5 22594108
    [Google Scholar]
  22. YaoH. QiaoY.J. ZhaoY.L. TaoX.F. XuL.N. YinL.H. QiY. PengJ.Y. Herbal medicines and nonalcoholic fatty liver disease.World J. Gastroenterol.201622306890690510.3748/wjg.v22.i30.6890 27570425
    [Google Scholar]
  23. LiuJ. ZhangH. JiB. CaiS. WangR. ZhouF. YangJ. LiuH. A diet formula of Puerariae radix, Lycium barbarum, Crataegus pinnatifida, and Polygonati rhizoma alleviates insulin resistance and hepatic steatosis in CD-1 mice and HepG2 cells.Food Funct.2014551038104910.1039/C3FO60524H 24626737
    [Google Scholar]
  24. LiangL. YeS. JiangR. ZhouX. ZhouJ. MengS. Liensinine alleviates high fat diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) through suppressing oxidative stress and inflammation via regulating TAK1/AMPK signaling.Int. Immunopharmacol.202210410830610.1016/j.intimp.2021.108306 34999396
    [Google Scholar]
  25. EslamM. SanyalA.J. GeorgeJ. SanyalA. Neuschwander-TetriB. TiribelliC. KleinerD.E. BruntE. BugianesiE. Yki-JärvinenH. GrønbækH. Cortez-PintoH. GeorgeJ. FanJ. ValentiL. AbdelmalekM. Romero-GomezM. RinellaM. ArreseM. EslamM. BedossaP. NewsomeP.N. AnsteeQ.M. JalanR. BatallerR. LoombaR. SookoianS. SarinS.K. HarrisonS. KawaguchiT. WongV.W-S. RatziuV. YilmazY. YounossiZ. MAFLD: A consensus-driven proposed nomenclature for metabolic associated fatty liver disease.Gastroenterology2020158719992014.e110.1053/j.gastro.2019.11.312 32044314
    [Google Scholar]
  26. CusiK. Role of insulin resistance and lipotoxicity in non-alcoholic steatohepatitis.Clin. Liver Dis.200913454556310.1016/j.cld.2009.07.009 19818304
    [Google Scholar]
  27. EslamM. SarinS.K. WongV.W.S. FanJ.G. KawaguchiT. AhnS.H. ZhengM.H. ShihaG. YilmazY. GaniR. AlamS. DanY.Y. KaoJ.H. HamidS. CuaI.H. ChanW.K. PayawalD. TanS.S. TanwandeeT. AdamsL.A. KumarM. OmataM. GeorgeJ. The Asian Pacific Association for the Study of the Liver clinical practice guidelines for the diagnosis and management of metabolic associated fatty liver disease.Hepatol. Int.202014688991910.1007/s12072‑020‑10094‑2 33006093
    [Google Scholar]
  28. TakakiA. KawaiD. YamamotoK. Multiple hits, including oxidative stress, as pathogenesis and treatment target in non-alcoholic steatohepatitis (NASH).Int. J. Mol. Sci.20131410207042072810.3390/ijms141020704 24132155
    [Google Scholar]
  29. TilgH. MoschenA.R. Evolution of inflammation in nonalcoholic fatty liver disease: The multiple parallel hits hypothesis.Hepatology20105251836184610.1002/hep.24001 21038418
    [Google Scholar]
  30. KoliakiC. SzendroediJ. KaulK. JelenikT. NowotnyP. JankowiakF. HerderC. CarstensenM. KrauschM. KnoefelW.T. SchlensakM. RodenM. Adaptation of hepatic mitochondrial function in humans with non-alcoholic fatty liver is lost in steatohepatitis.Cell Metab.201521573974610.1016/j.cmet.2015.04.004 25955209
    [Google Scholar]
  31. RadaP. González-RodríguezÁ. García-MonzónC. ValverdeÁ.M. Understanding lipotoxicity in NAFLD pathogenesis: is CD36 a key driver?Cell Death Dis.202011980210.1038/s41419‑020‑03003‑w 32978374
    [Google Scholar]
  32. YalowR.S. BersonS.A. Plasma insulin concentrations in nondiabetic and early diabetic subjects. Determinations by a new sensitive immuno-assay technic.Diabetes19609425426010.2337/diab.9.4.254 13846365
    [Google Scholar]
  33. BugianesiE. GastaldelliA. VanniE. GambinoR. CassaderM. BaldiS. PontiV. PaganoG. FerranniniE. RizzettoM. Insulin resistance in non-diabetic patients with non-alcoholic fatty liver disease: sites and mechanisms.Diabetologia200548463464210.1007/s00125‑005‑1682‑x 15747110
    [Google Scholar]
  34. ChoudhuryJ. SanyalA.J. Insulin resistance and the pathogenesis of nonalcoholic fatty liver disease.Clin. Liver Dis.200483575594[ix]10.1016/j.cld.2004.04.006 15331065
    [Google Scholar]
  35. BergmanR.N. KimS.P. HsuI.R. CatalanoK.J. ChiuJ.D. KabirM. RicheyJ.M. AderM. Abdominal obesity: role in the pathophysiology of metabolic disease and cardiovascular risk.Am. J. Med.20071202Suppl. 1S3S810.1016/j.amjmed.2006.11.012 17296343
    [Google Scholar]
  36. KelleyD.E. McKolanisT.M. HegaziR.A.F. KullerL.H. KalhanS.C. Fatty liver in type 2 diabetes mellitus: relation to regional adiposity, fatty acids, and insulin resistance.Am. J. Physiol. Endocrinol. Metab.20032854E906E91610.1152/ajpendo.00117.2003 12959938
    [Google Scholar]
  37. Nguyen-DuyT.B. NichamanM.Z. ChurchT.S. BlairS.N. RossR. Visceral fat and liver fat are independent predictors of metabolic risk factors in men.Am. J. Physiol. Endocrinol. Metab.20032846E1065E107110.1152/ajpendo.00442.2002 12554597
    [Google Scholar]
  38. Svegliati-BaroniG. RidolfiF. Di SarioA. CasiniA. MarucciL. GaggiottiG. OrlandoniP. MacarriG. PeregoL. BenedettiA. FolliF. Insulin and insulin-like growth factor-1 stimulate proliferation and type I collagen accumulation by human hepatic stellate cells: Differential effects on signal transduction pathways.Hepatology19992961743175110.1002/hep.510290632 10347117
    [Google Scholar]
  39. ThiazolidinedionesY-J.H. N. Engl. J. Med.2004351111106111810.1056/NEJMra041001 15356308
    [Google Scholar]
  40. YuJ.G. JavorschiS. HevenerA.L. KruszynskaY.T. NormanR.A. SinhaM. OlefskyJ.M. The effect of thiazolidinediones on plasma adiponectin levels in normal, obese, and type 2 diabetic subjects.Diabetes200251102968297410.2337/diabetes.51.10.2968 12351435
    [Google Scholar]
  41. LincoffA.M. WolskiK. NichollsS.J. NissenS.E. Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus: a meta-analysis of randomized trials.JAMA2007298101180118810.1001/jama.298.10.1180 17848652
    [Google Scholar]
  42. LokeY.K. SinghS. FurbergC.D. Long-term use of thiazolidinediones and fractures in type 2 diabetes: a meta-analysis.CMAJ20091801323910.1503/cmaj.080486 19073651
    [Google Scholar]
  43. NeumannA. WeillA. RicordeauP. FagotJ.P. AllaF. AllemandH. Pioglitazone and risk of bladder cancer among diabetic patients in France: a population-based cohort study.Diabetologia20125571953196210.1007/s00125‑012‑2538‑9 22460763
    [Google Scholar]
  44. KirpichnikovD. McFarlaneS.I. SowersJ.R. Metformin: An Update.Ann. Intern. Med.20021371253310.7326/0003‑4819‑137‑1‑200207020‑00009 12093242
    [Google Scholar]
  45. BonnetF. ScheenA. Understanding and overcoming metformin gastrointestinal intolerance.Diabetes Obes. Metab.201719447348110.1111/dom.12854 27987248
    [Google Scholar]
  46. DeFronzoR. FlemingG.A. ChenK. BicsakT.A. Metformin-associated lactic acidosis: Current perspectives on causes and risk.Metabolism2016652202910.1016/j.metabol.2015.10.014 26773926
    [Google Scholar]
  47. ColcaJ.R. McDonaldW.G. AdamsW.J. MSDC-0602K, a metabolic modulator directed at the core pathology of non-alcoholic steatohepatitis.Expert Opin. Investig. Drugs201827763163610.1080/13543784.2018.1494153 29950116
    [Google Scholar]
  48. SokolR.J. McKimJ.M.Jr GoffM.C. RuyleS.Z. DevereauxM.W. HanD. PackerL. EversonG. Vitamin E reduces oxidant injury to mitochondria and the hepatotoxicity of taurochenodeoxycholic acid in the rat.Gastroenterology1998114116417410.1016/S0016‑5085(98)70644‑4 9428230
    [Google Scholar]
  49. SchürksM. GlynnR.J. RistP.M. TzourioC. KurthT. Effects of vitamin E on stroke subtypes: meta-analysis of randomised controlled trials.BMJ2010341nov04 1c570210.1136/bmj.c5702 21051774
    [Google Scholar]
  50. KleinE.A. ThompsonI.M.Jr TangenC.M. CrowleyJ.J. LuciaM.S. GoodmanP.J. MinasianL.M. FordL.G. ParnesH.L. GazianoJ.M. KarpD.D. LieberM.M. WaltherP.J. KlotzL. ParsonsJ.K. ChinJ.L. DarkeA.K. LippmanS.M. GoodmanG.E. MeyskensF.L.Jr BakerL.H. Vitamin E and the Risk of Prostate Cancer.JAMA2011306141549155610.1001/jama.2011.1437 21990298
    [Google Scholar]
  51. BhatV.B. MadyasthaK.M. Antioxidant and radical scavenging properties of 8-oxo derivatives of xanthine drugs pentoxifylline and lisofylline.Biochem. Biophys. Res. Commun.200128851212121710.1006/bbrc.2001.5922 11700041
    [Google Scholar]
  52. BuhaescuI. IzzedineH. Mevalonate pathway: A review of clinical and therapeutical implications.Clin. Biochem.2007409-1057558410.1016/j.clinbiochem.2007.03.016 17467679
    [Google Scholar]
  53. SasakiJ. IwashitaM. KonoS. Statins: beneficial or adverse for glucose metabolism.J. Atheroscler. Thromb.200613312312910.5551/jat.13.123 16835466
    [Google Scholar]
  54. LindorK.D. KowdleyK.V. HeathcoteE.J. HarrisonM.E. JorgensenR. AnguloP. LympJ.F. BurgartL. ColinP. Ursodeoxycholic acid for treatment of nonalcoholic steatohepatitis: Results of a randomized trial.Hepatology200439377077810.1002/hep.20092 14999696
    [Google Scholar]
  55. ReardonJ. HussainiT. AlsahafiM. AzalgaraV.M. ErbS.R. PartoviN. YoshidaE.M. Ursodeoxycholic acid in treatment of non-cholestatic liver diseases: A systematic review.J. Clin. Transl. Hepatol.201643192205 27777888
    [Google Scholar]
  56. PellicciariR. CostantinoG. CamaioniE. SadeghpourB.M. EntrenaA. WillsonT.M. FiorucciS. ClericiC. GioielloA. Bile acid derivatives as ligands of the farnesoid X receptor. Synthesis, evaluation, and structure-activity relationship of a series of body and side chain modified analogues of chenodeoxycholic acid.J. Med. Chem.200447184559456910.1021/jm049904b 15317466
    [Google Scholar]
  57. RatziuV. Obeticholic acid for the treatment of nonalcoholic steatohepatitis.Clin. Liver Dis. (Hoboken)202117639840010.1002/cld.1076 34386202
    [Google Scholar]
  58. Al MahtabM. AkbarS.M.F. RoyP.P. RahimM.A. YesminS.M.S. IslamS.B. Treatment of nonalcoholic steatohepatitis by obeticholic acid: Current status.Euroasian J. Hepatogastroenterol.202212S1Suppl. 1S46S5010.5005/jp‑journals‑10018‑1360 36466097
    [Google Scholar]
  59. TullyD.C. RuckerP.V. ChianelliD. WilliamsJ. VidalA. AlperP.B. MutnickD. BursulayaB. SchmeitsJ. WuX. BaoD. ZollJ. KimY. GroesslT. McNamaraP. SeidelH.M. MolteniV. LiuB. PhimisterA. JosephS.B. LaffitteB. Discovery of tropifexor (LJN452), a highly potent non-bile acid FXR agonist for the treatment of cholestatic liver diseases and nonalcoholic steatohepatitis (NASH).J. Med. Chem.201760249960997310.1021/acs.jmedchem.7b00907 29148806
    [Google Scholar]
  60. RatziuV. HarrisonS.A. FrancqueS. BedossaP. LehertP. SerfatyL. Romero-GomezM. BoursierJ. AbdelmalekM. CaldwellS. DrenthJ. AnsteeQ.M. HumD. HanfR. RoudotA. MegnienS. StaelsB. SanyalA. MathurinP. GournayJ. Nguyen-KhacE. De LedinghenV. LarreyD. TranA. BourliereM. Maynard-MuetM. AsselahT. HenrionJ. NevensF. CassimanD. GeertsA. MorenoC. BeuersU.H. GalleP.R. SpenglerU. BugianesiE. CraxiA. AngelicoM. FargionS. VoiculescuM. GheorgheL. PreotescuL. CaballeriaJ. AndradeR.J. CrespoJ. CalleraJ.L. AlaA. AithalG. AboudaG. LuketicV. HuangM.A. GordonS. PockrosP. PoordadF. ShoresN. MoehlenM.W. BambhaK. ClarkV. SatapathyS. ParekhS. ReddyR.K. SheikhM.Y. SzaboG. VierlingJ. FosterT. UmpierrezG. ChangC. BoxT. Gallegos-OrozcoJ. Elafibranor, an agonist of the peroxisome proliferator−activated receptor−α and −δ, induces resolution of nonalcoholic steatohepatitis without fibrosis worsening.Gastroenterology2016150511471159.e510.1053/j.gastro.2016.01.038 26874076
    [Google Scholar]
  61. Westerouen Van MeeterenM.J. DrenthJ.P.H. TjwaE.T.T.L. Elafibranor: a potential drug for the treatment of nonalcoholic steatohepatitis (NASH).Expert Opin. Investig. Drugs202029211712310.1080/13543784.2020.1668375 31523999
    [Google Scholar]
  62. CardosoA.C. de Figueiredo-MendesC. A. Villela-NogueiraC. SanyalA.J. New drugs for non-alcoholic steatohepatitis.Liver Int.202040S1Suppl. 19610110.1111/liv.14354 32077615
    [Google Scholar]
  63. HarrisonS.A. RinellaM.E. AbdelmalekM.F. TrotterJ.F. ParedesA.H. ArnoldH.L. KugelmasM. BashirM.R. JarosM.J. LingL. RossiS.J. DePaoliA.M. LoombaR. NGM282 for treatment of non-alcoholic steatohepatitis: a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial.Lancet2018391101261174118510.1016/S0140‑6736(18)30474‑4 29519502
    [Google Scholar]
  64. SanyalA. CharlesE.D. Neuschwander-TetriB.A. LoombaR. HarrisonS.A. AbdelmalekM.F. LawitzE.J. Halegoua-DeMarzioD. KunduS. NovielloS. LuoY. ChristianR. Pegbelfermin (BMS-986036), a PEGylated fibroblast growth factor 21 analogue, in patients with non-alcoholic steatohepatitis: a randomised, double-blind, placebo-controlled, phase 2a trial.Lancet2018392101652705271710.1016/S0140‑6736(18)31785‑9 30554783
    [Google Scholar]
  65. WangZ.Q. ZhangX.H. YuY. TiptonR.C. RaskinI. RibnickyD. Artemisia scoparia extract attenuates non-alcoholic fatty liver disease in diet-induced obesity mice by enhancing hepatic insulin and AMPK signaling independently of FGF21 pathway.Metab. Clin. Exp.20136291239124910.1016/j.metabol.2013.03.004
    [Google Scholar]
  66. AraujoL.C.C. FeitosaK.B. MurataG.M. FurigoI.C. TeixeiraS.A. LucenaC.F. RibeiroL.M. MuscaráM.N. CostaS.K.P. DonatoJ.Jr BordinS. CuriR. CarvalhoC.R.O. Uncaria tomentosa improves insulin sensitivity and inflammation in experimental NAFLD.Sci. Rep.2018811101310.1038/s41598‑018‑29044‑y 30030460
    [Google Scholar]
  67. MabasaL. KotzeA. ShabalalaS. KimaniC. GabuzaK. JohnsonR. SangweniN.F. MaharajV. MullerC.J.F. Sclerocarya birrea (Marula) extract inhibits hepatic steatosis in db/db mice.Int. J. Environ. Res. Public Health2022197378210.3390/ijerph19073782 35409465
    [Google Scholar]
  68. HwangK.A. HwangY.J. KimG.R. ChoeJ.S. Extracts from Aralia elata (Miq) Seem alleviate hepatosteatosis via improving hepatic insulin sensitivity.BMC Complement. Altern. Med.201515134710.1186/s12906‑015‑0871‑5 26438035
    [Google Scholar]
  69. ZhouL. TangJ. XiongX. DongH. HuangJ. ZhouS. ZhangL. QinH. YanS. Psoralea corylifolia L. Attenuates Nonalcoholic Steatohepatitis in Juvenile Mouse.Front. Pharmacol.2017887610.3389/fphar.2017.00876 29249967
    [Google Scholar]
  70. WangJ.H. HwangS.J. LimD.W. SonC.G. Cynanchum atratum alleviates non-alcoholic fatty liver by balancing lipogenesis and fatty acid oxidation in a high-fat, high-fructose diet mice model.Cells20211112310.3390/cells11010023 35011585
    [Google Scholar]
  71. ChoiB.R. KimH.J. LeeY.J. KuS.K. Anti-Diabetic Obesity Effects of Wasabia Japonica Matsum Leaf Extract on 45% Kcal High-Fat Diet-Fed Mice.Nutrients2020129283710.3390/nu12092837 32947952
    [Google Scholar]
  72. WollmanA. DanielT. RosenzweigT. Sarcopoterium spinosum Inhibited the Development of Non-Alcoholic Steatosis and Steatohepatitis in Mice.Nutrients20191112304410.3390/nu11123044 31847157
    [Google Scholar]
  73. ChunY.S. KuS.K. KimJ.K. ParkS. ChoI. LeeN.J. Hepatoprotective and anti-obesity effects of Korean blue honeysuckle extracts in high fat diet-fed mice.J. Exerc. Nutrition Biochem.2018224395410.20463/jenb.2018.0029 30661330
    [Google Scholar]
  74. SharmaP. NairJ. SinhA. Guava Leaf Extract Suppresses Fructose Mediated Non-Alcoholic Fatty Liver Disease in Growing Rats.Diabetes Metab. Syndr. Obes.20221528272845
    [Google Scholar]
  75. HuangH.C. ChenC.J. LaiY.H. LinY.C. ChiouW.C. LuH.F. ChenY.F. ChenY.H. HuangC. Momordica cochinchinensis aril ameliorates diet-induced metabolic dysfunction and non-alcoholic fatty liver by modulating gut microbiota.Int. J. Mol. Sci.2021225264010.3390/ijms22052640 33808007
    [Google Scholar]
  76. YuY. ZhangX.H. EbersoleB. RibnickyD. WangZ.Q. Bitter melon extract attenuating hepatic steatosis may be mediated by FGF21 and AMPK/Sirt1 signaling in mice.Sci. Rep.201331314210.1038/srep03142 24189525
    [Google Scholar]
  77. KwonE.Y. ChoiM.S. Eriocitrin improves adiposity and related metabolic disorders in high-fat diet-induced obese mice.J. Med. Food202023323324110.1089/jmf.2019.4638 32191577
    [Google Scholar]
  78. ArunkumarE. AnuradhaC.V. Genistein promotes insulin action through adenosine monophosphate-activated protein kinase activation and p70 ribosomal protein S6 kinase 1 inhibition in the skeletal muscle of mice fed a high energy diet.Nutr Res N Y N.201232861762510.1016/j.nutres.2012.06.002
    [Google Scholar]
  79. BhuvaneswariS. AnuradhaC.V. Astaxanthin prevents loss of insulin signaling and improves glucose metabolism in liver of insulin resistant mice.Can. J. Physiol. Pharmacol.201290111544155210.1139/y2012‑119 23181282
    [Google Scholar]
  80. DongR. YangX. WangC. LiuK. LiuZ. MaX. SunH. HuoX. FuT. MengQ. Yangonin protects against non-alcoholic fatty liver disease through farnesoid X receptor.Phytomedicine20195313414210.1016/j.phymed.2018.09.006 30668392
    [Google Scholar]
  81. KangJ. GuoC. ThomeR. YangN. ZhangY. LiX. CaoX. Hypoglycemic, hypolipidemic and antioxidant effects of iridoid glycosides extracted from Corni fructus: possible involvement of the PI3K–Akt/PKB signaling pathway.RSC Advances2018853305393054910.1039/C8RA06045B 35546813
    [Google Scholar]
  82. ZhangY. HaiJ. CaoM. ZhangY. PeiS. WangJ. ZhangQ. Silibinin ameliorates steatosis and insulin resistance during non-alcoholic fatty liver disease development partly through targeting IRS-1/PI3K/Akt pathway.Int. Immunopharmacol.201317371472010.1016/j.intimp.2013.08.019 24036369
    [Google Scholar]
  83. ZhengX. ZhaoM.G. JiangC.H. ShengX.P. YangH.M. LiuY. YaoX.M. ZhangJ. YinZ.Q. Triterpenic acids-enriched fraction from Cyclocarya paliurus attenuates insulin resistance and hepatic steatosis via PI3K/Akt/GSK3β pathway.Phytomedicine20206615313010.1016/j.phymed.2019.153130 31790897
    [Google Scholar]
  84. LiuY. LiaoL. ChenY. HanF. Effects of daphnetin on lipid metabolism, insulin resistance and oxidative stress in OA treated HepG2 cells.Mol. Med. Rep.20191964673468410.3892/mmr.2019.10139 30957185
    [Google Scholar]
  85. YuQ. LiuY. WuY. ChenY. Dihydrocurcumin ameliorates the lipid accumulation, oxidative stress and insulin resistance in oleic acid-induced L02 and HepG2 cells.Biomed. Pharmacother.20181031327133610.1016/j.biopha.2018.04.143 29864915
    [Google Scholar]
  86. BaoL. HuL. ZhangY. WangY. Hypolipidemic effects of flavonoids extracted from Lomatogonium rotatum.Exp. Ther. Med.20161141417142410.3892/etm.2016.3038 27073459
    [Google Scholar]
  87. YongZ. RuiqiW. HongjiY. NingM. ChenzuoJ. YuZ. ZhixuanX. QiangL. QibingL. WeiyingL. XiaopoZ. Mangiferin Ameliorates HFD-Induced NAFLD through Regulation of the AMPK and NLRP3 Inflammasome Signal Pathways.J. Immunol. Res.2021202111710.1155/2021/4084566 34734090
    [Google Scholar]
  88. YangS. CaoS. LiC. ZhangJ. LiuC. QiuF. KangN. Berberrubine, a main metabolite of berberine, alleviates non-alcoholic fatty liver disease via modulating glucose and lipid metabolism and restoring gut microbiota.Front. Pharmacol.20221391337810.3389/fphar.2022.913378 35873595
    [Google Scholar]
  89. QiaoZ. DuX. ZhuangW. YangS. LiH. SunJ. ChenJ. WangC. Schisandra Chinensis acidic polysaccharide improves the insulin resistance in type 2 diabetic rats by inhibiting inflammation.J. Med. Food202023435836610.1089/jmf.2019.4469 32181695
    [Google Scholar]
  90. JungS. SonH. HwangC.E. ChoK.M. ParkS.W. KimH. KimH.J. The root of Polygonum multiflorum thunb. Alleviates non-alcoholic steatosis and insulin resistance in high fat diet-fed mice.Nutrients2020128235310.3390/nu12082353 32781739
    [Google Scholar]
  91. MathurR. DuttaS. VelpandianT. MathurS.R. Psidium guajava Linn. leaf extract affects hepatic glucose transporter-2 to attenuate early onset of insulin resistance consequent to high fructose intake: An experimental study.Pharmacognosy Res.201572166175
    [Google Scholar]
  92. KeW. WangP. WangX. ZhouX. HuX. ChenF. Dietary Platycodon grandiflorus attenuates hepatic insulin resistance and oxidative stress in high-fat-diet induced non-alcoholic fatty liver disease.Nutrients202012248010.3390/nu12020480 32074961
    [Google Scholar]
  93. YehW.J. KoJ. HuangW.C. ChengW.Y. YangH.Y. Crude extract of Camellia oleifera pomace ameliorates the progression of non-alcoholic fatty liver disease via decreasing fat accumulation, insulin resistance and inflammation.Br. J. Nutr.2020123550851510.1017/S0007114519003027 31771682
    [Google Scholar]
  94. ChenY.M. LianC.F. SunQ.W. WangT.T. LiuY.Y. YeJ. GaoL.L. YangY.F. LiuS.N. ShenZ.F. LiuY.L. Ramulus Mori (Sangzhi) Alkaloids Alleviate High-Fat Diet-Induced Obesity and Nonalcoholic Fatty Liver Disease in Mice.Antioxidants202211590510.3390/antiox11050905 35624769
    [Google Scholar]
  95. HuangR. WangB. HeJ. ZhangZ. XieR. LiS. LiQ. TianC. TuoY. ZhengR. ChenW. XiangM. Lian-Qu formula treats metabolic syndrome via reducing fat synthesis, insulin resistance and inflammation.J. Ethnopharmacol.202330611606010.1016/j.jep.2022.116060 36535333
    [Google Scholar]
  96. ZhangL. XuJ. SongH. YaoZ. JiG. Extracts from Salvia-Nelumbinis naturalis alleviate hepatosteatosis via improving hepatic insulin sensitivity.J. Transl. Med.201412123610.1186/s12967‑014‑0236‑8 25160038
    [Google Scholar]
  97. LiY. LiuY. YangM. WangQ. ZhengY. XuJ. ZhengP. SongH. A study on the therapeutic efficacy of San Zi Yang Qin decoction for non-alcoholic fatty liver disease and the underlying mechanism based on network pharmacology.Evid. Based Complement. Alternat. Med.2021202111410.1155/2021/8819245 33505505
    [Google Scholar]
  98. LimD.W. KimH. LeeS.J. YuG.R. KimJ.E. ParkW.H. Jwa kum whan attenuates nonalcoholic fatty liver disease by modulating glucose metabolism and the insulin signaling pathway.Evid. Based Complement. Alternat. Med.2019201911010.1155/2019/4589810 30881473
    [Google Scholar]
  99. MohamedW.S. MostafaA.M. MohamedK.M. SerwahA.H. Effects of fenugreek, Nigella, and termis seeds in nonalcoholic fatty liver in obese diabetic albino rats.Arab J. Gastroenterol.20151611910.1016/j.ajg.2014.12.003 25670619
    [Google Scholar]
  100. FanZ. WangC. YangT. GaoT. WangD. ZhaoX. GuoX. LiD. Coffee peel extracts ameliorate non-alcoholic fatty liver disease via a fibroblast growth factor 21–adiponectin signaling pathway.Food Funct.202213137251725910.1039/D2FO00081D 35723052
    [Google Scholar]
  101. SaltielA.R. KahnC.R. Insulin signalling and the regulation of glucose and lipid metabolism.Nature2001414686579980610.1038/414799a 11742412
    [Google Scholar]
  102. YoungrenJ.F. Regulation of insulin receptor function.Cell. Mol. Life Sci.2007647-887389110.1007/s00018‑007‑6359‑9 17347799
    [Google Scholar]
  103. BoucherJ. KleinriddersA. KahnC.R. Insulin receptor signaling in normal and insulin-resistant states.Cold Spring Harb. Perspect. Biol.201461a00919110.1101/cshperspect.a009191 24384568
    [Google Scholar]
  104. TaniguchiC.M. EmanuelliB. KahnC.R. Critical nodes in signalling pathways: insights into insulin action.Nat. Rev. Mol. Cell Biol.200672859610.1038/nrm1837 16493415
    [Google Scholar]
  105. HarrisT.E. LawrenceJ.C. JrT.O.R. Signaling.Sci. STKE20032003212re1510.1126/stke.2122003re15 14668532
    [Google Scholar]
  106. CohenP. FrameS. The renaissance of GSK3.Nat. Rev. Mol. Cell Biol.200121076977610.1038/35096075 11584304
    [Google Scholar]
  107. AcciliD. ArdenK.C. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation.Cell2004117442142610.1016/S0092‑8674(04)00452‑0 15137936
    [Google Scholar]
  108. SanoH. KaneS. SanoE. MîineaC.P. AsaraJ.M. LaneW.S. GarnerC.W. LienhardG.E. Insulin-stimulated phosphorylation of a Rab GTPase-activating protein regulates GLUT4 translocation.J. Biol. Chem.200327817145991460210.1074/jbc.C300063200 12637568
    [Google Scholar]
  109. HuangS. CzechM.P. The GLUT4 glucose transporter.Cell Metab.20075423725210.1016/j.cmet.2007.03.006 17403369
    [Google Scholar]
  110. ChenY. Lippincott-SchwartzJ. Selective visualization of GLUT4 storage vesicles and associated Rab proteins using IRAP-pHluorin.Methods Mol. Biol.2015129817317910.1007/978‑1‑4939‑2569‑8_14 25800841
    [Google Scholar]
  111. KhonsaryS. Guyton and Hall: Textbook of Medical Physiology.Surg. Neurol. Int.201781275[Internet]10.4103/sni.sni_327_17
    [Google Scholar]
  112. FainJ.N. MadanA.K. HilerM.L. CheemaP. BahouthS.W. Comparison of the release of adipokines by adipose tissue, adipose tissue matrix, and adipocytes from visceral and subcutaneous abdominal adipose tissues of obese humans.Endocrinology200414552273228210.1210/en.2003‑1336 14726444
    [Google Scholar]
  113. ShoelsonS.E. LeeJ. GoldfineA.B. Inflammation and insulin resistance.J. Clin. Invest.200611671793180110.1172/JCI29069 16823477
    [Google Scholar]
  114. PazK. HemiR. LeRoithD. KarasikA. ElhananyE. KanetyH. ZickY. A molecular basis for insulin resistance. Elevated serine/threonine phosphorylation of IRS-1 and IRS-2 inhibits their binding to the juxtamembrane region of the insulin receptor and impairs their ability to undergo insulin-induced tyrosine phosphorylation.J. Biol. Chem.199727247299112991810.1074/jbc.272.47.29911 9368067
    [Google Scholar]
  115. QiaoL. GoldbergJ.L. RussellJ.C. SunX.J. Identification of enhanced serine kinase activity in insulin resistance.J. Biol. Chem.199927415106251063210.1074/jbc.274.15.10625 10187859
    [Google Scholar]
  116. SongX. LichtiC.F. TownsendR.R. MuecklerM. Single point mutations result in the miss-sorting of Glut4 to a novel membrane compartment associated with stress granule proteins.PLoS One201387e6851610.1371/journal.pone.0068516 23874650
    [Google Scholar]
  117. AbeyrathnaP. SuY. The critical role of Akt in cardiovascular function.Vascul. Pharmacol.201574384810.1016/j.vph.2015.05.008 26025205
    [Google Scholar]
  118. Hwang. Differential regulation of the biosynthesis of glucose transporters by the PI3-K and MAPK pathways of insulin signaling by treatment with novel compounds from Liriope platyphylla.Int. J. Mol. Med.2011273[Internet]
    [Google Scholar]
  119. ViolletB. LantierL. Devin-LeclercJ. HebrardS. AmouyalC. MounierR. ForetzM. AndreelliF. Targeting the AMPK pathway for the treatment of Type 2 diabetes.Front. Biosci.2009Volume143380340010.2741/3460 19273282
    [Google Scholar]
  120. CoughlanK.A. ValentineR.J. RudermanN.B. SahaA.K. AMPK activation: a therapeutic target for type 2 diabetes?Diabetes Metab. Syndr. Obes.20147241253 25018645
    [Google Scholar]
  121. JoshiT. SinghA.K. HaratipourP. SahA.N. PandeyA.K. NaseriR. JuyalV. FarzaeiM.H. Targeting AMPK signaling pathway by natural products for treatment of diabetes mellitus and its complications.J. Cell. Physiol.201923410172121723110.1002/jcp.28528 30916407
    [Google Scholar]
  122. ZhangY. YangY. YanC. LiJ. ZhangP. LiuR. HeJ. ChangY. A review of the ethnopharmacology, phytochemistry and pharmacology of Cynanchum atratum.J. Ethnopharmacol.202228411474810.1016/j.jep.2021.114748 34662666
    [Google Scholar]
  123. StewartA.F. HussainM.A. García-OcañaA. VasavadaR.C. BhushanA. Bernal-MizrachiE. KulkarniR.N. Human β-cell proliferation and intracellular signaling: part 3.Diabetes20156461872188510.2337/db14‑1843 25999530
    [Google Scholar]
  124. Ben-OthmanN. VieiraA. CourtneyM. RecordF. GjernesE. AvolioF. HadzicB. DruelleN. NapolitanoT. Navarro-SanzS. SilvanoS. Al-HasaniK. PfeiferA. Lacas-GervaisS. LeuckxG. MarroquíL. ThévenetJ. MadsenO.D. EizirikD.L. HeimbergH. Kerr-ConteJ. PattouF. MansouriA. CollombatP. Long-term GABA administration induces alpha cell-mediated beta-like cell neogenesis.Cell20171681-27385.e1110.1016/j.cell.2016.11.002 27916274
    [Google Scholar]
  125. LiJ. CasteelsT. FrogneT. IngvorsenC. HonoréC. CourtneyM. HuberK.V.M. SchmitnerN. KimmelR.A. RomanovR.A. SturtzelC. LardeauC.H. KlughammerJ. FarlikM. SdelciS. VieiraA. AvolioF. BriandF. BaburinI. MájekP. PaulerF.M. PenzT. StukalovA. GridlingM. ParapaticsK. BarbieuxC. BerishviliE. SpittlerA. ColingeJ. BennettK.L. HeringS. SulpiceT. BockC. DistelM. HarkanyT. MeyerD. Superti-FurgaG. CollombatP. Hecksher-SørensenJ. KubicekS. Artemisinins Target GABAA Receptor Signaling and Impair α Cell Identity.Cell20171681-286100.e1510.1016/j.cell.2016.11.010 27916275
    [Google Scholar]
  126. KahnB.B. FlierJ.S. Obesity and insulin resistance.J. Clin. Invest.2000106447348110.1172/JCI10842 10953022
    [Google Scholar]
  127. MontagueC.T. FarooqiI.S. WhiteheadJ.P. SoosM.A. RauH. WarehamN.J. SewterC.P. DigbyJ.E. MohammedS.N. HurstJ.A. CheethamC.H. EarleyA.R. BarnettA.H. PrinsJ.B. O’RahillyS. Congenital leptin deficiency is associated with severe early-onset obesity in humans.Nature1997387663690390810.1038/43185 9202122
    [Google Scholar]
  128. MoonB. KwanJ.J.M. DuddyN. SweeneyG. BegumN. Resistin inhibits glucose uptake in L6 cells independently of changes in insulin signaling and GLUT4 translocation.Am. J. Physiol. Endocrinol. Metab.20032851E106E11510.1152/ajpendo.00457.2002 12618360
    [Google Scholar]
  129. MaciagT. MehlmanT. FrieselR. SchreiberA.B. Heparin binds endothelial cell growth factor, the principal endothelial cell mitogen in bovine brain.Science1984225466593293510.1126/science.6382607 6382607
    [Google Scholar]
  130. SancarG. LiuS. GasserE. AlvarezJ.G. MoutosC. KimK. van ZutphenT. WangY. HuddyT.F. RossB. DaiY. ZepedaD. CollinsB. TilleyE. KolarM.J. YuR.T. AtkinsA.R. van DijkT.H. SaghatelianA. JonkerJ.W. DownesM. EvansR.M. FGF1 and insulin control lipolysis by convergent pathways.Cell Metab.2022341171183.e610.1016/j.cmet.2021.12.004 34986332
    [Google Scholar]
  131. SuhJ.M. JonkerJ.W. AhmadianM. GoetzR. LackeyD. OsbornO. HuangZ. LiuW. YoshiharaE. van DijkT.H. HavingaR. FanW. YinY.Q. YuR.T. LiddleC. AtkinsA.R. OlefskyJ.M. MohammadiM. DownesM. EvansR.M. Endocrinization of FGF1 produces a neomorphic and potent insulin sensitizer.Nature2014513751843643910.1038/nature13540 25043058
    [Google Scholar]
  132. LinQ. HuangZ. CaiG. FanX. YanX. LiuZ. ZhaoZ. LiJ. LiJ. ShiH. KongM. ZhengM.H. ConklinD.J. EpsteinP.N. WintergerstK.A. MohammadiM. CaiL. LiX. LiY. TanY. Activating Adenosine Monophosphate–Activated Protein Kinase Mediates Fibroblast Growth Factor 1 Protection From Nonalcoholic Fatty Liver Disease in Mice.Hepatology20217362206222210.1002/hep.31568 32965675
    [Google Scholar]
  133. OrnitzD.M. ItohN. The Fibroblast Growth Factor signaling pathway.Wiley Interdiscip. Rev. Dev. Biol.20154321526610.1002/wdev.176 25772309
    [Google Scholar]
  134. YingL. WangL. GuoK. HouY. LiN. WangS. LiuX. ZhaoQ. ZhouJ. ZhaoL. NiuJ. ChenC. SongL. HouS. KongL. LiX. RenJ. LiP. MohammadiM. HuangZ. Paracrine FGFs target skeletal muscle to exert potent anti-hyperglycemic effects.Nat. Commun.2021121725610.1038/s41467‑021‑27584‑y 34907199
    [Google Scholar]
  135. ShapiroA.M.J. LakeyJ.R.T. RyanE.A. KorbuttG.S. TothE. WarnockG.L. KnetemanN.M. RajotteR.V. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen.N. Engl. J. Med.2000343423023810.1056/NEJM200007273430401 10911004
    [Google Scholar]
/content/journals/npj/10.2174/0122103155308948240528050738
Loading
/content/journals/npj/10.2174/0122103155308948240528050738
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test