Skip to content
2000
Volume 4, Issue 1
  • ISSN: 0250-6882
  • E-ISSN: 0250-6882
side by side viewer icon HTML

Abstract

Background

Although pain is common for everyone, it is a subjective sensation influenced by different variables. One factor that influences pain threshold and perception is body mass index (BMI). This study investigates the connection between BMI and pain by assessing the pressure pain threshold and tolerance on the median and ulnar nerves in the palms.

Methods

The PPT and PT of 120 participants were measured with a digital pressure algometer (FPIX50; Wagner Instruments). Measurement sessions consisted of consecutive PPT and PT readings on the thenar and hypothenar eminence of the dominant and non-dominant hand. In addition, the PPT and PT were compared between BMI, thenar and hypothenar, dominant and non-dominant hand, and sexes.

Results

The results have shown that the PPT and PT increased with BMI. However, only three out of the eight readings were significant ( = <0.05). When comparing the thenar and hypothenar, the results revealed significantly higher PPT and PT levels in the hypothenar ( = < 0.001). The results comparing the PPT and PT between the dominant and non-dominant hand revealed a significantly higher PPT in the non-dominant hand reflected across the thenar and hypothenar (t= -6.197, = <0.01) (t= -2.550, = 0.012), respectively. In addition, males had higher PPT and PT values ( = <0.05).

Conclusion

The results suggest that individuals with higher BMI can tolerate more pain. They also indicate that the hypothenar eminence could withstand higher pain levels than the thenar eminence. In addition, our assessment also revealed a higher pain threshold observed in participants' non-dominant hands, but the same could not be deduced for the pressure pain tolerance. Furthermore, the results have shown that males could tolerate more pain than females.

© 2023 The Author(s). Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/nemj/10.2174/04666221205091500
2023-02-16
2025-01-19
Loading full text...

Full text loading...

/deliver/fulltext/nemj/4/1/NEMJ-4-1-E051222211567.html?itemId=/content/journals/nemj/10.2174/04666221205091500&mimeType=html&fmt=ahah

References

  1. RennC.L. DorseyS.G. The Physiology and Processing of Pain. AACN Clinical Issues: Advanced Practice in Acute and Critical Care.2005Available from: https://pubmed.ncbi.element.nih.gov/16082231/ 10.1097/00044067‑200507000‑00002
  2. WilliamsA.C.C. CraigK.D. Updating the definition of pain.Pain2016157112420242310.1097/j.pain.000000000000061327200490
    [Google Scholar]
  3. McGrathP.A. Psychological aspects of pain perception.Arch. Oral Biol.199439Suppl.S55S6210.1016/0003‑9969(94)90189‑97702468
    [Google Scholar]
  4. RaffaeliW. ArnaudoE. Pain as a disease: an overview.J. Pain Res.2017102003200810.2147/JPR.S13886428860855
    [Google Scholar]
  5. WagemakersS. A Systematic Review of Devices and Techniques that Objectively Measure Patients' Pain.2019Available from: https://www.semanticscholar.org/paper/ASystematic-Review-of-Devices-and-Techniques-that-WagemakersVelden/5355fb33d5a5a09c4a062f68550c75
  6. OsterweisM. KleinmanA. MechanicD. Measuring Pain And Dysfunction.In: Nih.govNational Academies PressUS2022Available from: https://www.ncbi.element.nih.gov/books/NBK2 19245/ [cited 2022 May 25].
    [Google Scholar]
  7. Pain Management Secrets.In: Elsevier2009Available from: https://www.sciencedirect.com/book/978032 3040198/pain-management-secrets
    [Google Scholar]
  8. MacDonaldG. Use of pain threshold reports to satisfy social needs.Pain Res. Manag.200813430931910.1155/2008/28957518719713
    [Google Scholar]
  9. SanchesM.L. JulianoY. NovoN.F. GuimarãesA.S. Rodrigues ContiP.C. AlonsoL.G. Correlation between pressure pain threshold and pain intensity in patients with temporomandibular disorders who are compliant or non-compliant with conservative treatment.Oral Surg. Oral Med. Oral Pathol. Oral Radiol.2015120445946810.1016/j.oooo.2015.05.01726188733
    [Google Scholar]
  10. WeirC.B. JanA. Classification Percentile And Cut Off Points StatPearlsTreasure Island (FL)StatPearls Publishing2021Available from: https://pubmed.ncbi.element.nih.gov/31082114/
    [Google Scholar]
  11. NuttallF.Q. Body Mass Index.Nutr. Today201550311712810.1097/NT.000000000000009227340299
    [Google Scholar]
  12. DanielsS.R. The use of BMI in the clinical setting.Pediatrics2009124Suppl. 1S35S4110.1542/peds.2008‑3586F19720666
    [Google Scholar]
  13. NguyenJ.D. DuongH. Shoulder and Upper Limb, Hand Hypothenar Eminence.In: Nih.govStatPearls2022Available from: https://www.ncbi.element.nih.gov/books/NBK5 46622/
    [Google Scholar]
  14. MeyerP. LintingreP.F. PesquerL. PoussangeN. SilvestreA. DallaudièreB. The median nerve at the carpal tunnel. And elsewhere.J. Belg. Soc. Radiol.201810211710.5334/jbsr.135430039031
    [Google Scholar]
  15. World Health OrganizationPhysical status: the use and interpretation of anthropometry: report of a WHO Expert Committee.GenevaWorld Health Organization1995Available from: https://www.who.int/publications/i/item/924
  16. ChestertonL.S. SimJ. WrightC.C. FosterN.E. Interrater reliability of algometry in measuring pressure pain thresholds in healthy humans, using multiple raters.Clin. J. Pain200723976076610.1097/AJP.0b013e318154b6ae18075402
    [Google Scholar]
  17. Pain testtm fpix.2022Available from: http://www.wagnerinstruments.com/product s/Pain-Test-Algometers/fpix
  18. DodetP. PerrotS. AuvergneL. HajjA. SimoneauG. DeclèvesX. PoitouC. OppertJ.M. Peoc’hK. MoulyS. BergmannJ.F. Lloret-LinaresC. Sensory impairment in obese patients? Sensitivity and pain detection thresholds for electrical stimulation after surgery-induced weight loss, and comparison with a nonobese population.Clin. J. Pain2013291434910.1097/AJP.0b013e31824786ad22688605
    [Google Scholar]
  19. MaffiulettiN.A. MorelliA. MartinA. DuclayJ. BillotM. JubeauM. AgostiF. SartorioA. Effect of gender and obesity on electrical current thresholds.Muscle Nerve201144220220710.1002/mus.2205021698650
    [Google Scholar]
  20. PriceR.C. AsenjoJ.F. ChristouN.V. BackmanS.B. SchweinhardtP. The role of excess subcutaneous fat in pain and sensory sensitivity in obesity.Eur. J. Pain20131791316132610.1002/j.1532‑2149.2013.00315.x23576531
    [Google Scholar]
  21. BensonS. KattoorJ. WegnerA. HammesF. ReidickD. GrigoleitJ.S. EnglerH. OberbeckR. SchedlowskiM. ElsenbruchS. Acute experimental endotoxemia induces visceral hypersensitivity and altered pain evaluation in healthy humans.Pain2012153479479910.1016/j.pain.2011.12.00122264996
    [Google Scholar]
  22. de GoeijM. van EijkL.T. VanelderenP. Wilder-SmithO.H. VissersK.C. van der HoevenJ.G. Systemic Inflammation Decreases Pain Threshold in Humans In Vivo. Price T, editor.PLoS ONE201310.1371/journal.pone.0084159
    [Google Scholar]
  23. DayerJ.M. ChicheporticheR. Juge-AubryC. MeierC. Adipose tissue has anti-inflammatory properties: focus on IL-1 receptor antagonist (IL-1Ra).Ann. N. Y. Acad. Sci.20061069144445310.1196/annals.1351.04316855172
    [Google Scholar]
  24. Juge-AubryC.E. SommE. GiustiV. PerninA. ChicheporticheR. VerdumoC. Rohner-JeanrenaudF. BurgerD. DayerJ.M. MeierC.A. Adipose tissue is a major source of interleukin-1 receptor antagonist: upregulation in obesity and inflammation.Diabetes20035251104111010.2337/diabetes.52.5.110412716739
    [Google Scholar]
  25. ChinS.H. HuangW.L. AkterS. BinksM. Obesity and pain: A systematic review.Int. J. Obes.202044596997910.1038/s41366‑019‑0505‑y31848456
    [Google Scholar]
  26. SchmidtF.M. WeschenfelderJ. SanderC. Inflammatory cytokines in general and central obesity and modulating effects of physical activity. Eckel J, editor.PLOS ONE2015103e012197110.1371/journal.pone.0121971
    [Google Scholar]
  27. RakotoariveloV. LacrazG. MayhueM. BrownC. RottembourgD. FradetteJ. IlangumaranS. MenendezA. LangloisM.F. RamanathanS. Inflammatory cytokine profiles in visceral and subcutaneous adipose tissues of obese patients undergoing bariatric surgery reveal lack of correlation with obesity or diabetes.EBioMedicine20183023724710.1016/j.ebiom.2018.03.00429548899
    [Google Scholar]
  28. AstitaR TashaniO HindK SharpD JohnsonM. A preliminary investigation of the relationship between pain sensitivity, body fat distribution and blood levels of IL-6, CRP, TNF-Α and leptin. -Leeds Beckett Repository.Leedsbeckettacuk2015Available from: https://eprints.leedsbeckett.ac.uk/id/eprint/1 395/
    [Google Scholar]
  29. TashaniO.A. AstitaR. SharpD. JohnsonM.I. Body mass index and distribution of body fat can influence sensory detection and pain sensitivity.Eur. J. Pain20172171186119610.1002/ejp.101928263427
    [Google Scholar]
  30. MooreC.W. RiceC.L. Structural and functional anatomy of the palmaris brevis: grasping for answers.J. Anat.2017231693994610.1111/joa.1267528786108
    [Google Scholar]
  31. SerratriceG. AzulayJ.P. SerratriceJ. PougetJ. Palmaris brevis spasm syndrome.J. Neurol. Neurosurg. Psychiatry199559218218410.1136/jnnp.59.2.1827629536
    [Google Scholar]
  32. MooreC.W. Functional Anatomy of Palmar Musculature.Scholarship@Western.2018Available from: https://ir.lib.uwo.ca/etd/5335/
    [Google Scholar]
  33. OngunN. OguzhanogluA. Comparison of the nerve conduction parameters in proximally and distally located muscles innervated by the bundles of median and ulnar nerves.Med. Princ. Pract.201625546647110.1159/00044774227331396
    [Google Scholar]
  34. HennesseyW.J. FalcoF.J.E. BraddomR.L. Median and ulnar nerve conduction studies: Normative data for young adults.Arch. Phys. Med. Rehabil.199475325926410.1016/0003‑9993(94)90025‑68129575
    [Google Scholar]
  35. RendellM.S. KatimsJ.J. RichterR. RowlandF. A comparison of nerve conduction velocities and current perception thresholds as correlates of clinical severity of diabetic sensory neuropathy.J. Neurol. Neurosurg. Psychiatry198952450251110.1136/jnnp.52.4.5022738593
    [Google Scholar]
  36. NewtonA.V. MumfordJ.M. Lateral dominance, pain perception, and pain tolerance.J. Dent. Res.197251494094210.1177/002203457205100435014504714
    [Google Scholar]
  37. JensenK. AndersenH.Ø. OlesenJ. LindblomU. Pressure-pain threshold in human temporal region. Evaluation of a new pressure algometer.Pain198625331332310.1016/0304‑3959(86)90235‑63748589
    [Google Scholar]
  38. ChungS-C UmB-Y KimH-S Evaluation of pressure pain threshold in head and neck muscles by electronic algometer: Intrarater and interrater reliability.CRANIO®19921012834
    [Google Scholar]
  39. MaquetD. CroisierJ.L. DemoulinC. CrielaardJ.M. Pressure pain thresholds of tender point sites in patients with fibromyalgia and in healthy controls.Eur. J. Pain20048211111710.1016/S1090‑3801(03)00082‑X14987620
    [Google Scholar]
  40. PrushanskyT. DvirZ. Defrin-AssaR. Reproducibility indices applied to cervical pressure pain threshold measurements in healthy subjects.Clin. J. Pain200420534134710.1097/00002508‑200409000‑0000915322441
    [Google Scholar]
  41. ÖzcanA TulumZ PınarL BaşkurtF. Comparison of pressure pain threshold, grip strength, dexterity and touch pressure of dominant and non-dominant hands within and between right- and left-handed subjects.Journal of Korean Medical Science2004196874
    [Google Scholar]
  42. PauliP. WiedemannG. NickolaM. Pressure pain thresholds asymmetry in left- and right-handers: Associations with behavioural measures of cerebral laterality.Eur. J. Pain19993215115610.1053/eujp.1999.010810700344
    [Google Scholar]
  43. MurrayFS SafferstoneJF Pain threshold and tolerance of right and left hands.J Comp Physiol Psychol197071183610.1037/h0028963
    [Google Scholar]
  44. WolffB.B. KrasnegorN.A. FarrR.S. Effect of suggestion upon experimental pain response parameters.Percept. Mot. Skills196521367568310.2466/pms.1965.21.3.6755855900
    [Google Scholar]
  45. GelfandS. The relationship of experimental pain tolerance to pain threshold.Canadian J Psychol1964181364210.1037/h0083283
    [Google Scholar]
  46. SterlingM. TreleavenJ. EdwardsS. JullG. Pressure pain thresholds of upper limb peripheral nerve trunks in asymptomatic subjects.Physiother. Res. Int.20005422022910.1002/pri.20211129664
    [Google Scholar]
  47. SoetantoALF ChungJWY WongTKS Are There Gender Differences in Pain Perception?J Neurosci Nurs2006383172610.1097/01376517‑200606000‑0000616817669
    [Google Scholar]
  48. MyersC.D. RobinsonM.E. RileyJ.L.III SheffieldD. Sex, gender, and blood pressure: contributions to experimental pain report.Psychosom. Med.200163454555010.1097/00006842‑200107000‑0000411485107
    [Google Scholar]
  49. ManningE.L. FillingimR.B. The influence of athletic status and gender on experimental pain responses.J. Pain20023642142810.1054/jpai.2002.12806814622727
    [Google Scholar]
  50. FearonI. McGrathJ.P. AchatH. ‘Booboos’: the study of everyday pain among young children.Pain1996681556210.1016/S0304‑3959(96)03200‑99251998
    [Google Scholar]
  51. BerkleyKJ Sex differences in pain.Behavioral and Brain Sciences19972033718010.1017/S0140525X97221485
    [Google Scholar]
  52. LashS.J. EislerR.M. SouthardD.R. Sex differences in cardiovascular reactivity as a function of the appraised gender relevance of the stressor.Behav. Med.1995212869410.1080/08964289.1995.99337478845580
    [Google Scholar]
  53. StraubeT. SchmidtS. WeissT. MentzelH.J. MiltnerW.H.R. Sex differences in brain activation to anticipated and experienced pain in the medial prefrontal cortex.Hum. Brain Mapp.200930268969810.1002/hbm.2053618219622
    [Google Scholar]
/content/journals/nemj/10.2174/04666221205091500
Loading
/content/journals/nemj/10.2174/04666221205091500
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test