Skip to content
2000
Volume 5, Issue 1
  • ISSN: 0250-6882
  • E-ISSN: 0250-6882

Abstract

Background

Regenerative therapies to rejuvenate the heart have a significant appeal for researchers. Preliminary findings from pre-clinical studies suggest that bone marrow cells may have reparative and regenerative effects on heart muscles, creating a ripe area for research. Many generations of stem cells used in pre-clinical and early clinical studies have shown promising but variable results.

Objective

The current review article discusses the dilemmas in applying stem cell therapy to cardiovascular diseases and possible strategies to make it feasible.

Methods

The field of regenerative therapies continued to progress with second-generation cells, third-generation cells, combination cell therapy, and the use of cell products alone. Research showed promising positive results in multiple randomized phases 1, 2, and 3 clinical trials in addition to numerous meta-analyses. The gaps in knowledge included stem-cell sources, their delivery routes, dosing, types of cells, and the indicated cardiac conditions.

Results

The results from the latest randomized clinical trials, namely the Dream-HF, showed improved left ventricle function, symptoms, and overall survival. Studied patient populations include post-myocardial infarction (MI), ischemic/non-ischemic cardiomyopathy, intractable/microvascular angina, and cardiac surgery for congenital and valvular heart disease. The phase 3 DREAM-HF trial did not meet the primary heart failure endpoint of reducing hospital admission. Still, it showed a clinically significant reduction in major adverse cardiovascular events (MACE), including recurrent MI and stroke, by 60%. A 60% reduction in cardiovascular mortality and a 79% reduction in cardiovascular mortality in patients with evidence of inflammation (high CRP). The latter finding suggests a more anti-inflammatory effect. This effect was much higher than that observed in the PARADIGM-HF trial, which showed a 20% relative risk reduction in cardiovascular mortality. By combining the results of the DREAM-HF trial with MSC-HF, ixCELL-DCM, CONCERT-HF, and REGENERATE-DCM, the potential for clinical applications of cell therapy is promising.

Conclusion

There is a promising role for cell therapy in the management of cardiovascular diseases. Results of trials in the setting of heart failure are more encouraging in both ischemic and non-ischemic cardiomyopathy. This is in contrast acute myocardial infarction, where the results have been variable. Amongst all the various cell types tested MSCs show the most significant promise for treating HF.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/nemj/10.2174/0250688205666230822113350
2024-01-01
2025-04-23
The full text of this item is not currently available.

References

  1. BergmannO. BhardwajR.D. BernardS. ZdunekS. Barnabé-HeiderF. WalshS. ZupicichJ. AlkassK. BuchholzB.A. DruidH. JovingeS. FrisénJ. Evidence for cardiomyocyte renewal in humans.Science200932459239810210.1126/science.116468019342590
    [Google Scholar]
  2. BolliR. GhafghaziS. Stem cells: cell therapy for cardiac repair: What is needed to move forward?Nat. Rev. Cardiol.201714257225
    [Google Scholar]
  3. BagnoL. HatzistergosK.E. BalkanW. HareJ.M. Mesenchymal stem cell-based therapy for cardiovascular disease: Progress and challenges.Mol. Ther.20182671610162310.1016/j.ymthe.2018.05.00929807782
    [Google Scholar]
  4. SuzukiK. SmolenskiR.T. JayakumarJ. MurtuzaB. BrandN.J. YacoubM.H. Heat shock treatment enhances graft cell survival in skeletal myoblast transplantation to the heart.Circulation2000102193III-216III-22110.1161/01.CIR.102.suppl_3.III‑21611082390
    [Google Scholar]
  5. CaoF. SunD. LiC. NarsinhK. ZhaoL. LiX. FengX. ZhangJ. DuanY. WangJ. LiuD. WangH. Long-term myocardial functional improvement after autologous bone marrow mononuclear cells transplantation in patients with ST-segment elevation myocardial infarction: 4 years follow-up.Eur. Heart J.200930161986199410.1093/eurheartj/ehp22019508995
    [Google Scholar]
  6. TaoB. CuiM. WangC. MaS. WuF. YiF. QinX. LiuJ. WangH. WangZ. MaX. TianJ. ChenY. WangJ. CaoF. Percutaneous intramyocardial delivery of mesenchymal stem cells induces superior improvement in regional left ventricular function compared with bone marrow mononuclear cells in porcine myocardial infarcted heart.Theranostics20155219620510.7150/thno.797625553108
    [Google Scholar]
  7. GarikapatiK. HassanS. singhviA. DaniaK. QureshiS. mittal AlirhayamZ. QureshiW. Outcomes of patients with left ventricular diastolic dysfunction in adult hematopoietic stem cell transplantation.Circ. Cardiovasc. Qual. Outcomes201361A7210.1161/circoutcomes.6.suppl_1.A72
    [Google Scholar]
  8. Babin-EbellJ. SieversH.H. CharitosE. KleinH. JungF. HellbergA.K. DeppingR. SierH. MarxsenJ. StoeltingS. KraatzE. WagnerK. Transmyocardial laser revascularization combined with intramyocardial endothelial progenitor cell transplantation in patients with intractable ischemic heart disease ineligible for conventional revascularization: preliminary results in a highly selected small patient cohort.Thorac. Cardiovasc. Surg.2010581111610.1055/s‑0029‑118619920072970
    [Google Scholar]
  9. WangY. MeltonC. LiY.P. ShenoyA. ZhangX.X. SubramanyamD. BlellochR. miR-294/miR-302 promotes proliferation, suppresses G1-S restriction point, and inhibits ESC differentiation through separable mechanisms.Cell Rep.2013419910910.1016/j.celrep.2013.05.02723831024
    [Google Scholar]
  10. ShabbirA. ZisaD. SuzukiG. LeeT. Heart failure therapy mediated by the trophic activities of bone marrow mesenchymal stem cells: A noninvasive therapeutic regimen.Am. J. Physiol. Heart Circ. Physiol.20092966H1888H189710.1152/ajpheart.00186.200919395555
    [Google Scholar]
  11. KhatiwalaR. CaiC. Strategies to enhance the effectiveness of adult stem cell therapy for ischemic heart diseases affecting the elderly patients.Stem Cell Rev.201612221422310.1007/s12015‑016‑9642‑z26779896
    [Google Scholar]
  12. MauritzC. MartensA. RojasS.V. SchnickT. RathertC. ScheckerN. MenkeS. GlageS. ZweigerdtR. HaverichA. MartinU. KutschkaI. Induced pluripotent stem cell (iPSC)-derived Flk-1 progenitor cells engraft, differentiate, and improve heart function in a mouse model of acute myocardial infarction.Eur. Heart J.201132212634264110.1093/eurheartj/ehr16621596799
    [Google Scholar]
  13. BolliR. ChughAR D'AmarioD. Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial.Lancet201137898061847188510.1016/S0140‑6736(11)61590‑0
    [Google Scholar]
  14. SmithR.R. BarileL. ChoH.C. Regenerative potential of cardiospherederived cells expanded from percutaneous endomyocardial biopsy specimens.Circulation2007115789690810.1161/CIRCULATIONAHA.106.65520917283259
    [Google Scholar]
  15. MakkarR.R. SmithR.R. ChengK. MalliarasK. ThomsonL.E.J. BermanD. CzerL.S.C. MarbánL. MendizabalA. JohnstonP.V. RussellS.D. SchuleriK.H. LardoA.C. GerstenblithG. MarbánE. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): A prospective, randomised phase 1 trial.Lancet2012379981989590410.1016/S0140‑6736(12)60195‑022336189
    [Google Scholar]
  16. MakkarR.R. KereiakesD.J. AguirreF. Intracoronary allogeneic heart stem cells to achieve myocardial regeneration (ALLSTAR): A randomized, placebocontrolled, double-blinded trial.Eur. Heart J.202041363451345810.1093/eurheartj/ehaa541
    [Google Scholar]
  17. TaylorM. JefferiesJ. ByrneB. LimaJ. Ambale-VenkateshB. OstovanehM.R. MakkarR. GoldsteinB. SmithR.R. FudgeJ. MalliarasK. FedorB. RudyJ. PogodaJ.M. MarbánL. AscheimD.D. MarbánE. VictorR.G. Cardiac and skeletal muscle effects in the randomized HOPE-Duchenne trial.Neurology2019928e866e87810.1212/WNL.000000000000695030674601
    [Google Scholar]
  18. HanC. YangJ. SunJ. QinG. Extracellular vesicles in cardiovascular disease: biological functions and therapeutic implications.Pharmacol. Ther.2021233108025
    [Google Scholar]
  19. BarileL. MoccettiT. MarbánE. VassalliG. Roles of exosomes in cardioprotection.Eur. Heart J.20163818ehw30410.1093/eurheartj/ehw30427443883
    [Google Scholar]
  20. GalletR. DawkinsJ. ValleJ. SimsoloE. de CoutoG. MiddletonR. TseliouE. LuthringerD. KrekeM. SmithR.R. MarbánL. GhalehB. MarbánE. Exosomes secreted by cardiosphere-derived cells reduce scarring, attenuate adverse remodelling, and improve function in acute and chronic porcine myocardial infarction.Eur. Heart J.201738320121128158410
    [Google Scholar]
  21. AfzalM.R. SamantaA. ShahZ.I. JeevananthamV. Abdel-LatifA. Zuba-SurmaE.K. DawnB. Adult bone marrow cell therapy for ischemic heart disease: Evidence and insights from randomized controlled trials.Circ. Res.2015117655857510.1161/CIRCRESAHA.114.30479226160853
    [Google Scholar]
  22. HamanoK. NishidaM. HirataK. MikamoA. LiT.S. HaradaM. MiuraT. MatsuzakiM. EsatoK. Local implantation of autologous bone marrow cells for therapeutic angiogenesis in patients with ischemic heart disease: clinical trial and preliminary results.Jpn. Circ. J.200165984584710.1253/jcj.65.84511548889
    [Google Scholar]
  23. DiederichsenA.C.P. MøllerJ.E. ThayssenP. JunkerA.B. VidebaekL. SaekmoseS.G. BaringtonT. KristiansenM. KassemM. Effect of repeated intracoronary injection of bone marrow cells in patients with ischaemic heart failure. The Danish Stem Cell study-Congestive Heart Failure trial (DanCell-CHF).Eur. J. Heart Fail.200810766166710.1016/j.ejheart.2008.05.01018555742
    [Google Scholar]
  24. de JongR. HoutgraafJ.H. SamieiS. BoersmaE. DuckersH.J. Intracoronary stem cell infusion after acute myocardial infarction: A meta-analysis and update on clinical trials.Circ. Cardiovasc. Interv.20147215616710.1161/CIRCINTERVENTIONS.113.00100924668227
    [Google Scholar]
  25. LinL. GuS. ChengY. DingL. Distribution of adult cardiac stem cells via intravenous cell transplantation in myocardial infarction mouse model.Prog. Modern Biomed.2015157024702710.13241/j.cnki.pmb.2015.36.007
    [Google Scholar]
  26. WangW. JiangQ. ZhangH. JinP. YuanX. WeiY. HuS. Intravenous administration of bone marrow mesenchymal stromal cells is safe for the lung in a chronic myocardial infarction model.Regen. Med.20116217919010.2217/rme.10.10421391852
    [Google Scholar]
  27. YamadaY. WakaoS. KushidaY. MinatoguchiS. MikamiA. HigashiK. BabaS. ShigemotoT. KurodaY. KanamoriH. AminM. KawasakiM. NishigakiK. TaokaM. IsobeT. MuramatsuC. DezawaM. MinatoguchiS. S1P–S1PR2 axis mediates homing of muse cells into damaged heart for long‐lasting tissue repair and functional recovery after acute myocardial infarction.Circ. Res.201812281069108310.1161/CIRCRESAHA.117.31164829475983
    [Google Scholar]
  28. LeeR.H. PulinA.A. SeoM.J. KotaD.J. YlostaloJ. LarsonB.L. Semprun-PrietoL. DelafontaineP. ProckopD.J. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6.Cell. Stem.Cell.200951546310.1016/j.stem.2009.05.00319570514
    [Google Scholar]
  29. LiuC.B. HuangH. SunP. MaS.Z. LiuA.H. XueJ. FuJ.H. LiangY.Q. LiuB. WuD.Y. LüS.H. ZhangX.Z. Human umbilical cord-derived Mesenchymal stromal cells improve left ventricular function, perfusion, and remodeling in a porcine model of chronic myocardial ischemia.Stem. Cells. Transl. Med.2016581004101310.5966/sctm.2015‑029827334487
    [Google Scholar]
  30. van der SpoelT.I.G. VrijsenK.R. KoudstaalS. SluijterJ.P.G. NijsenJ.F.W. de JongH.W. HoeferI.E. CramerM.J.M. DoevendansP.A. van BelleE. ChamuleauS.A.J. Transendocardial cell injection is not superior to intracoronary infusion in a porcine model of ischaemic cardiomyopathy: A study on delivery efficiency.J. Cell. Mol. Med.201216112768277610.1111/j.1582‑4934.2012.01594.x22697212
    [Google Scholar]
  31. KhodayariS. KhodayariH. AmiriA.Z. EslamiM. FarhudD. HeschelerJ. NayerniaK. Inflammatory microenvironment of acute myocardial infarction prevents regeneration of heart with stem cells therapy.Cell. Physiol. Biochem.201953588790910.33594/00000018031749350
    [Google Scholar]
  32. KircherM.F. GambhirS.S. GrimmJ. Noninvasive cell-tracking methods.Nat. Rev. Clin. Oncol.201181167768810.1038/nrclinonc.2011.14121946842
    [Google Scholar]
  33. NiX. OuC. GuoJ. LiuB. ZhangJ. WuZ. LiH. ChenM. Lentiviral vector-mediated co-overexpression of VEGF and Bcl-2 improves mesenchymal stem cell survival and enhances paracrine effects in vitro.Int. J. Mol. Med.201740241842610.3892/ijmm.2017.301928627637
    [Google Scholar]
  34. MüllerP. LemckeH. DavidR. Stem cell therapy in heart diseases : Cell types, mechanisms and improvement strategies.Cell. Physiol. Biochem.20184862607265510.1159/00049270430121644
    [Google Scholar]
  35. GnecchiM. ZhangZ. NiA. DzauV.J. Paracrine mechanisms in adult stem cell signaling and therapy.Circ. Res.2008103111204121910.1161/CIRCRESAHA.108.17682619028920
    [Google Scholar]
  36. FarzanehM. RahimiF. AlishahiM. KhoshnamS.E. Paracrine mechanisms involved in mesenchymal stem cell differentiation into cardiomyocytes.Curr. Stem Cell Res. Ther.201914191310.2174/1574888X1366618082116042130152289
    [Google Scholar]
  37. LiS. WuH. HanD. MaS. FanW. WangY. ZhangR. FanM. HuangY. FuX. CaoF. A novel mechanism of Mesenchymal stromal cell-mediated protection against sepsis: Restricting inflammasome activation in macrophages by increasing mitophagy and decreasing mitochondrial ROS.Oxid. Med. Cell. Longev.2018201811510.1155/2018/353760929636842
    [Google Scholar]
  38. WangY. MaS. WangQ. HuW. WangD. LiX. SuT. QinX. ZhangX. MaK. ChenJ. XiongL. CaoF. Effects of cannabinoid receptor type 2 on endogenous myocardial regeneration by activating cardiac progenitor cells in mouse infarcted heart.Sci. China. Life. Sci.201457220120810.1007/s11427‑013‑4604‑z24430557
    [Google Scholar]
  39. HaganM. AshrafM. KimI. WeintraubN.L. TangY. Effective regeneration of dystrophic muscle using autologous iPSC-derived progenitors with CRISPR-Cas9 mediated precise correction.Med. Hypoth.20181109710010.1016/j.mehy.2017.11.00929317080
    [Google Scholar]
  40. NoorN. ShapiraA. EdriR. GalI. WertheimL. DvirT.III Printing of personalized thick and perfusable cardiac patches and hearts.Adv. Sci.2019611190034410.1002/advs.20190034431179230
    [Google Scholar]
  41. AminzadehM.A. RogersR.G. FournierM. Fournier, Exosome-mediated benefits of cell therapy in mouse and human models of duchenne muscular dystrophy.Stem. Cell. Rep.2018103942955
    [Google Scholar]
  42. PerinE.C. The DREAM-HF trial results, late-breaking clinical trialsAmerican Heart Association Scientific Sessions2021
    [Google Scholar]
  43. DuBrockH.M. AbouEzzeddineO.F. RedfieldM.M. Redfield, High-sensitivity C-reactive protein in heart failure with preserved ejection fraction.PLoS One2018138e020183610.1371/journal.pone.0201836
    [Google Scholar]
  44. CohenJ.B. SchraubenS.J. ZhaoL. Clinical phenogroups in heart failure with preserved ejection fraction: detailed phenotypes, prognosis, and response to spironolactone.JACC. Heart. Fail.202083172184
    [Google Scholar]
  45. AsatryanB. AsimakiA. LandstromA.P. KhanjiM.Y. OdeningK.E. CooperL.T. MarchlinskiF.E. GelzerA.R. SemsarianC. ReichlinT. OwensA.T. ChahalC.A.A. Inflammation and immune response in arrhythmogenic cardiomyopathy: state-of-the-art review.Circulation2021144201646165510.1161/CIRCULATIONAHA.121.05589034780255
    [Google Scholar]
  46. HeldmanA.W. DiFedeD.L. FishmanJ.E. ZambranoJ.P. TrachtenbergB.H. KarantalisV. MushtaqM. WilliamsA.R. SuncionV.Y. McNieceI.K. GhersinE. SotoV. LoperaG. MikiR. WillensH. HendelR. MitraniR. PattanyP. FeigenbaumG. OskoueiB. ByrnesJ. LoweryM.H. SierraJ. PujolM.V. DelgadoC. GonzalezP.J. RodriguezJ.E. BagnoL.L. RouyD. AltmanP. FooC.W.P. da SilvaJ. AndersonE. SchwarzR. MendizabalA. HareJ.M. Transendocardial mesenchymal stem cells and mononuclear bone marrow cells for ischemic cardiomyopathy: The TAC-HFT randomized trial.JAMA20143111627310.1001/jama.2013.28290924247587
    [Google Scholar]
  47. BolliR. MitraniR.D. HareJ.M. A Phase II study of autologous mesenchymal stromal cells and c-kit positive cardiac cells, alone or in combination, in patients with ischaemic heart failure: The CCTRN CONCERT-HF trial.Eur. J. Heart Fail.202123466167410.1002/ejhf.2178
    [Google Scholar]
  48. SchächingerV. ErbsS. ElsässerA. HaberboschW. HambrechtR. HölschermannH. YuJ. CortiR. MatheyD.G. HammC.W. SüselbeckT. AssmusB. TonnT. DimmelerS. ZeiherA.M. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction.N. Engl. J. Med.2006355121210122110.1056/NEJMoa06018616990384
    [Google Scholar]
  49. AssmusB. SchächingerV. TeupeC. BrittenM. LehmannR. DöbertN. GrünwaldF. AicherA. UrbichC. MartinH. HoelzerD. DimmelerS. ZeiherA.M. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI).Circulation2002106243009301710.1161/01.CIR.0000043246.74879.CD12473544
    [Google Scholar]
  50. MathurA. Fern'andez-Avil'esF. BartunekJ. The effect of intracoronary infusion of bone marrow-derived mononuclear cells on all-cause mortality in acute myocardial infarction: The BAMI trial.Eur. Heart J.202041383702371010.1093/eurheartj/ehaa651
    [Google Scholar]
  51. BolliR. Repeated cell therapy: A paradigm shifts whose time has come.Circ. Res.201712071072107410.1161/CIRCRESAHA.117.31071028179431
    [Google Scholar]
  52. MitsutakeY. PyunW.B. RouyD. FooC.W.P. StertzerS.H. AltmanP. IkenoF. Improvement of local cell delivery using helix transendocardial delivery catheter in a porcine heart.Int. Heart J.201758343544010.1536/ihj.16‑17928539564
    [Google Scholar]
  53. SchmuckE.G. MulliganJ.D. ErtelR.L. KourisN.A. OgleB.M. RavalA.N. SaupeK.W. Cardiac fibroblast-derived 3D extracellular matrix seeded with mesenchymal stem cells as a novel device to transfer cells to the ischemic myocardium.Cardiovasc. Eng. Technol.20145111913110.1007/s13239‑013‑0167‑124683428
    [Google Scholar]
  54. SchmuckE.G. HackerT.A. SchreierD.A. CheslerN.C. WangZ. Beneficial effects of mesenchymal stem cell delivery via a novel cardiac bioscaffold on right ventricles of pulmonary arterial hypertensive rats.Am. J. Physiol. Heart Circ. Physiol.20193165H1005H101310.1152/ajpheart.00091.201830822119
    [Google Scholar]
  55. VasuS. ZhouJ. ChenJ. JohnstonP.V. KimD.H. Biomaterials-based approaches for cardiac regeneration.Korean Circ. J.2021511294396010.4070/kcj.2021.029134854577
    [Google Scholar]
  56. GarciaJ.R. CampbellP.F. KumarG. LangbergJ.J. CesarL. WangL. GarcíaA.J. LevitR.D. A minimally invasive, translational method to deliver hydrogels to the heart through the pericardial space.JACC Basic Transl. Sci.20172560160910.1016/j.jacbts.2017.06.00330062173
    [Google Scholar]
  57. MenaschéP. VanneauxV. HagègeA. BelA. CholleyB. ParouchevA. CacciapuotiI. Al-DaccakR. BenhamoudaN. BlonsH. AgbulutO. ToscaL. TrouvinJ.H. FabreguettesJ.R. BellamyV. CharronD. TartourE. TachdjianG. DesnosM. LargheroJ. Transplantation of human embryonic stem cell–derived cardiovascular progenitors for severe ischemic left ventricular dysfunction.J. Am. Coll. Cardiol.201871442943810.1016/j.jacc.2017.11.04729389360
    [Google Scholar]
  58. PoulinM.F. DekaA. MohamedaliB. SchaerG.L. Clinical benefits of stem cells for chronic symptomatic systolic heart failure: A systematic review of the existing data and ongoing trials.Cell Transplant.201625111911192310.3727/096368916X69208727349212
    [Google Scholar]
  59. LaluM.M. MazzarelloS. ZlepnigJ. DongY.Y.R. MontroyJ. McIntyreL. DevereauxP.J. StewartD.J. David MazerC. BarronC.C. McIsaacD.I. FergussonD.A. Safety and efficacy of adult stem cell therapy for acute myocardial infarction and ischemic heart failure (SafeCell Heart): A systematic review and meta-analysis.Stem Cells Transl. Med.201871285786610.1002/sctm.18‑012030255989
    [Google Scholar]
  60. LiJ. HuS. ZhuD. HuangK. MeiX. López de Juan AbadB. ChengK. All roads lead to rome (the heart): Cell retention and outcomes from various delivery routes of cell therapy products to the heart.J. Am. Heart Assoc.2021108e02040210.1161/JAHA.120.02040233821664
    [Google Scholar]
  61. LiuC. HanD. LiangP. LiY. CaoF. The current dilemma and breakthrough of stem cell therapy in ischemic heart disease.Front. Cell Dev. Biol.2021963613610.3389/fcell.2021.63613633968924
    [Google Scholar]
  62. BolliR. SolankhiM. TangX.L. KahlonA. Cell therapy in patients with heart failure: A comprehensive review and emerging concepts.Cardiovasc. Res.2022118495197610.1093/cvr/cvab13533871588
    [Google Scholar]
/content/journals/nemj/10.2174/0250688205666230822113350
Loading
/content/journals/nemj/10.2174/0250688205666230822113350
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test