Skip to content
2000
Volume 5, Issue 1
  • ISSN: 0250-6882
  • E-ISSN: 0250-6882

Abstract

The current treatments for bladder cancer are unable to substantially avoid the disease's growth and recurrence, which is a serious public health problem. Researchers have explored a variety of approaches in an effort to effectively replicate the pathophysiology of human tumors using experimental tumor models. The investigation of the available models is a necessary tool in order to choose the most appropriate scheme which serves the translation of potential treatments from a primary experimental bench to the clinical settings. The most suitable murine models of bladder cancer should have excellent reproductivity, intravesical predictability, and accessibility in order to facilitate the mechanistic, chemo-preventive, and therapeutic research that can be expanded into clinical trials. This article provides a complete evaluation of both and bladder cancer models, comparing their advantages and limitations in urological research.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/nemj/10.2174/0250688204666230713093742
2024-01-01
2025-05-31
The full text of this item is not currently available.

References

  1. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.2149230207593
    [Google Scholar]
  2. CumberbatchM.G.K. JubberI. BlackP.C. EspertoF. FigueroaJ.D. KamatA.M. KiemeneyL. LotanY. PangK. SilvermanD.T. ZnaorA. CattoJ.W.F. Epidemiology of bladder cancer: A systematic review and contemporary update of risk factors in 2018.Eur. Urol.201874678479510.1016/j.eururo.2018.09.00130268659
    [Google Scholar]
  3. ChamieK. LitwinM.S. BassettJ.C. DaskivichT.J. LaiJ. HanleyJ.M. KonetyB.R. SaigalC.S. Recurrence of high-risk bladder cancer: A population-based analysis.Cancer2013119173219322710.1002/cncr.2814723737352
    [Google Scholar]
  4. JamesN.D. HussainS.A. HallE. JenkinsP. TremlettJ. RawlingsC. CrundwellM. SizerB. SreenivasanT. HendronC. LewisR. WatersR. HuddartR.A. Radiotherapy with or without chemotherapy in muscle-invasive bladder cancer.N. Engl. J. Med.2012366161477148810.1056/NEJMoa110610622512481
    [Google Scholar]
  5. JohnB.A. SaidN. Insights from animal models of bladder cancer: Recent advances, challenges, and opportunities.Oncotarget2017834577665778110.18632/oncotarget.1771428915710
    [Google Scholar]
  6. ZhangN. LiD. ShaoJ. WangX. Animal models for bladder cancer: The model establishment and evaluation (Review).Oncol. Lett.2015941515151910.3892/ol.2015.288825788992
    [Google Scholar]
  7. ElliottA.Y. BronsonD.L. SteinN. FraleyE.E. In vitro cultivation of epithelial cells derived from tumors of the human urinary tract.Cancer Res.1976362 Pt 1365369944089
    [Google Scholar]
  8. GrossmanH.B. WedemeyerG. RenL. WilsonG.N. CoxB. Improved growth of human urothelial carcinoma cell cultures.J. Urol.1986136495395910.1016/S0022‑5347(17)45139‑13761468
    [Google Scholar]
  9. HuygensA. HuygheD. BormansG. VerbruggenA. KamuhabwaA.R. RoskamsT. de WitteP.A.M. Accumulation and photocytotoxicity of hypericin and analogs in two- and three-dimensional cultures of transitional cell carcinoma cells.Photochem. Photobiol.200378660761410.1562/0031‑8655(2003)078<0607:AAPOHA>2.0.CO;214743871
    [Google Scholar]
  10. KnüchelR. HofstädterF. FeichtingerJ. RecktenwaldA. FrankeR.P. HollwegH. RübbenH. RammalE. JakseG. Multicellular bladder tumor spheroids in coculture with human endothelial cell monolayers.Urol. Int.198742317618010.1159/0002818903617253
    [Google Scholar]
  11. ReeseD.H. FriedmanR.D. SmithJ.M. SpornM.B. Organ culture of normal and carcinogen-treated rat bladder.Cancer Res.1976367 PT 2252525271277161
    [Google Scholar]
  12. PodeD. AlonY. HorowitzA.T. VlodavskyI. BiranS. The mechanism of human bladder tumor implantation in an in vitro model.J. Urol.1986136248248610.1016/S0022‑5347(17)44926‑33525861
    [Google Scholar]
  13. RebelJ.M. de BoerW.I. ThijssenC.D. VermeyM. ZwarthoffE.C. An in vitro model of intra-epithelial expansion of transformed urothelial cells.Int J Cancer199354584685010.1002/ijc.29105405208325710
    [Google Scholar]
  14. RebelJ.M. BoerW.I.D. ThijssenC.D. VermeyM. ZwarthoffE.C. An in vitro model of urothelial regeneration: Effects of growth factors and extracellular matrix proteins.J Pathol1994173328329110.1002/path.17117303127523645
    [Google Scholar]
  15. FujiyamaC. MasakiZ. SugiharaH. Reconstruction of the urinary bladder mucosa in three-dimensional collagen gel culture: fibroblast-extracellular matrix interactions on the differentiation of transitional epithelial cells.J. Urol.199515362060206710.1016/S0022‑5347(01)67402‑07752394
    [Google Scholar]
  16. NakamuraK. FujiyamaC. TokudaY. SugiharaH. MasakiZ. Bladder cancer cell implantation in reconstructed bladder in vitro: A model of tumour recurrence.BJU Int.200289111912510.1046/j.1464‑410X.2002.02522.x11849176
    [Google Scholar]
  17. MartiA. LangeN. Van Den BerghH. SedmeraD. JichlinskiP. KuceraP. Optimisation of the formation and distribution of protoporphyrin IX in the urothelium: An in vitro approach.J. Urol.1999162254655210.1016/S0022‑5347(05)68625‑910411086
    [Google Scholar]
  18. van de MerbelA.F. van der HorstG. van der MarkM.H. van UhmJ.I.M. van GennepE.J. KloenP. BeimersL. PelgerR.C.M. van der PluijmG. An ex vivo tissue culture model for the assessment of individualized drug responses in prostate and bladder cancer.Front. Oncol.2018840010.3389/fonc.2018.0040030333957
    [Google Scholar]
  19. BoormanG.A. HollanderC.F. High incidence of spontaneous urinary bladder and ureter tumors in the brown Norway rat.J. Natl. Cancer Inst.19745231005100810.1093/jnci/52.3.10054826551
    [Google Scholar]
  20. BoormanG.A. Animal model of human disease: Carcinoma of the ureter and urinary bladder.Am. J. Pathol.1977881251254879270
    [Google Scholar]
  21. DeerbergF. RehmS. JostmeyerH.H. Spontaneous urinary bladder tumors in DA/Han rats: A feasible model of human bladder cancer.J. Natl. Cancer Inst.1985756111311213865013
    [Google Scholar]
  22. HueperW.E. WileyF.H. WolfeH.D. Experimental production of bladder tumors in dogs by administration of beta-naphthylamine.J. Ind. Hyg. Toxicol.19382046
    [Google Scholar]
  23. DruckreyH. PreussmannR. IvankovicS. SchmidtC.H. MennelH.D. StahlK.W. Selective induction of bladder cancer in rats by dibutyl- and N-Butyl-N-Butanol(4)-Nitrosamine.Z. Krebsforsch.19646628029010.1007/BF0052415614331516
    [Google Scholar]
  24. HermanC.J. VegtP.D. DebruyneF.M. VooijsG.P. RamaekersF.C. Squamous and transitional elements in rat bladder carcinomas induced by N-butyl-N-4-hydroxybutyl-nitrosamine (BBN). A study of cytokeratin expression.Am J Pathol198512034194262412446
    [Google Scholar]
  25. HicksR.M. WakefieldJ.S. Rapid induction of bladder cancer in rats with N-methyl-N-nitrosourea. I. Histology.Chem. Biol. Interact.19725213915210.1016/0009‑2797(72)90040‑35041565
    [Google Scholar]
  26. OyasuR. IwasakiT. MatsumotoM. HiraoY. TabuchiY. Induction of tumors in heterotopic bladder by topical application of N-methyl-N-nitrosourea and N-butyl-N-(3-carboxypropyl)nitrosamine.Cancer Res.197838930193025679209
    [Google Scholar]
  27. WakefieldJ.S.J. HicksR.M. Bladder cancer and N-methyl-N-nitrosourea II. Sub-cellular changes associated with a single noncarcinogenic dose of MNU.Chem. Biol. Interact.19737316517910.1016/0009‑2797(73)90031‑84129199
    [Google Scholar]
  28. ErtürkE. AtassiS.A. YoshidaO. CohenS.M. PriceJ.M. BryanG.T. Comparative urinary and gallbladder carcinogenicity of N-(4-(5-nitro-2-furyl)-2-thiazolyl)formamide and N-(4-(5-nitro-2-furyl)-2-thiazolyl)acetamide in the dog.J. Natl. Cancer Inst.19704535355424331642
    [Google Scholar]
  29. ErtürkE. CohenS.M. BryanG.T. Urinary bladder carcinogenicity of N-[4-(5-nitro-2-furyl)-2-thiazolyl] formamide in female Swiss mice.Cancer Res.1970305130913115426933
    [Google Scholar]
  30. ErtürkE. CohenS.M. PriceJ.M. BryanG.T. Pathogenesis, histology, and transplantability of urinary bladder carcinomas induced in albino rats by oral administration of N-(4-(5-nitro-2-furyl)-2-thiazolyl)formamide.Cancer Res.19692912221922285387262
    [Google Scholar]
  31. ErtürkE. PriceJ.M. MorrisJ.E. CohenS. LeithR.S. Von EschA.M. CrovettiA.J. The production of carcinoma of the urinary bladder in rats by feeding N-[3-(5-nitro-2-furyl)-2-thiazolyl]formamide.Cancer Res.19672711199820026073497
    [Google Scholar]
  32. OldroydR.I. PooleR.R. ReedR.R. LawsonR.K. HodgesC.V. An animal model for the growth of human tumor cell lines.Invest. Urol.197714643443967097
    [Google Scholar]
  33. RussellP.J. RaghavanD. PhilipsJ. GregoryP. Applications of the xenograft as a model of invasive transitional cell carcinoma of the bladder.Prog. Clin. Biol. Res.19882601671813362878
    [Google Scholar]
  34. AhleringT.E. DubeauL. JonesP.A. A new in vivo model to study invasion and metastasis of human bladder carcinoma.Cancer Res.19874724 Pt 1666066653677100
    [Google Scholar]
  35. OshinskyG.S. ChenY. JarrettT. AndersonA.E. WeissG.H. A model of bladder tumor xenografts in the nude rat.J. Urol.199515451925192910.1016/S0022‑5347(01)66827‑77563385
    [Google Scholar]
  36. OyasuR. ManningD.J. MatsumotoM. HoppM.L. Heterotopic urinary bladder with a communicating reservoir.Cancer Res.1976367 PT 1226122671277130
    [Google Scholar]
  37. MeiH. HagenI.K. AllhoffE.P. LinJ.C. ChapmanC.M. ProppeK.H. ProutG.R.Jr LinC. Rat bladder isograft model for focal carcinoma.J. Urol.1982128362963210.1016/S0022‑5347(17)53081‑57120581
    [Google Scholar]
  38. HarzmannR. GerickeD. BichlerK.H. AltenährE. A transplantable tumor of the urinary bladder in rabbits.Invest. Urol.1979173181185500312
    [Google Scholar]
  39. IbrahiemE.H. NigamV.N. BrailovskyC.A. MadarnasP. ElhilaliM. Orthotopic implantation of primary N-[4-(5-Nitro-2-furyl)-2-thiazolyl]formamide-induced bladder cancer in bladder submucosa: an animal model for bladder cancer study.Cancer Res.19834326176226848183
    [Google Scholar]
  40. JiangF. ZhouX.M. A model of orthotopic murine bladder (MBT-2) tumor implants.Urol. Res.199725317918210.1007/BF009419799228669
    [Google Scholar]
  41. IinumaS. SchomackerK.T. WagnieresG. RajadhyakshaM. BambergM. MommaT. HasanT. In vivo fluence rate and fractionation effects on tumor response and photobleaching: Photodynamic therapy with two photosensitizers in an orthotopic rat tumor model.Cancer Res.199959246164617010626808
    [Google Scholar]
  42. IinumaS. BachorR. FlotteT. HasanT. Biodistribution and phototoxicity of 5-aminolevulinic acid-induced PpIX in an orthotopic rat bladder tumor model.J. Urol.1995153380280610.1016/S0022‑5347(01)67726‑77861543
    [Google Scholar]
  43. GüntherJ.H. JurczokA. WulfT. BrandauS. DeinertI. JochamD. BöhleA. Optimizing syngeneic orthotopic murine bladder cancer (MB49).Cancer Res.199959122834283710383142
    [Google Scholar]
  44. SolowayM.S. NissenkornI. McCallumL. Urothelial susceptibility to tumor cell implantation: Comparison of cauterization with N-methyl-N-nitrosourea.Urology198321215916110.1016/0090‑4295(83)90013‑46337445
    [Google Scholar]
  45. SolowayM.S. MastersS. Urothelial susceptibility to tumor cell implantation influence of cauterization.Cancer19804651158116310.1002/1097‑0142(19800901)46:5<1158::AID‑CNCR2820460514>3.0.CO;2‑E7214299
    [Google Scholar]
  46. BezdetnayaL. ZeghariN. BelitchenkoI. Barberl-HeyobM. MerlinJ.L. PotapenkoA. GullleminF. Spectroscopic and biological testing of photobleaching of porphyrins in solutions.Photochem. Photobiol.199664238238610.1111/j.1751‑1097.1996.tb02475.x8760578
    [Google Scholar]
  47. ChinJ. KadhimS. GarciaB. KimY.S. KarlikS. Magnetic resonance imaging for detecting and treatment monitoring of orthotopic murine bladder tumor implants.J. Urol.199114561297130110.1016/S0022‑5347(17)38618‑42033720
    [Google Scholar]
  48. XiaoZ. McCallumT.J. BrownK.M. MillerG.G. HallsS.B. ParneyI. MooreR.B. Characterization of a novel transplantable orthotopic rat bladder transitional cell tumour model.Br. J. Cancer199981463864610.1038/sj.bjc.669074110574249
    [Google Scholar]
  49. BissonJ.F. ParacheR.M. DroulleP. NotterD. VigneronC. GuilleminF. A new method of implanting orthotopic rat bladder tumor for experimental therapies.Int. J. Cancer2002102328028510.1002/ijc.1059512397652
    [Google Scholar]
  50. El KhatibS. BerrahmouneS. LerouxA. BezdetnayaL. GuilleminF. D’HallewinM.A. A novel orthotopic bladder tumor model with predictable localization of a solitary tumor.Cancer Biol. Ther.20065101327133110.4161/cbt.5.10.321416969083
    [Google Scholar]
  51. BissonJ.F. ChristopheM. Padilla-YbarraJ.J. NotterD. VigneronC. GuilleminF. Determination of the maximal tumor:normal bladder ratio after i.p. or bladder administration of 5-aminolevulinic acid in Fischer 344 rats by fluorescence spectroscopy in situ.Anticancer Drugs200213885185710.1097/00001813‑200209000‑0001112394271
    [Google Scholar]
/content/journals/nemj/10.2174/0250688204666230713093742
Loading
/content/journals/nemj/10.2174/0250688204666230713093742
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test