Skip to content
2000
Volume 15, Issue 4
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

An important determinant of population health is the caliber and quality of food that can directly affect the health of the population. Herbs and spices are now the primary ingredients in the global food and nutraceutical industry. Traditional methods for extraction of active metabolites of herbs and spices may lead to lowered extraction efficiency due to high solvent consumption and a longer extraction period. These issues can be resolved by the use of novel green and sustainable extraction techniques. The present paper aims to discuss innovative extraction and identification techniques for herbs and spices. Microwave-aided extraction (MAE), ultrasound-assisted extraction (UAE), supercritical fluid extraction (SFE), DNA barcoding, THz-S, e-nose, near-infrared (NIR) spectroscopy, hyperspectral imaging, Raman spectroscopy possess environment-friendly instrumentations, make lesser use of chemicals, and reduce the consumption of solvent. The use of cutting-edge technology in place of outdated ones can improve product quality and help the general public maintain high levels of health.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155293641240417072907
2024-06-06
2025-03-30
Loading full text...

Full text loading...

References

  1. SinghP.A. BajwaN. BaldiA. Possible role of traditional systems of medicine to manage COVID-19: A review.Isr. J. Plant Sci.2021681-232810.1163/22238980‑bja10021
    [Google Scholar]
  2. EllebyC. DomínguezI.P. AdenauerM. GenoveseG. Impacts of the COVID-19 pandemic on the global agricultural markets.Environ. Resour. Econ.20207641067107910.1007/s10640‑020‑00473‑6 32836856
    [Google Scholar]
  3. GiacaloneD. WendinK. KremerS. FrøstM.B. BredieW.L.P. OlssonV. OttoM.H. SkjoldborgS. LindbergU. RisvikE. Health and quality of life in an aging population – Food and beyond.Food Qual. Prefer.20164716617010.1016/j.foodqual.2014.12.002
    [Google Scholar]
  4. SalarR.K. PurewalS.S. Improvement of DNA damage protection and antioxidant activity of biotransformed pearl millet (Pennisetum glaucum) cultivar PUSA-415 using Aspergillus oryzae MTCC 3107.Biocatal. Agric. Biotechnol.2016822122710.1016/j.bcab.2016.10.005
    [Google Scholar]
  5. Gurib-FakimA. Medicinal plants: Traditions of yesterday and drugs of tomorrow.Mol. Aspects Med.200627119310.1016/j.mam.2005.07.008 16105678
    [Google Scholar]
  6. PurewalS.S. KambojR. SandhuK.S. KaurP. SharmaK. KaurM. SalarR.K. PuniaS. SirohaA.K. Unraveling the effect of storage duration on antioxidant properties, physicochemical and sensorial parameters of ready to serve Kinnow-Amla beverages.Applied Food Research20222110005710.1016/j.afres.2022.100057
    [Google Scholar]
  7. PotterN.N. HotchkissJ.H. Characteristics of the Food Industry.Food Science.Springer Science & Business Media2012
    [Google Scholar]
  8. SenS. ChakrabortyR. Revival, modernization and integration of Indian traditional herbal medicine in clinical practice: Importance, challenges and future.J. Tradit. Complement. Med.20177223424410.1016/j.jtcme.2016.05.006 28417092
    [Google Scholar]
  9. FoxR. Food and Eating: An Anthropological Perspective.J. Soc. Issues20031
    [Google Scholar]
  10. BarthesR. Toward a Psychosociology of Contemporary Food Consumption.Food and Culture.Routledge201810.4324/9781315680347‑2
    [Google Scholar]
  11. BocciaF. PunzoG. Nutraceuticals: Some remarks by a choice experiment on food, health and new technologies.Food Res. Int.202013010888810888810.1016/j.foodres.2019.108888 32156347
    [Google Scholar]
  12. El-Saber BatihaG. Magdy BeshbishyA. GWasefL. Elewa, Y.H.A.; A Al-Sagan, A.; Abd El-Hack, M.E.; Taha, A.E.; M Abd-Elhakim, Y.; Prasad Devkota, H. Chemical Constituents and Pharmacological Activities of garlic (Allium sativum L.): A review.Nutrients202012387210.3390/nu12030872 32213941
    [Google Scholar]
  13. MukherjeeP.K. Quality Control and Evaluation of Herbal Drugs: Evaluating Natural Products and Traditional Medicine.Elsevier20191735
    [Google Scholar]
  14. GuZ.M. WangL-Q. WuJ. Mass defect filter-a new tool to expedite screening and dereplication of natural products and generate natural product profiles.Nat. Prod. J.20111213514510.2174/2210315511101020135
    [Google Scholar]
  15. D’AmoreG. Di VaioA. Balsalobre-LorenteD. BocciaF. Artificial intelligence in the water–energy–food model: A holistic approach towards sustainable development goals.Sustainability202214286710.3390/su14020867
    [Google Scholar]
  16. PurewalS.S. KaurP. GargG. SandhuK.S. SalarR.K. Antioxidant, anti-cancer, and debittering potential of edible fungi (Aspergillus oryzae) for bioactive ingredient in personalized foods.Biocatal. Agric. Biotechnol.20224310240610240610.1016/j.bcab.2022.102406
    [Google Scholar]
  17. Goldberg. Functional Foods: Designer Foods, Pharmafoods, Nutraceuticals Springer Science & Business Media2012
    [Google Scholar]
  18. WichchukitS. OztopM.H. McCarthyM.J. McCarthyK.L. Whey protein/alginate beads as carriers of a bioactive component.Food Hydrocoll.2013331667310.1016/j.foodhyd.2013.02.013
    [Google Scholar]
  19. GuptaC. PrakashD. GuptaS. Relationships between bioactive food components and their health benefits. In: Introduction to Functional Food Science Textbook20136685
    [Google Scholar]
  20. PlasekB. LaknerZ. KaszaG. TemesiÁ. Consumer evaluation of the role of functional food products in disease prevention and the characteristics of target groups.Nutrients20191216910.3390/nu12010069 31888009
    [Google Scholar]
  21. MajeedM. MajeedS. NagabhushanamK. GnanamaniM. MundkurL. Lesser Investigated Natural Ingredients for the Management of Obesity.Nutrients202113251010.3390/nu13020510 33557185
    [Google Scholar]
  22. ShiJ. NawazH. PohorlyJ. MittalG. KakudaY. JiangY. Extraction of polyphenolics from plant material for functional foods—engineering and technology.Food Rev. Int.200521113916610.1081/FRI‑200040606
    [Google Scholar]
  23. CorboM.R. BevilacquaA. PetruzziL. CasanovaF.P. SinigagliaM. Functional beverages: The emerging side of functional foods.Compr. Rev. Food Sci. Food Saf.20141361192120610.1111/1541‑4337.12109
    [Google Scholar]
  24. GranatoD. BrancoG.F. NazzaroF. CruzA.G. FariaJ.A.F. Functional foods and nondairy probiotic food development: Trends, concepts, and products.Compr. Rev. Food Sci. Food Saf.20109329230210.1111/j.1541‑4337.2010.00110.x 33467814
    [Google Scholar]
  25. GulK. SinghA.K. JabeenR. Nutraceuticals and functional foods: The foods for the future world.Crit. Rev. Food Sci. Nutr.201656162617262710.1080/10408398.2014.903384 25629711
    [Google Scholar]
  26. GilaniA.H. Atta-ur-Rahman, Trends in ethnopharmacology.J. Ethnopharmacol.20051001-2434910.1016/j.jep.2005.06.001 16127805
    [Google Scholar]
  27. JoensuuH. TrentJ.C. ReichardtP. Practical management of tyrosine kinase inhibitor-associated side effects in GIST.Cancer Treat. Rev.2011371758810.1016/j.ctrv.2010.04.008 20570050
    [Google Scholar]
  28. GutiérrezT.J. Surface and nutraceutical properties of edible films made from starchy sources with and without added blackberry pulp.Carbohydr. Polym.201716516917910.1016/j.carbpol.2017.02.016 28363537
    [Google Scholar]
  29. SalamiA. SeydiE. PourahmadJ. Use of nutraceuticals for prevention and treatment of cancer.Iran. J. Pharm. Res.2013123219220 24250626
    [Google Scholar]
  30. BernalJ. MendiolaJ.A. IbáñezE. CifuentesA. Advanced analysis of nutraceuticals.J. Pharm. Biomed. Anal.201155475877410.1016/j.jpba.2010.11.033 21168989
    [Google Scholar]
  31. SantiniA. NovellinoE. Nutraceuticals: Beyond the diet before the drugs.Curr. Bioact. Compd.201410111210.2174/157340721001140724145924
    [Google Scholar]
  32. FloegelA. KimD.O. ChungS.J. KooS.I. ChunO.K. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods.J. Food Compos. Anal.20112471043104810.1016/j.jfca.2011.01.008
    [Google Scholar]
  33. SrinivasanK. Role of spices beyond food flavoring: Nutraceuticals with multiple health effects.Food Rev. Int.200521216718810.1081/FRI‑200051872
    [Google Scholar]
  34. DonaghyJ.A. DanylukM.D. RossT. KrishnaB. FarberJ. Big data impacting dynamic food safety risk management in the food chain.Front. Microbiol.20211266819610.3389/fmicb.2021.668196 34093486
    [Google Scholar]
  35. BentonT.G. Using scenario analyses to address the future of food.EFSA J.201917Suppl. 1e17070310.2903/j.efsa.2019.e170703 32626440
    [Google Scholar]
  36. SzékácsA. WilkinsonM.G. MaderA. AppelB. Environmental and food safety of spices and herbs along global food chains.Food Control2018831610.1016/j.foodcont.2017.06.033
    [Google Scholar]
  37. IvanišováE. KačániováM. SavitskayaA. Medicinal herbs: Important source of bioactive compounds for food industry.Herbs and Spices - New Processing Technologies.IntechOpen2021
    [Google Scholar]
  38. HerreroM. ThorntonP.K. Mason-D’CrozD. PalmerJ. BodirskyB.L. PradhanP. BarrettC.B. BentonT.G. HallA. PikaarI. BogardJ.R. BonnettG.D. BryanB.A. CampbellB.M. ChristensenS. ClarkM. FanzoJ. GoddeC.M. JarvisA. LoboguerreroA.M. MathysA. McIntyreC.L. NaylorR.L. NelsonR. ObersteinerM. ParodiA. PoppA. RickettsK. SmithP. ValinH. VermeulenS.J. VervoortJ. van WijkM. van ZantenH.H.E. WestP.C. WoodS.A. RockströmJ. Articulating the effect of food systems innovation on the Sustainable Development Goals.Lancet Planet. Health202151e50e6210.1016/S2542‑5196(20)30277‑1 33306994
    [Google Scholar]
  39. GiuseppeE. MonicaS. GianFranco, G. Science for Food Safety, Security and Quality: A Review - Part 2. Quality of Life (Banja Luka) -.Apeiron20101110.7251/QOL1001041G
    [Google Scholar]
  40. YuJ. WuX. LiuC. NewmasterS. RagupathyS. KressW.J. Progress in the use of DNA barcodes in the identification and classification of medicinal plants.Ecotoxicol. Environ. Saf.202120811169111169110.1016/j.ecoenv.2020.111691 33396023
    [Google Scholar]
  41. OparaE. ChohanM. Culinary herbs and spices: their bioactive properties, the contribution of polyphenols and the challenges in deducing their true health benefits.Int. J. Mol. Sci.20141510191831920210.3390/ijms151019183 25340982
    [Google Scholar]
  42. ChoH.D. SuhJ.H. FengS. EomT. KimJ. HyunS.M. KimJ. WangY. HanS.B. Comprehensive analysis of multi-class mycotoxins in twenty different species of functional and medicinal herbs using liquid chromatography–tandem mass spectrometry.Food Control20199651752610.1016/j.foodcont.2018.10.007
    [Google Scholar]
  43. DormanH.J.D. SuraiP. DeansS.G. In vitro antioxidant activity of a number of plant essential oils and phytoconstituents.J. Essent. Oil Res.200012224124810.1080/10412905.2000.9699508
    [Google Scholar]
  44. SalgueiroL. MartinsA.P. CorreiaH. Raw materials: the importance of quality and safety. A review.Flavour Fragrance J.201025525327110.1002/ffj.1973
    [Google Scholar]
  45. CardellinaJ.H.II Challenges and opportunities confronting the botanical dietary supplement industry.J. Nat. Prod.20026571073108410.1021/np0200515 12141880
    [Google Scholar]
  46. BonnetP. JolyA. GoëauH. ChampJ. VignauC. MolinoJ.F. BarthélémyD. BoujemaaN. Plant identification: man vs. machine.Multimedia Tools Appl.20167531647166510.1007/s11042‑015‑2607‑4
    [Google Scholar]
  47. ThavamoneyN. SivanadianL. TeeL.H. KhooH.E. PrasadK.N. KongK.W. Extraction and recovery of phytochemical components and antioxidative properties in fruit parts of Dacryodes rostrata influenced by different solvents.J. Food Sci. Technol.20185572523253210.1007/s13197‑018‑3170‑6 30042568
    [Google Scholar]
  48. RahmanM. HossainS. RahamanA. FatimaN. NaharT. UddinB. BasuniaM.A. Antioxidant activity of centellaasiatica (linn.) urban: Impact of extraction solvent polarity.J. Pharmacogn. Phytochem.2013162732
    [Google Scholar]
  49. TrandafirI. CosmulescuS. NourV. Phenolic profile and antioxidant capacity of walnut extract as influenced by the extraction method and solvent.Int. J. Food Eng.20171312015028410.1515/ijfe‑2015‑0284
    [Google Scholar]
  50. OsmanA.G. RamanV. HaiderS. AliZ. ChittiboyinaA.G. KhanI.A. Overview of analytical tools for the identification of adulterants in commonly traded herbs and spices.J. AOAC Int.2019102237638510.5740/jaoacint.18‑0389 30646970
    [Google Scholar]
  51. HildrethJ. Hrabeta-RobinsonE. ApplequistW. BetzJ. MillerJ. Standard operating procedure for the collection and preparation of voucher plant specimens for use in the nutraceutical industry.Anal. Bioanal. Chem.20073891131710.1007/s00216‑007‑1405‑x 17572883
    [Google Scholar]
  52. HayouniE. AbedrabbaM. BouixM. HamdiM. The effects of solvents and extraction method on the phenolic contents and biological activities in vitro of Tunisian Quercus coccifera L. and] Juniperus phoenicea L. fruit extracts.Food Chem.200710531126113410.1016/j.foodchem.2007.02.010
    [Google Scholar]
  53. Fotsing Yannick StéphaneF. Kezetas Jean JulesB. El-Saber BatihaG. AliI. Ndjakou BrunoL. Extraction of Bioactive Compounds from Medicinal Plants and Herbs. Natural Medicinal Plants.IntechOpen202210.5772/intechopen.98602
    [Google Scholar]
  54. GuimarãesR. BarrosL. DueñasM. CalhelhaR.C. CarvalhoA.M. Santos-BuelgaC. QueirozM.J.R.P. FerreiraI.C.F.R. Infusion and decoction of wild German chamomile: Bioactivity and characterization of organic acids and phenolic compounds.Food Chem.2013136294795410.1016/j.foodchem.2012.09.007 23122148
    [Google Scholar]
  55. EvansD.E. ColemanJ.O.D. KearnsA. An introduction to plant cell and tissue culture. Plant Cell Culture.Taylor & Francis20201510.1201/9781003076940‑1
    [Google Scholar]
  56. FarzanehV. CarvalhoI.S. A review of the health benefit potentials of herbal plant infusions and their mechanism of actions.Ind. Crops Prod.20156524725810.1016/j.indcrop.2014.10.057
    [Google Scholar]
  57. ThakurR. JainN. PathakR. SandhuS.S. Practices in wound healing studies of plants.Evid. Based Complement. Alternat. Med.2011201111710.1155/2011/438056 21716711
    [Google Scholar]
  58. LiuW. LiuC. YuJ. ZhangY. LiJ. ChenY. ZhengL. Discrimination of geographical origin of extra virgin olive oils using terahertz spectroscopy combined with chemometrics.Food Chem.2018251869210.1016/j.foodchem.2018.01.081 29426428
    [Google Scholar]
  59. ZhangQ. WangC. MaY. ZhuE. WangZ. UPLC‐ESI/MS determination of 17 active constituents in two categorized formulas of traditional Chinese medicine, Sanhuang Xiexin Tang and Fuzi Xiexin Tang: Application in comparing the differences in decoctions and macerations.Biomed. Chromatogr.20132781079108810.1002/bmc.2910 23629873
    [Google Scholar]
  60. JovanovićA.A. ĐorđevićV.B. ZdunićG.M. PljevljakušićD.S. ŠavikinK.P. GođevacD.M. BugarskiB.M. Optimization of the extraction process of polyphenols from Thymus serpyllum L. herb using maceration, heat- and ultrasound-assisted techniques.Separ. Purif. Tech.201717936938010.1016/j.seppur.2017.01.055
    [Google Scholar]
  61. MorataC. GonzálezW. TesfayeI. LoiraJ.A. Maceration and Fermentation: New technologies to increase extraction.Red wine tech20193549
    [Google Scholar]
  62. ĆujićN. ŠavikinK. JankovićT. PljevljakušićD. ZdunićG. IbrićS. Optimization of polyphenols extraction from dried chokeberry using maceration as traditional technique.Food Chem.201619413514210.1016/j.foodchem.2015.08.008 26471536
    [Google Scholar]
  63. AlbuquerqueB.R. PrietoM.A. BarreiroM.F. RodriguesA. CurranT.P. BarrosL. FerreiraI.C.F.R. Catechin-based extract optimization obtained from Arbutus unedo L. fruits using maceration/microwave/ultrasound extraction techniques.Ind. Crops Prod.20179540441510.1016/j.indcrop.2016.10.050
    [Google Scholar]
  64. AvramA. StoicaT. DobreM. Extraction of vegetable oils from ground seeds by percolation techniques.UPB Scientific Bulletin, Series B20147621322
    [Google Scholar]
  65. AzwanidaN.N. A review on the extraction methods use in medicinal plants, principle, strength and limitation.Med. Aromat. Plants201541610.4172/2167‑0412.1000196
    [Google Scholar]
  66. ZhangH. WangW. FuZ.M. HanC.C. SongY. Study on comparison of extracting fucoxanthin from undaria pinnatifida with percolation extraction and refluxing methods.Zhongguo Shipin Tianjiaji201499195
    [Google Scholar]
  67. ManirakizaP. CovaciA. SchepensP. Comparative study on total lipid determination using soxhlet, roese-gottlieb, bligh & dyer, and modified bligh & dyer extraction methods.J. Food Compos. Anal.20011419310010.1006/jfca.2000.0972
    [Google Scholar]
  68. HawthorneS.B. GrabanskiC.B. MartinE. MillerD.J. Comparisons of Soxhlet extraction, pressurized liquid extraction, supercritical fluid extraction and subcritical water extraction for environmental solids: recovery, selectivity and effects on sample matrix.J. Chromatogr. A20008921-242143310.1016/S0021‑9673(00)00091‑1 11045502
    [Google Scholar]
  69. López-BascónM.A. De CastroM.L. Liquid-Phase Extraction.Soxhlet extraction2020327354
    [Google Scholar]
  70. TandonS. RaneS. Decoction and Hot Continuous Extraction Techniques.Extraction technologies for medicinal and aromatic plants.Lucknow, IndiaCentral Institute of Medicinal and Aromatic Plants2008
    [Google Scholar]
  71. WeiG.W. YangX.J. WangX.X. HuL. The study on optimization of soxhlet extraction process for ursolic acid from cynomorium.Shipin Yanjiu Yu Kaifa20133478588
    [Google Scholar]
  72. KasiramarG. Significant role of soxhlet extraction process in phytochemical research.Mintage J. Pharm. Med. Sci.201874347
    [Google Scholar]
  73. BolonkinA. FriedlanderJ. NeumannS. Innovative unconventional oil extraction technologies.Fuel Process. Technol.201412422824210.1016/j.fuproc.2014.01.024
    [Google Scholar]
  74. GalloM. FerracaneR. GrazianiG. RitieniA. FoglianoV. Microwave assisted extraction of phenolic compounds from four different spices.Molecules20101596365637410.3390/molecules15096365 20877228
    [Google Scholar]
  75. UpadhyayR. RamalakshmiK. Jagan Mohan RaoL. Microwave-assisted extraction of chlorogenic acids from green coffee beans.Food Chem.2012130118418810.1016/j.foodchem.2011.06.057
    [Google Scholar]
  76. WeiQ. GuiZ. QiuX.U. FeiJ.I. Microwave-assisted extraction and antioxidant activities in vitro of polysaccharides from cercischinensis bunge flowers.Shipin Kexue2015363944
    [Google Scholar]
  77. AkhtarI. JavadS. AnsariM. GhaffarN. TariqA. Process optimization for microwave assisted extraction of Foeniculum vulgare Mill using response surface methodology.J. King Saud Univ. Sci.20203221451145810.1016/j.jksus.2019.11.041
    [Google Scholar]
  78. JafariS.M. Mahdavee KhazaeiK. AssadpourE. Production of a natural color through microwave‐assisted extraction of saffron tepal’s anthocyanins.Food Sci. Nutr.2019741438144510.1002/fsn3.978 31024717
    [Google Scholar]
  79. BonominiT. GóesJ. MachadoM. SilvaR. MalheirosA. Development and optimization of a microwave-assisted extraction of plumieride from Allamanda cathartica L. flowers.Quim. Nova201741110.21577/0100‑4042.20170153
    [Google Scholar]
  80. JusohY.M.M. IdrisA.A. KhairuddinN. ZaidelD.N.A. HashimZ. MahmoodaN.A.N. Effect of solvent PH, microwave power and extraction time on microwave-assisted extraction of hibiscus rosa-sinensis.Chem. Eng. Trans.201863541546
    [Google Scholar]
  81. SinghA. SaballyK. KubowS. DonnellyD.J. GariepyY. OrsatV. RaghavanG.S.V. Microwave-assisted extraction of phenolic antioxidants from potato peels.Molecules20111632218223210.3390/molecules16032218 21383659
    [Google Scholar]
  82. LovrićV. PutnikP. Bursać KovačevićD. JukićM. Dragović-UzelacV. The effect of microwave-assisted extraction on the phenolic compounds and antioxidant capacity of blackthorn flowers.Food Technol. Biotechnol.201755224325010.17113/ftb.55.02.17.4687 28867955
    [Google Scholar]
  83. AllafT. TomaoV. RuizK. ChematF. Instant controlled pressure drop technology and ultrasound assisted extraction for sequential extraction of essential oil and antioxidants.Ultrason. Sonochem.201320123924610.1016/j.ultsonch.2012.05.013 22742902
    [Google Scholar]
  84. DhobiV. MandalS. Optimization of microwave assisted extraction of bioactive flavonolignan-silybinin.J. Chem. Metrol.2009311323
    [Google Scholar]
  85. ChematF. Zill-e-Huma; Khan, M.K. Applications of ultrasound in food technology: Processing, preservation and extraction.Ultrason. Sonochem.201118481383510.1016/j.ultsonch.2010.11.023 21216174
    [Google Scholar]
  86. FathimahR.N. SetyaningsihW. CarreraC. PalmaM. Microwave-assisted extraction of phenolics from hibiscus sabdariffa flowers: Method development and validation.Proceedings202070151
    [Google Scholar]
  87. ZenginG. CvetanovićA. GašićU. StuparA. BulutG. SenkardesI. DoganA. Seebaluck-SandoramR. RengasamyK.R.R. SinanK.I. MahomoodallyM.F. Chemical composition and bio-functional perspectives of Erica arborea L. extracts obtained by different extraction techniques: Innovative insights.Ind. Crops Prod.201914211184311184310.1016/j.indcrop.2019.111843
    [Google Scholar]
  88. BhadoriyaS. TiwariM. MouryaS. Microwave-assisted extraction of flavonoids from zanthoxylumbudrunga W. optimization of extraction process.Asian J. Pharm. Sci.2011118186
    [Google Scholar]
  89. ChenX. Liu; Jiang; Zeng, Microwave-assisted extraction of polysaccharides from solanum nigrum.J. Cent. South Univ. Technol.200512555656010.1007/s11771‑005‑0122‑x
    [Google Scholar]
  90. XiaoW. HanL. ShiB. Microwave-assisted extraction of flavonoids from Radix Astragali.Separ. Purif. Tech.200862361461810.1016/j.seppur.2008.03.025
    [Google Scholar]
  91. SunY. LiaoX. WangZ. HuX. ChenF. Optimization of microwave-assisted extraction of anthocyanins in red raspberries and identification of anthocyanin of extracts using high-performance liquid chromatography – mass spectrometry.Eur. Food Res. Technol.20072253-451152310.1007/s00217‑006‑0447‑1
    [Google Scholar]
  92. YanM.M. LiuW. FuY.J. ZuY.G. ChenC.Y. LuoM. Optimisation of the microwave-assisted extraction process for four main astragalosides in Radix Astragali.Food Chem.201011941663167010.1016/j.foodchem.2009.09.021
    [Google Scholar]
  93. ZhangB. YangR. LiuC.Z. Microwave-assisted extraction of chlorogenic acid from flower buds of Lonicera japonica Thunb.Separ. Purif. Tech.200862248048310.1016/j.seppur.2008.02.013
    [Google Scholar]
  94. LeiZ. JinpingZ. Optimization of microwave-assisted extraction of polysaccharides in the flower of platycodon grandiflorum by response surface methodology.Int. J. Agric. Biol. Eng.2009226574
    [Google Scholar]
  95. AdhamiS. FarooqiH. AbdinM.Z. PrasadR. MalikA.A. Chemical Profiling of Chlorophytum comosum (Thunb.) Jaques by GC-MS/LC-ESIMS and its Antiproliferative Effects on Human Carcinoma Cell Lines.Anticancer. Agents Med. Chem.202121131697170710.2174/1871520620666201123085300 33231161
    [Google Scholar]
  96. RzhepakovskyI.V. AreshidzeD.A. AvanesyanS.S. GrimmW.D. FilatovaN.V. KalininA.V. KocherginS.G. KozlovaM.A. KurchenkoV.P. SizonenkoM.N. TerentievA.A. TimchenkoL.D. TrigubM.M. NagdalianA.A. PiskovS.I. Phytochemical characterization, antioxidant activity, and cytotoxicity of methanolic leaf extract of chlorophytum comosum (Green Type) (Thunb.) Jacq.Molecules202227376210.3390/molecules27030762 35164026
    [Google Scholar]
  97. AzmirJ. ZaidulI.S.M. RahmanM.M. SharifK.M. MohamedA. SahenaF. JahurulM.H.A. GhafoorK. NorulainiN.A.N. OmarA.K.M. Techniques for extraction of bioactive compounds from plant materials: A review.J. Food Eng.2013117442643610.1016/j.jfoodeng.2013.01.014
    [Google Scholar]
  98. CravottoG. BinelloA. Low-Frequency, High-Power Ultrasound-Assisted Food Component Extraction. Innovative Food Processing Technologies.Elsevier201632910.1016/B978‑0‑08‑100294‑0.00001‑8
    [Google Scholar]
  99. VilkhuK. MawsonR. SimonsL. BatesD. Applications and opportunities for ultrasound assisted extraction in the food industry — A review.Innov. Food Sci. Emerg. Technol.20089216116910.1016/j.ifset.2007.04.014
    [Google Scholar]
  100. AmeerK. ShahbazH.M. KwonJ.H. Green extraction methods for polyphenols from plant matrices and their byproducts: A review.Compr. Rev. Food Sci. Food Saf.201716229531510.1111/1541‑4337.12253 33371540
    [Google Scholar]
  101. HerreroM. Sánchez-CamargoA.P. CifuentesA. IbáñezE. Plants, seaweeds, microalgae and food by-products as natural sources of functional ingredients obtained using pressurized liquid extraction and supercritical fluid extraction.Trends Analyt. Chem.201571263810.1016/j.trac.2015.01.018
    [Google Scholar]
  102. HoffR.B. PizzolatoT.M. Combining extraction and purification steps in sample preparation for environmental matrices: A review of matrix solid phase dispersion (MSPD) and pressurized liquid extraction (PLE) applications.Trends Analyt. Chem.2018109839610.1016/j.trac.2018.10.002
    [Google Scholar]
  103. LuoJ. LiangZ. YangX. Comparative study on extraction of febrifugine from traditional chinese medicine dichroa febrifuga by reflux method and ultrasonic method.Shizhen Guo Yi Guo Yao201526615321533
    [Google Scholar]
  104. Medina-TorresN. Ayora-TalaveraT. Espinosa-AndrewsH. Sánchez-ContrerasA. PachecoN. Ultrasound assisted extraction for the recovery of phenolic compounds from vegetable sources.Agronomy 2017734710.3390/agronomy7030047
    [Google Scholar]
  105. GadjalovaA.V. MihaylovaD.S. Ultrasound-assisted extraction of medicinal plants and evaluation of their biological activity.Food Res.20193553053610.26656/fr.2017.3(5).128
    [Google Scholar]
  106. RautP. BhosleD. JanghelA. DeoS. VermaC. KumarS.S. AgrawalM. AmitN. SharmaM. GiriT. TripathiD.K. Ajazuddin; Alexander, A. Emerging pressurized liquid extraction (PLE) techniques as an innovative green technologies for the effective extraction of the active phytopharmaceuticals.Res J Pharm Technol20158680010.5958/0974‑360X.2015.00129.8
    [Google Scholar]
  107. AliakbarianB. FathiA. PeregoP. DehghaniF. Extraction of antioxidants from winery wastes using subcritical water.J. Supercrit. Fluids201265182410.1016/j.supflu.2012.02.022
    [Google Scholar]
  108. EssienS.O. YoungB. BaroutianS. Recent advances in subcritical water and supercritical carbon dioxide extraction of bioactive compounds from plant materials.Trends Food Sci. Technol.20209715616910.1016/j.tifs.2020.01.014
    [Google Scholar]
  109. GizirA.M. TurkerN. ArtuvanE. Pressurized acidified water extraction of black carrot (Daucus carota ssp. sativus var. atrorubens Alef.) anthocyanins.Eur. Food Res. Technol.2008226336337010.1007/s00217‑006‑0546‑z
    [Google Scholar]
  110. Perez-VazquezA. CarpenaM. BarcielaP. CassaniL. Simal-GandaraJ. PrietoM.A. Pressurized liquid extraction for the recovery of bioactive compounds from seaweeds for food industry application: A review.Antioxidants202312361210.3390/antiox12030612 36978860
    [Google Scholar]
  111. BhusnureO.G. GholveS.B. GiramP.S. BorsureV.S. JadhavP.P. SatputeV.V. SangshettiJ.N. Importance of supercritical fluid extraction techniques in pharmaceutical industry: A review.Int. J. Pharm. Sci. Res.2015537853801
    [Google Scholar]
  112. SowbhagyaH.B. ChitraV.N. Enzyme-assisted extraction of flavorings and colorants from plant materials.Crit. Rev. Food Sci. Nutr.201050214616110.1080/10408390802248775 20112157
    [Google Scholar]
  113. RadovanovićK. GavarićN. Švarc-GajićJ. Brezo-BorjanT. ZlatkovićB. LončarB. AćimovićM. Subcritical water extraction as an effective technique for the isolation of phenolic compounds of achillea species.Processes20221118610.3390/pr11010086
    [Google Scholar]
  114. ArumughamT.K.R. HasanS.W. ShowP.L. RinklebeJ. BanatF. Supercritical carbon dioxide extraction of plant phytochemicals for biological and environmental applications – A review.Chemosphere202127112952510.1016/j.chemosphere.2020.129525 33445028
    [Google Scholar]
  115. Conde-HernándezL.A. Espinosa-VictoriaJ.R. TrejoA. Guerrero-BeltránJ.Á. CO2 -supercritical extraction, hydrodistillation and steam distillation of essential oil of rosemary (Rosmarinus officinalis).J. Food Eng.2017200818610.1016/j.jfoodeng.2016.12.022
    [Google Scholar]
  116. KhooK.S. OoiC.W. ChewK.W. FooS.C. LimJ.W. TaoY. JiangN. HoS.H. ShowP.L. Permeabilization of Haematococcus pluvialis and solid-liquid extraction of astaxanthin by CO2-based alkyl carbamate ionic liquids.Chem. Eng. J.202141112851012851010.1016/j.cej.2021.128510
    [Google Scholar]
  117. KhooK.S. OoiC.W. ChewK.W. ChiaS.R. FooS.C. NgH.S. ShowP.L. Extraction of fucoxanthin from Chaetoceros calcitrans by electropermeabilization-assisted liquid biphasic flotation system.J. Chromatogr. A2022166846291546291510.1016/j.chroma.2022.462915 35259646
    [Google Scholar]
  118. FalcãoM.A. ScopelR. AlmeidaR.N. do Espirito SantoA.T. FranceschiniG. GarcezJ.J. VargasR.M.F. CasselE. Supercritical fluid extraction of vinblastine from Catharanthus roseus.J. Supercrit. Fluids201712991510.1016/j.supflu.2017.03.018
    [Google Scholar]
  119. PuriM. SharmaD. BarrowC.J. Enzyme-assisted extraction of bioactives from plants.Trends Biotechnol.2012301374410.1016/j.tibtech.2011.06.014 21816495
    [Google Scholar]
  120. MarićM. GrassinoA.N. ZhuZ. BarbaF.J. BrnčićM. Rimac BrnčićS. An overview of the traditional and innovative approaches for pectin extraction from plant food wastes and by-products: Ultrasound-, microwaves-, and enzyme-assisted extraction.Trends Food Sci. Technol.201876283710.1016/j.tifs.2018.03.022
    [Google Scholar]
  121. NadarS.S. RaoP. RathodV.K. Enzyme assisted extraction of biomolecules as an approach to novel extraction technology: A review.Food Res. Int.201810830933010.1016/j.foodres.2018.03.006 29735063
    [Google Scholar]
  122. MounirS. HalleD. AllafK. Characterization of pure cheese snacks and expanded granule powders textured by the instant controlled pressure drop (DIC) process.Dairy Sci. Technol.201191444145510.1007/s13594‑011‑0023‑8
    [Google Scholar]
  123. ChenH. ZhouX. ZhangJ. Optimization of enzyme assisted extraction of polysaccharides from Astragalus membranaceus.Carbohydr. Polym.201411156757510.1016/j.carbpol.2014.05.033 25037388
    [Google Scholar]
  124. MkaouarS. BahloulN. GelicusA. AllafK. KechaouN. Instant controlled pressure drop texturing for intensifying ethanol solvent extraction of olive (Olea europaea) leaf polyphenols.Separ. Purif. Tech.201514513914610.1016/j.seppur.2015.03.014
    [Google Scholar]
  125. LyuJ. BiJ. WangF. JinX. WuX. XieJ. Recent developments and trends of instant controlled pressure drop drying-a review.Dry. Technol.202139111704171910.1080/07373937.2021.1916753
    [Google Scholar]
  126. ZhuK.X. SunX.H. ChenZ.C. PengW. QianH.F. ZhouH.M. Comparison of functional properties and secondary structures of defatted wheat germ proteins separated by reverse micelles and alkaline extraction and isoelectric precipitation.Food Chem.201012341163116910.1016/j.foodchem.2010.05.081
    [Google Scholar]
  127. ZhaoX. ZhuH. ZhangB. ChenJ. AoQ. WangX. XRD, SEM, and XPS analysis of soybean protein powders obtained through extraction involving reverse micelles.J. Am. Oil Chem. Soc.201592797598310.1007/s11746‑015‑2657‑9
    [Google Scholar]
  128. SunX. BandaraN. Applications of reverse micelles technique in food science: A comprehensive review.Trends Food Sci. Technol.20199110611510.1016/j.tifs.2019.07.001
    [Google Scholar]
  129. KhanB.M. CheongK.L. LiuY. ATPS: “Aqueous two-phase system” as the “answer to protein separation” for protein-processing food industry.Crit. Rev. Food Sci. Nutr.201959193165317810.1080/10408398.2018.1486283 29883189
    [Google Scholar]
  130. SongG. SunC. HuY. WangC. XiaC. TuM. ZhangE. ShowP.L. SunF. Construction of anhydrous two-step organosolv pretreatment of lignocellulosic biomass for efficient lignin membrane-extraction and solvent recovery.Journal of Physics: Energy20235101401510.1088/2515‑7655/acacc7
    [Google Scholar]
  131. RawdkuenS. PintathongP. ChaiwutP. BenjakulS. The partitioning of protease from Calotropis procera latex by aqueous two-phase systems and its hydrolytic pattern on muscle proteins.Food Bioprod. Process.2011891738010.1016/j.fbp.2010.02.001
    [Google Scholar]
  132. ZhangW. LiuX. FanH. ZhuD. WuX. HuangX. TangJ. Separation and purification of alkaloids from Sophora flavescens Ait. by focused microwave-assisted aqueous two-phase extraction coupled with reversed micellar extraction.Ind. Crops Prod.20168623123810.1016/j.indcrop.2016.03.052
    [Google Scholar]
  133. Mat AronN.S. ChewK.W. MaZ. TaoY. SriariyanunM. TanI.S. MạnhC.N. XiaA. KurniawanT.A. ShowP.L. Lipid recovery from microalgae biomass using sugaring-out extraction in liquid biphasic flotation system.Fermentation20239319810.3390/fermentation9030198
    [Google Scholar]
  134. ParniakovO. BarbaF.J. GrimiN. LebovkaN. VorobievE. Extraction assisted by pulsed electric energy as a potential tool for green and sustainable recovery of nutritionally valuable compounds from mango peels.Food Chem.201619284284810.1016/j.foodchem.2015.07.096 26304419
    [Google Scholar]
  135. IqbalM. TaoY. XieS. ZhuY. ChenD. WangX. HuangL. PengD. SattarA. ShabbirM.A.B. HussainH.I. AhmedS. YuanZ. Aqueous two-phase system (ATPS): An overview and advances in its applications.Biol. Proced. Online20161811810.1186/s12575‑016‑0048‑8 27807400
    [Google Scholar]
  136. PojićM. MišanA. TiwariB. Eco-innovative technologies for extraction of proteins for human consumption from renewable protein sources of plant origin.Trends Food Sci. Technol.2018759310410.1016/j.tifs.2018.03.010
    [Google Scholar]
  137. De la Peña-ArmadaR. Villanueva-SuárezM.J. RupérezP. Mateos-AparicioI. High hydrostatic pressure assisted by celluclast® releases oligosaccharides from apple by-product.Foods202098105810.3390/foods9081058 32764249
    [Google Scholar]
  138. FengC.H. OtaniC. Terahertz spectroscopy technology as an innovative technique for food: Current state-of-the-Art research advances.Crit. Rev. Food Sci. Nutr.202161152523254310.1080/10408398.2020.1779649 32584169
    [Google Scholar]
  139. HouJ. HeS. LingM. LiW. DongR. PanY. ZhengY. A method of extracting ginsenosides from Panax ginseng by pulsed electric field.J. Sep. Sci.20103317-182707271310.1002/jssc.201000033 20715136
    [Google Scholar]
  140. BourasM. GrimiN. BalsO. VorobievE. Impact of pulsed electric fields on polyphenols extraction from Norway spruce bark.Ind. Crops Prod.201680505810.1016/j.indcrop.2015.10.051
    [Google Scholar]
  141. OkurI. NamlıS. OztopM.H. AlpasH. High-Pressure-Assisted Extraction of Phenolic Compounds from Olive Leaves: optimization and Comparison with Conventional Extraction.ACS Food Science & Technology20233116116910.1021/acsfoodscitech.2c00346
    [Google Scholar]
  142. WangK. SunD.W. PuH. Emerging non-destructive terahertz spectroscopic imaging technique: Principle and applications in the agri-food industry.Trends Food Sci. Technol.2017679310510.1016/j.tifs.2017.06.001
    [Google Scholar]
  143. YangX. ZhaoX. YangK. LiuY. LiuY. FuW. LuoY. Biomedical applications of terahertz spectroscopy and imaging.Trends Biotechnol.2016341081082410.1016/j.tibtech.2016.04.008 27207226
    [Google Scholar]
  144. DanlamiJ.M. ArsadA. Ahmad ZainiM.A. SulaimanH. A comparative study of various oil extraction techniques from plants.Rev. Chem. Eng.201430610.1515/revce‑2013‑0038
    [Google Scholar]
  145. DobrinčićA. RepajićM. GarofulićI.E. TuđenL. Dragović-UzelacV. LevajB. Comparison of different extraction methods for the recovery of olive leaves polyphenols.Processes (Basel)202089100810.3390/pr8091008
    [Google Scholar]
  146. ChengY. XueF. YuS. DuS. YangY. Subcritical Water Extraction of Natural Products.Molecules20212613400410.3390/molecules26134004 34209151
    [Google Scholar]
  147. HebertP.D.N. CywinskaA. BallS.L. deWaardJ.R. Biological identifications through DNA barcodes.Proc. Biol. Sci.2003270151231332110.1098/rspb.2002.2218 12614582
    [Google Scholar]
  148. HebertP.D.N. GregoryT.R. The promise of DNA barcoding for taxonomy.Syst. Biol.200554585285910.1080/10635150500354886 16243770
    [Google Scholar]
  149. SriramaR. Santhosh KumarJ.U. SeethapathyG.S. NewmasterS.G. RagupathyS. GaneshaiahK.N. Uma ShaankerR. RavikanthG. Species Adulteration in the Herbal Trade: Causes, Consequences and Mitigation.Drug Saf.201740865166110.1007/s40264‑017‑0527‑0 28389979
    [Google Scholar]
  150. ParkS.Y. KimY. KimT. EomT.H. KimS.Y. JangH.W. Chemoresistive materials for electronic nose: Progress, perspectives, and challenges.InfoMat20191328931610.1002/inf2.12029
    [Google Scholar]
  151. MarcoS. Gutiérrez-GálvezA. LansnerA. MartinezD. RosparsJ.P. BeccherelliR. PereraA. PearceT.C. VerschureP.F.M.J. PersaudK. A biomimetic approach to machine olfaction, featuring a very large-scale chemical sensor array and embedded neuro-bio-inspired computation.Microsyst. Technol.2014204-572974210.1007/s00542‑013‑2020‑8
    [Google Scholar]
  152. De DasA. PramanikA. Evolution of E-Sensing Technology.Advances in Intelligent Systems and Computing.SingaporeSpringer Singapore2021565577
    [Google Scholar]
  153. LinH. YanY. ZhaoT. PengL. ZouH. LiJ. YangX. XiongY. WangM. WuH. Rapid discrimination of Apiaceae plants by electronic nose coupled with multivariate statistical analyses.J. Pharm. Biomed. Anal.2013841410.1016/j.jpba.2013.05.027 23777641
    [Google Scholar]
  154. ZhouH. LuoD. GholamHosseini, H.; Li, Z.; He, J. Identification of Chinese Herbal Medicines with Electronic Nose Technology: Applications and Challenges.Sensors (Basel)2017175107310.3390/s17051073 28486407
    [Google Scholar]
  155. Al-DayyeniW.S. Al-YousifS. TaherM.M. Al-FaouriA.W. TahirN.M. JaberM.M. GhabbanF. NajmI.A. AlfadliI.M. AmeerbakhshO.Z. MnatiM.J. Al-ShareefiN.A. SalehA.H. A Review on Electronic Nose: Coherent Taxonomy, Classification, Motivations, Challenges, Recommendations and Datasets.IEEE Access20219885358855110.1109/ACCESS.2021.3090165
    [Google Scholar]
  156. RasekhM. KaramiH. WilsonA.D. GancarzM. Classification and Identification of Essential Oils from Herbs and Fruits Based on a MOS Electronic-Nose Technology.Chemosensors (Basel)20219614210.3390/chemosensors9060142
    [Google Scholar]
  157. OppongS.O. TwumF. Hayfron-AcquahJ.B. MissahY.M. A novel computer vision model for medicinal plant identification using log-gabor filters and deep learning algorithms.Comput. Intell. Neurosci.2022202212110.1155/2022/1189509 36203732
    [Google Scholar]
  158. PawaraE. OkaforL. SchomakerM. Data Augmentation for Plant Classification.Advanced Concepts for Intelligent Vision Systems.Springer20171061710.1007/978‑3‑319‑70353‑4_52
    [Google Scholar]
  159. ZhangC. ZhouP. LiC. LiuL. A convolutional neural network for leaves recognition using data augmentation.2015 IEEE International Conference on Computer and Information TechnologyUbiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing (CIT/IUCC/DASC/PICOM); Liverpool, UK,20152143215010.1109/CIT/IUCC/DASC/PICOM.2015.318
    [Google Scholar]
  160. HuynhH.X. TruongB.Q. Nguyen ThanhK.T. TruongD.Q. Plant identification using new architecture convolutional neural networks combine with replacing the red of color channel image by vein morphology leaf.Vietnam Journal of Computer Science20207219720810.1142/S2196888820500116
    [Google Scholar]
  161. ChungY. ChouC.A. LiC.Y. Central attention and a dual path convolutional neural network in real-world tree species recognition.Int. J. Environ. Res. Public Health202118396110.3390/ijerph18030961 33499249
    [Google Scholar]
  162. AdetibaE. AjayiO.T. KalaJ.R. BadejoJ.A. AjalaS. AbayomiA. BadejoJ.A. AdetibaE. AdetibaE. LeafsnapNet: An Experimentally Evolved Deep Learning Model for Recognition of Plant Species based on Leafsnap Image Dataset.J. Comput. Sci.202117334936310.3844/jcssp.2021.349.363
    [Google Scholar]
  163. SulcM. MatasJ. Texture-Based Leaf Identification.Computer Vision - ECCV 2014 Workshop2015185200
    [Google Scholar]
  164. Quoc BaoT. Tan KietN.T. Quoc DinhT. HiepH.X. Plant species identification from leaf patterns using histogram of oriented gradients feature space and convolution neural networks.Journal of Information and Telecommunication20204214015010.1080/24751839.2019.1666625
    [Google Scholar]
  165. Mehdipour GhaziM. YanikogluB. AptoulaE. Plant identification using deep neural networks via optimization of transfer learning parameters.Neurocomputing201723522823510.1016/j.neucom.2017.01.018
    [Google Scholar]
  166. Anubha PearlineS. Sathiesh KumarV. HariniS. A study on plant recognition using conventional image processing and deep learning approaches.J. Intell. Fuzzy Syst.20193631997200410.3233/JIFS‑169911
    [Google Scholar]
  167. Blesslin ElizabethC.P. BaulkaniS. Novel Network for Medicinal Leaves Identification.J. Inst. Electron. Telecommun. Eng.20236941772178210.1080/03772063.2021.2016504
    [Google Scholar]
  168. BećK.B. GrabskaJ. HuckC.W. NIR spectroscopy of natural medicines supported by novel instrumentation and methods for data analysis and interpretation.J. Pharm. Biomed. Anal.202119311368611368610.1016/j.jpba.2020.113686 33142115
    [Google Scholar]
  169. GuoT-T. ZhangB. GuoL. LiD-S. WuY. WuJ-J. ZhaoL. Classification of Plant Leaves by Near-Infrared Spectroscopy Using ANN and Wavelet.2010 Second International Workshop on Education Technology and Computer ScienceWuhan, China2010202310.1109/ETCS.2010.536
    [Google Scholar]
  170. LangC. CostaF.R.C. CamargoJ.L.C. DurganteF.M. VicentiniA. Near Infrared Spectroscopy Facilitates Rapid Identification of Both Young and Mature Amazonian Tree Species.PLoS One2015108e013452110.1371/journal.pone.0134521 26312996
    [Google Scholar]
  171. SohnS.I. OhY.J. PandianS. LeeY.H. ZaukuuJ.L.Z. KangH.J. RyuT.H. ChoW.S. ChoY.S. ShinE.K. Identification of amaranthus species using visible-near-infrared (Vis-NIR) spectroscopy and machine learning methods.Remote Sens. (Basel)20211320414910.3390/rs13204149
    [Google Scholar]
  172. PetersenM. YuZ. LuX. Application of Raman Spectroscopic Methods in Food Safety: A Review.Biosensors (Basel)202111618710.3390/bios11060187 34201167
    [Google Scholar]
  173. Cialla-MayD. SchmittM. PoppJ. Theoretical principles of Raman spectroscopy.Physical Sciences Reviews20194610.1515/psr‑2017‑0040
    [Google Scholar]
  174. Basic Scattering Theory and Principles for Radar Meteorology Introduction to Dual Polarization Weather Radar.Cambridge University Press2023128181
    [Google Scholar]
  175. GaoH. LiuZ. SongF. XingJ. ZhengZ. LiuS. A Strategy for Identification and Structural Characterization of Compounds from Plantago asiatica L. by Liquid Chromatography-Mass Spectrometry Combined with Ion Mobility Spectrometry.Molecules20222713430210.3390/molecules27134302 35807548
    [Google Scholar]
  176. ParkM. SombornA. SchlehuberD. KeuterV. DeerbergG. Raman spectroscopy in crop quality assessment: focusing on sensing secondary metabolites: a review.Hortic. Res.2023105uhad07410.1093/hr/uhad074 37249949
    [Google Scholar]
  177. LvW. WangX. Overview of hyperspectral image classification.J. Sens.2020202011310.1155/2020/4817234
    [Google Scholar]
  178. LuY. SaeysW. KimM. PengY. LuR. Hyperspectral imaging technology for quality and safety evaluation of horticultural products: A review and celebration of the past 20-year progress.Postharvest Biol. Technol.202017011131811131810.1016/j.postharvbio.2020.111318
    [Google Scholar]
  179. ManolakisD. PieperM. TruslowE. LockwoodR. WeisnerA. JacobsonJ. CooleyT. Longwave Infrared Hyperspectral Imaging: Principles, Progress, and Challenges.IEEE Geosci. Remote Sens. Mag.2019727210010.1109/MGRS.2018.2889610
    [Google Scholar]
  180. LiuY.N. ZhangJ. ZhangY. SunW.W. JiaoL.L. SunD.X. HuX.N. YeX. LiY.D. LiuS.F. CaoK.Q. ChaiM.Y. ZhouW.Y.N. The Advanced Hyperspectral Imager: Aboard China’s GaoFen-5 Satellite.IEEE Geosci. Remote Sens. Mag.201974233210.1109/MGRS.2019.2927687
    [Google Scholar]
  181. PalluaJ.D. BrunnerA. ZelgerB. HuckC.W. SchirmerM. LaimerJ. PutzerD. ThalerM. ZelgerB. New perspectives of hyperspectral imaging for clinical research.NIR News2021323-451310.1177/09603360211024971
    [Google Scholar]
  182. BianchiF. CerviniM. GiubertiG. SimonatoB. The Potential of Wine Lees as a Fat Substitute for Muffin Formulations.Foods20231213258410.3390/foods12132584 37444321
    [Google Scholar]
  183. ReddyP. GuthridgeK.M. PanozzoJ. LudlowE.J. SpangenbergG.C. RochfortS.J. Near-Infrared Hyperspectral Imaging Pipelines for Pasture Seed Quality Evaluation: An Overview.Sensors (Basel)2022225198110.3390/s22051981 35271127
    [Google Scholar]
  184. AhmadM. ShabbirS. RoyS.K. HongD. WuX. YaoJ. KhanA.M. MazzaraM. DistefanoS. ChanussotJ. Hyperspectral Image Classification—Traditional to Deep Models: A Survey for Future Prospects.IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.20221596899910.1109/JSTARS.2021.3133021
    [Google Scholar]
  185. XieL. WangC. ChenM. JinB.B. ZhouR. HuangY. HameedS. YingY. Temperature-dependent terahertz vibrational spectra of tetracycline and its degradation products.Spectrochim. Acta A Mol. Biomol. Spectrosc.201922211717911717910.1016/j.saa.2019.117179 31202030
    [Google Scholar]
  186. LeeK. JeoungK. KimS.H. JiY. SonH. ChoiY. HuhY.M. SuhJ.S. OhS.J. Measuring water contents in animal organ tissues using terahertz spectroscopic imaging.Biomed. Opt. Express2018941582158910.1364/BOE.9.001582 29675303
    [Google Scholar]
  187. ZalkovskijM. MalureanuR. LavrinenkoA.V. JepsenP.U. SavastruD. PopescuA. Ultrabroadband THz Spectroscopy of Disordered Materials. 1st International Symposium on Terahertz Nanoscience and 2nd Workshop of International Terahertz Research NetworkNakanoshima Center, Osaka University, Osaka, Japan, Nov 24-Nov 29,2011
    [Google Scholar]
  188. JiangY. GeH. ZhangY. Quantitative analysis of wheat maltose by combined terahertz spectroscopy and imaging based on Boosting ensemble learning.Food Chem.202030712553312553310.1016/j.foodchem.2019.125533 31634763
    [Google Scholar]
  189. BaxterJ.B. GugliettaG.W. Terahertz Spectroscopy.Anal. Chem.201183124342436810.1021/ac200907z 21534575
    [Google Scholar]
  190. Lourenço-LopesC. Garcia-OliveiraP. CarpenaM. Fraga-CorralM. Jimenez-LopezC. PereiraA.G. PrietoM.A. Simal-GandaraJ. Scientific approaches on extraction, purification and stability for the commercialization of fucoxanthin recovered from brown algae.Foods202098111310.3390/foods9081113 32823574
    [Google Scholar]
  191. MartirosyanD.M. SinghJ. A new definition of functional food by FFC: what makes a new definition unique?Funct. Food Health Dis.20155620910.31989/ffhd.v5i6.183
    [Google Scholar]
  192. WiśniewskaP. ŚliwińskaM. DymerskiT. WardenckiW. NamieśnikJ. The analysis of raw spirits - a review of methodology.J. Inst. Brew.2016122151010.1002/jib.288
    [Google Scholar]
  193. KumarK.S. YadavA. SrivastavaS. PaswanS. Sankar DuttaA. Recent trends in Indian traditional herbs syzygium aromaticum and its health benefits.J. Pharmacogn. Phytochem.201211322
    [Google Scholar]
  194. LoumJ. ByamukamaR. WanyamaP.A.G. Efficient extraction of natural dyes from selected plant species.Chem. Afr.2021467768910.1007/s42250‑021‑00248‑6
    [Google Scholar]
/content/journals/npj/10.2174/0122103155293641240417072907
Loading
/content/journals/npj/10.2174/0122103155293641240417072907
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Extraction; food; green chemistry; herbs; industry; quality; spices; sustainable development goals
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test