Skip to content
2000
image of Phosphodiesterase Inhibitors for Diabetes: From Mechanistic Insights to Therapeutic Innovations

Abstract

Phosphodiesterase inhibitors (PDEIs) have emerged as potential agents in managing diabetes, offering novel avenues for therapeutic intervention. This comprehensive review explores the diverse mechanisms, clinical applications, and the evolving landscape of phosphodiesterase inhibitors in the context of diabetes mellitus. The molecular mechanisms underlying the impact of PDEIs on diabetes form a cornerstone of this review. PDEs, a family of enzymes that regulate cyclic nucleotide levels, play a crucial role in intracellular signaling cascades. Understanding these intricate mechanisms is essential for unraveling the therapeutic potential of PDEIs in diabetes. Clinical applications of PDEIs in diabetes management are explored, highlighting their multifaceted roles. The review discusses pivotal preclinical and clinical studies that showcase the efficacy of PDEIs in lowering hyperglycemia, enhancing lipid profiles, and averting diabetic sequelae such as neuropathy and nephropathy. Moreover, synergistic effects have been shown in combination therapy, including PDEIs and already available antidiabetic drugs, improving overall therapeutic effectiveness. Recent studies have unveiled new PDE targets and refined inhibitor designs, contributing to the continuous evolution of this therapeutic approach. Despite these advancements, issues with patient-specific responses, dose optimization, and long-term safety still exist. The necessity of further study into PDEIs, particularly their role in customized medicine for the treatment of diabetes, is emphasized in the review's conclusion. The creation of next-generation PDE inhibitors with higher metabolic benefits, fewer side effects, and better selectivity is one of the future goals.

Furthermore, the review delves into the prospects of PDEIs in diabetes management. It explores emerging technologies, such as targeted drug delivery systems and precision medicine, that aim to enhance the therapeutic efficacy of PDEIs while minimizing adverse effects. The potential role of PDEIs in addressing specific diabetes subtypes and complications, including diabetic neuropathy and cardiovascular complications, is also contemplated.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/nemj/10.2174/0102506882344901241218070917
2024-12-24
2025-01-19
Loading full text...

Full text loading...

/deliver/fulltext/nemj/10.2174/0102506882344901241218070917/e02506882344901.html?itemId=/content/journals/nemj/10.2174/0102506882344901241218070917&mimeType=html&fmt=ahah

References

  1. Mezil S.A. Abed B.A. Complication of diabetes mellitus. Ann. Rom. Soc. Cell Biol. 2021 1546 1556
    [Google Scholar]
  2. Zhang Y. Lazzarini P.A. McPhail S.M. van Netten J.J. Armstrong D.G. Pacella R.E. Global disability burdens of diabetes-related lower-extremity complications in 1990 and 2016. Diabetes Care 2020 43 5 964 974 10.2337/dc19‑1614 32139380
    [Google Scholar]
  3. John S. Complication in diabetic nephropathy. Diabetes Metab. Syndr. 2016 10 4 247 249 10.1016/j.dsx.2016.06.005 27389078
    [Google Scholar]
  4. Mourad N.I. Nenquin M. Henquin J.C. cAMP-mediated and metabolic amplification of insulin secretion are distinct pathways sharing independence of β-cell microfilaments. Endocrinology 2012 153 10 4644 4654 10.1210/en.2012‑1450 22948217
    [Google Scholar]
  5. Straub S.G. Sharp G.W.G. Hypothesis: One rate-limiting step controls the magnitude of both phases of glucose-stimulated insulin secretion. Am. J. Physiol. Cell Physiol. 2004 287 3 C565 C571 10.1152/ajpcell.00079.2004 15308461
    [Google Scholar]
  6. Henquin J.C. Regulation of insulin secretion: A matter of phase control and amplitude modulation. Diabetologia 2009 52 5 739 751 10.1007/s00125‑009‑1314‑y 19288076
    [Google Scholar]
  7. Tengholm A. Cyclic AMP dynamics in the pancreatic β-cell. Ups. J. Med. Sci. 2012 117 4 355 369 10.3109/03009734.2012.724732 22970724
    [Google Scholar]
  8. Hellman B. Pulsatility of insulin release – A clinically important phenomenon. Ups. J. Med. Sci. 2009 114 4 193 205 10.3109/03009730903366075 19961265
    [Google Scholar]
  9. Renström E. Eliasson L. Rorsman P. Protein kinase A‐dependent and ‐Independent stimulation of exocytosis by cAMP in mouse pancreatic B‐cells. J. Physiol. 1997 502 1 105 118 10.1111/j.1469‑7793.1997.105bl.x 9234200
    [Google Scholar]
  10. Härndahl L. Jing X.J. Ivarsson R. Degerman E. Ahrén B. Manganiello V.C. Renström E. Holst L.S. Important role of phosphodiesterase 3B for the stimulatory action of cAMP on pancreatic β-cell exocytosis and release of insulin. J. Biol. Chem. 2002 277 40 37446 37455 10.1074/jbc.M205401200 12169692
    [Google Scholar]
  11. Owen D.R. Pandit J. Darout E. Menhaji-Klotz E. Chappie T.A. Verhoest P. Pollastri M.P. Bell A.S. Liras S. Phosphodiesterases and Their Inhibitors. Wiley-VCH 2014
    [Google Scholar]
  12. Amsallem E. Kasparian C. Haddour G. Boissel J.P. Nony P. Phosphodiesterase III inhibitors for heart failure. Cochrane Database Syst. Rev. 2005 2005 1 CD002230 15674893
    [Google Scholar]
  13. Doherty A.M. Phosphodiesterase 4 inhibitors as novel anti-inflammatory agents. Curr. Opin. Chem. Biol. 1999 3 4 466 473 10.1016/S1367‑5931(99)80068‑4 10419856
    [Google Scholar]
  14. Huang Z. Ducharme Y. Macdonald D. Robichaud A. The next generation of PDE4 inhibitors. Curr. Opin. Chem. Biol. 2001 5 4 432 438 10.1016/S1367‑5931(00)00224‑6 11470607
    [Google Scholar]
  15. Milani E. Nikfar S. Khorasani R. Zamani M.J. Abdollahi M. Reduction of diabetes-induced oxidative stress by phosphodiesterase inhibitors in rats. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2005 140 2 251 255 10.1016/j.cca.2005.02.010 15907769
    [Google Scholar]
  16. Thapa K. Singh T.G. Kaur A. Cyclic nucleotide phosphodiesterase inhibition as a potential therapeutic target in renal ischemia reperfusion injury. Life Sci. 2021 282 119843 10.1016/j.lfs.2021.119843 34298037
    [Google Scholar]
  17. Rahnama’i M.S. Ückert S. Hohnen R. van Koeveringe G.A. The role of phosphodiesterases in bladder pathophysiology. Nat. Rev. Urol. 2013 10 7 414 424 10.1038/nrurol.2013.101 23670184
    [Google Scholar]
  18. Duman R. S. Nestler E. J. Cyclic Nucleotides. Basic Neurochemistry: Molecular, Cellular and Medical Aspects Lippincott-Raven Philadelphia 1999
    [Google Scholar]
  19. Arora K. Sinha C. Zhang W. Ren A. Moon C.S. Yarlagadda S. Naren A.P. Compartmentalization of cyclic nucleotide signaling: A question of when, where, and why? Pflugers Arch. 2013 465 10 1397 1407 10.1007/s00424‑013‑1280‑6 23604972
    [Google Scholar]
  20. Pyne N.J. Furman B.L. Cyclic nucleotide phosphodiesterases in pancreatic islets. Diabetologia 2003 46 9 1179 1189 10.1007/s00125‑003‑1176‑7 12904862
    [Google Scholar]
  21. Waddleton D. Wu W. Feng Y. Thompson C. Wu M. Zhou Y.P. Howard A. Thornberry N. Li J. Mancini J.A. Phosphodiesterase 3 and 4 comprise the major cAMP metabolizing enzymes responsible for insulin secretion in INS-1 (832/13) cells and rat islets. Biochem. Pharmacol. 2008 76 7 884 893 10.1016/j.bcp.2008.07.025 18706893
    [Google Scholar]
  22. Xie T. Chen M. Zhang Q.H. Ma Z. Weinstein L.S. β cell-specific deficiency of the stimulatory G protein α-subunit G s α leads to reduced β cell mass and insulin-deficient diabetes. Proc. Natl. Acad. Sci. USA 2007 104 49 19601 19606 10.1073/pnas.0704796104 18029451
    [Google Scholar]
  23. Schwenkgrub J. Zaremba M. Joniec-Maciejak I. Cudna A. Mirowska-Guzel D. Kurkowska-Jastrzębska I. The phosphodiesterase inhibitor, ibudilast, attenuates neuroinflammation in the MPTP model of parkinson’s disease. PLoS One 2017 12 7 e0182019 10.1371/journal.pone.0182019 28753652
    [Google Scholar]
  24. Patra C. Foster K. Corley J. E. Dimri M. Brady M. F. Biochemistry, Cyclic GMP. StatPearls Treasure Island (FL) 2018
    [Google Scholar]
  25. Pasmanter N. Iheanacho F. Hashmi M.F. Biochemistry. Cyclic GMP 2019
    [Google Scholar]
  26. Ookawara M. Nio Y. Phosphodiesterase 4 inhibitors in diabetic nephropathy. Cell. Signal. 2022 90 110185 10.1016/j.cellsig.2021.110185 34785349
    [Google Scholar]
  27. Dhaliwal A. Gupta M. PDE5 inhibitors. StatPearls Publishing 2023
    [Google Scholar]
  28. Singh V. A comprehensive study on the impact of yoga on diabetes. 2022
    [Google Scholar]
  29. MZ Banday Pathophysiology of diabetes: An overview. Avicenna J Med 2020 10 4 174 188
    [Google Scholar]
  30. Pihoker C. Gilliam L.K. Hampe C.S. Lernmark Å. Autoantibodies in diabetes. Diabetes 2005 54 Suppl. 2 S52 S61 10.2337/diabetes.54.suppl_2.S52 16306341
    [Google Scholar]
  31. Atkinson M.A. Eisenbarth G.S. Type 1 diabetes: New perspectives on disease pathogenesis and treatment. Lancet 2001 358 9277 221 229 10.1016/S0140‑6736(01)05415‑0 11476858
    [Google Scholar]
  32. Skyler J.S. Bakris G.L. Bonifacio E. Darsow T. Eckel R.H. Groop L. Groop P.H. Handelsman Y. Insel R.A. Mathieu C. McElvaine A.T. Palmer J.P. Pugliese A. Schatz D.A. Sosenko J.M. Wilding J.P.H. Ratner R.E. Differentiation of diabetes by pathophysiology, natural history, and prognosis. Diabetes 2017 66 2 241 255 10.2337/db16‑0806 27980006
    [Google Scholar]
  33. DeFronzo R.A. The triumvirate: β-cell, muscle, liver. A collusion responsible for NIDDM. Diabetes 1988 37 6 667 687 10.2337/diab.37.6.667 3289989
    [Google Scholar]
  34. DEFRONZO Pathogenesis of type2 daiabetes: Metabolic and molecular implications for identhfying diabetes genes. Diabetes Rev. 1997 5 177 269
    [Google Scholar]
  35. DeFronzo R.A. Pathogenesis of type 2 diabetes mellitus. Med. Clin. North Am. 2004 88 4 787 835, ix 10.1016/j.mcna.2004.04.013 15308380
    [Google Scholar]
  36. Abdul-Ghani M.A. DeFronzo R.A. Mitochondrial dysfunction, insulin resistance, and type 2 diabetes mellitus. Curr. Diab. Rep. 2008 8 3 173 178 10.1007/s11892‑008‑0030‑1 18625112
    [Google Scholar]
  37. Banerji M.A. Lebovitz H.E. Insulin action in black Americans with NIDDM. Diabetes Care 1992 15 10 1295 1302 10.2337/diacare.15.10.1295 1425092
    [Google Scholar]
  38. Miyazaki Y. Mahankali A. Matsuda M. Mahankali S. Hardies J. Cusi K. Mandarino L.J. DeFronzo R.A. Effect of pioglitazone on abdominal fat distribution and insulin sensitivity in type 2 diabetic patients. J. Clin. Endocrinol. Metab. 2002 87 6 2784 2791 10.1210/jcem.87.6.8567 12050251
    [Google Scholar]
  39. Cersosimo E. DeFronzo R.A. Insulin resistance and endothelial dysfunction: The road map to cardiovascular diseases. Diabetes Metab. Res. Rev. 2006 22 6 423 436 10.1002/dmrr.634 16506274
    [Google Scholar]
  40. Reaven G.M. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 1988 37 12 1595 1607 10.2337/diab.37.12.1595 3056758
    [Google Scholar]
  41. DeFronzo R.A. Ferrannini E. Insulin resistance. A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care 1991 14 3 173 194 10.2337/diacare.14.3.173 2044434
    [Google Scholar]
  42. DeSisto C. L. Kim S. Y. Sharma A. J. Prevalence estimates of gestational diabetes mellitus in the United States, pregnancy risk assessment monitoring system (PRAMS), 2007-2010. Prev Chronic Dis 2014 11 E104
    [Google Scholar]
  43. Bhattamisra S.K. Siang T.C. Rong C.Y. Annan N.C. Sean E.H.Y. Xi L.W. Lyn O.S. Shan L.H. Choudhury H. Pandey M. Gorain B. Type-3c diabetes mellitus, diabetes of exocrine pancreas-an update. Curr. Diabetes Rev. 2019 15 5 382 394 10.2174/1573399815666190115145702 30648511
    [Google Scholar]
  44. Naik R.G. Palmer J.P. Latent autoimmune diabetes in adults (LADA). Rev. Endocr. Metab. Disord. 2003 4 3 233 241 10.1023/A:1025148211587 14501174
    [Google Scholar]
  45. Aguilar-Bryan L. Bryan J. Neonatal diabetes mellitus. Endocr. Rev. 2008 29 3 265 291 10.1210/er.2007‑0029 18436707
    [Google Scholar]
  46. Tattersall R. Brittle diabetes. BMJ 1985 291 6495 555 557 10.1136/bmj.291.6495.555 3929870
    [Google Scholar]
  47. Haak T. Gölz S. Fritsche A. Füchtenbusch M. Siegmund T. Schnellbächer E. Droßel D. Therapy of type 1 diabetes. Exp. Clin. Endocrinol. Diabetes 2019 127 S 01 S27 S38
    [Google Scholar]
  48. Rojas J. Bermudez V. Palmar J. Martínez M.S. Olivar L.C. Nava M. Tomey D. Rojas M. Salazar J. Garicano C. Velasco M. Pancreatic beta cell death: Novel potential mechanisms in diabetes therapy. J. Diabetes Res. 2018 2018 1 19 10.1155/2018/9601801 29670917
    [Google Scholar]
  49. Malik A. Morya R.K. Bhadada S.K. Rana S. Type 1 diabetes mellitus: Complex interplay of oxidative stress, cytokines, gastrointestinal motility and small intestinal bacterial overgrowth. Eur. J. Clin. Invest. 2018 48 11 e13021 10.1111/eci.13021 30155878
    [Google Scholar]
  50. Cnop M. Welsh N. Jonas J.C. Jörns A. Lenzen S. Eizirik D.L. Mechanisms of pancreatic β-cell death in type 1 and type 2 diabetes: Many differences, few similarities. Diabetes 2005 54 Suppl. 2 S97 S107 10.2337/diabetes.54.suppl_2.S97 16306347
    [Google Scholar]
  51. Souness J.E. Aldous D. Sargent C. Immunosuppressive and anti-inflammatory effects of cyclic AMP phosphodiesterase (PDE) type 4 inhibitors. Immunopharmacology 2000 47 2-3 127 162 10.1016/S0162‑3109(00)00185‑5 10878287
    [Google Scholar]
  52. Agrawal N. Maiti R. Dash D. Pandey B. Cilostazol reduces inflammatory burden and oxidative stress in hypertensive type 2 diabetes mellitus patients. Pharmacol. Res. 2007 56 2 118 123 10.1016/j.phrs.2007.04.007 17548203
    [Google Scholar]
  53. Miller M. Phosphodiesterase inhibition in the treatment of autoimmune and inflammatory diseases: Current status and potential. J. Receptor Ligand Channel Res. 2014 19 30 10.2147/JRLCR.S50401
    [Google Scholar]
  54. Byun H.R. Choi J.A. Koh J.Y. The role of metallothionein-3 in streptozotocin-induced beta-islet cell death and diabetes in mice. Metallomics 2014 6 9 1748 1757 10.1039/C4MT00143E 25054451
    [Google Scholar]
  55. Beshay E. Prud’homme G.J. Inhibitors of phosphodiesterase isoforms III or IV suppress islet-cell nitric oxide production. Lab. Invest. 2001 81 8 1109 1117 10.1038/labinvest.3780323 11502862
    [Google Scholar]
  56. Petersen M.C. Shulman G.I. Mechanisms of insulin action and insulin resistance. Physiol. Rev. 2018 98 4 2133 2223 10.1152/physrev.00063.2017 30067154
    [Google Scholar]
  57. Kahn S.E. Hull R.L. Utzschneider K.M. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 2006 444 7121 840 846 10.1038/nature05482 17167471
    [Google Scholar]
  58. Hill K.D. Eckhauser A.W. Marney A. Brown N.J. Phosphodiesterase 5 inhibition improves β-cell function in metabolic syndrome. Diabetes Care 2009 32 5 857 859 10.2337/dc08‑1862 19196886
    [Google Scholar]
  59. Aamodt K.I. Aramandla R. Brown J.J. Fiaschi-Taesch N. Wang P. Stewart A.F. Brissova M. Powers A.C. Development of a reliable automated screening system to identify small molecules and biologics that promote human β-cell regeneration. Am. J. Physiol. Endocrinol. Metab. 2016 311 5 E859 E868 10.1152/ajpendo.00515.2015 27624103
    [Google Scholar]
  60. Erukainure O.L. Ijomone O.M. Oyebode O.A. Chukwuma C.I. Aschner M. Islam M.S. Hyperglycemia-induced oxidative brain injury: Therapeutic effects of Cola nitida infusion against redox imbalance, cerebellar neuronal insults, and upregulated Nrf2 expression in type 2 diabetic rats. Food Chem. Toxicol. 2019 127 206 217 10.1016/j.fct.2019.03.044 30914353
    [Google Scholar]
  61. Wang J. Wang H. Oxidative stress in pancreatic beta cell regeneration. Oxid. Med. Cell. Longev. 2017 2017 1 1930261 10.1155/2017/1930261 28845211
    [Google Scholar]
  62. Muhammed S.J. Lundquist I. Salehi A. Pancreatic β‐cell dysfunction, expression of iNOS and the effect of phosphodiesterase inhibitors in human pancreatic islets of type 2 diabetes. Diabetes Obes. Metab. 2012 14 11 1010 1019 10.1111/j.1463‑1326.2012.01632.x 22687049
    [Google Scholar]
  63. Boswell-Smith V. Spina D. Page C.P. Phosphodiesterase inhibitors. Br. J. Pharmacol. 2006 147 Suppl 1 Suppl. 1 S252 S257 16402111
    [Google Scholar]
  64. Aversa A. Systemic and metabolic effects of PDE5-inhibitor drugs. World J. Diabetes 2010 1 1 3 7 10.4239/wjd.v1.i1.3 21537421
    [Google Scholar]
  65. Sandner P. From molecules to patients: Exploring the therapeutic role of soluble guanylate cyclase stimulators. Biol. Chem. 2018 399 7 679 690 10.1515/hsz‑2018‑0155 29604206
    [Google Scholar]
  66. Marampon F. Antinozzi C. Corinaldesi C. Vannelli G.B. Sarchielli E. Migliaccio S. Di Luigi L. Lenzi A. Crescioli C. The phosphodiesterase 5 inhibitor tadalafil regulates lipidic homeostasis in human skeletal muscle cell metabolism. Endocrine 2018 59 3 602 613 10.1007/s12020‑017‑1378‑2 28786077
    [Google Scholar]
  67. Aversa A. Fittipaldi S. Francomano D. Bimonte V.M. Greco E.A. Crescioli C. Di Luigi L. Lenzi A. Migliaccio S. Tadalafil improves lean mass and endothelial function in nonobese men with mild ED/LUTS: in vivo and in vitro characterization. Endocrine 2017 56 3 639 648 10.1007/s12020‑016‑1208‑y 28133708
    [Google Scholar]
  68. Santi D. Locaso M. Granata A.R. Trenti T. Roli L. Pacchioni C. Rochira V. Carani C. Simoni M. Could chronic Vardenafil administration influence the cardiovascular risk in men with type 2 diabetes mellitus? PLoS One 2018 13 6 e0199299 10.1371/journal.pone.0199299 29953477
    [Google Scholar]
  69. Antinozzi C. Sgrò P. Di Luigi L. Advantages of phosphodiesterase type 5 inhibitors in the management of glucose metabolism disorders: A clinical and translational issue. Int. J. Endocrinol. 2020 2020 1 8 10.1155/2020/7078108 32774364
    [Google Scholar]
  70. Ho J.E. Arora P. Walford G.A. Ghorbani A. Guanaga D.P. Dhakal B.P. Nathan D.I. Buys E.S. Florez J.C. Newton-Cheh C. Lewis G.D. Wang T.J. Effect of phosphodiesterase inhibition on insulin resistance in obese individuals. J. Am. Heart Assoc. 2014 3 5 e001001 10.1161/JAHA.114.001001 25213566
    [Google Scholar]
  71. Nyström T. Ortsäter H. Huang Z. Zhang F. Larsen F.J. Weitzberg E. Lundberg J.O. Sjöholm Å. Inorganic nitrite stimulates pancreatic islet blood flow and insulin secretion. Free Radic. Biol. Med. 2012 53 5 1017 1023 10.1016/j.freeradbiomed.2012.06.031 22750508
    [Google Scholar]
  72. Bergandi L. Silvagno F. Russo I. Riganti C. Anfossi G. Aldieri E. Ghigo D. Trovati M. Bosia A. Insulin stimulates glucose transport via nitric muscle cells. Arter. Thromb. Vasc Biol. 2003 23 2215 2221 10.1161/01.ATV.0000107028.20478.8e 14615391
    [Google Scholar]
  73. Johann K. Reis M.C. Harder L. Herrmann B. Gachkar S. Mittag J. Oelkrug R. Effects of sildenafil treatment on thermogenesis and glucose homeostasis in diet-induced obese mice. Nutr. Diabetes 2018 8 1 9 10.1038/s41387‑018‑0026‑0 29549244
    [Google Scholar]
  74. Holst J.J. Gromada J. Role of incretin hormones in the regulation of insulin secretion in diabetic and nondiabetic humans. Am. J. Physiol. Endocrinol. Metab. 2004 287 2 E199 E206 10.1152/ajpendo.00545.2003 15271645
    [Google Scholar]
  75. Nicholls D.G. The pancreatic β-cell: A bioenergetic perspective. Physiol. Rev. 2016 96 4 1385 1447 10.1152/physrev.00009.2016 27582250
    [Google Scholar]
  76. Francis S.H. Blount M.A. Corbin J.D. Mammalian cyclic nucleotide phosphodiesterases: Molecular mechanisms and physiological functions. Physiol. Rev. 2011 91 2 651 690 10.1152/physrev.00030.2010 21527734
    [Google Scholar]
  77. Xie W. Ye Y. Feng Y. Xu T. Huang S. Shen J. Leng Y. Linderane suppresses hepatic gluconeogenesis by inhibiting the cAMP/PKA/CREB pathway through indirect activation of PDE 3 via ERK/STAT3. Front. Pharmacol. 2018 9 476 10.3389/fphar.2018.00476 29867482
    [Google Scholar]
  78. Johanns M. Lai Y.C. Hsu M.F. Jacobs R. Vertommen D. Van Sande J. Dumont J.E. Woods A. Carling D. Hue L. Viollet B. Foretz M. Rider M.H. AMPK antagonizes hepatic glucagon-stimulated cyclic AMP signalling via phosphorylation-induced activation of cyclic nucleotide phosphodiesterase 4B. Nat. Commun. 2016 7 1 10856 10.1038/ncomms10856 26952277
    [Google Scholar]
  79. Meng S. Cao J. He Q. Xiong L. Chang E. Radovick S. Wondisford F.E. He L. Metformin activates AMP-activated protein kinase by promoting formation of the αβγ heterotrimeric complex. J. Biol. Chem. 2015 290 6 3793 3802 10.1074/jbc.M114.604421 25538235
    [Google Scholar]
  80. Miller R.A. Chu Q. Xie J. Foretz M. Viollet B. Birnbaum M.J. Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP. Nature 2013 494 7436 256 260 10.1038/nature11808 23292513
    [Google Scholar]
  81. Murdolo G. Sjöstrand M. Strindberg L. Lönnroth P. Jansson P.A. The selective phosphodiesterase-5 inhibitor tadalafil induces microvascular and metabolic effects in type 2 diabetic postmenopausal females. J. Clin. Endocrinol. Metab. 2013 98 1 245 254 10.1210/jc.2012‑1830 23118430
    [Google Scholar]
  82. Jansson P.A. Murdolo G. Sjögren L. Nyström B. Sjöstrand M. Strindberg L. Lönnroth P. Tadalafil increases muscle capillary recruitment and forearm glucose uptake in women with type 2 diabetes. Diabetologia 2010 53 10 2205 2208 10.1007/s00125‑010‑1819‑4 20535445
    [Google Scholar]
  83. Mammi C. Pastore D. Lombardo M.F. Ferrelli F. Caprio M. Consoli C. Tesauro M. Gatta L. Fini M. Federici M. Sbraccia P. Donadel G. Bellia A. Rosano G.M. Fabbri A. Lauro D. Sildenafil reduces insulin-resistance in human endothelial cells. PLoS One 2011 6 1 e14542 10.1371/journal.pone.0014542 21297971
    [Google Scholar]
  84. Armani A. Marzolla V. Rosano G.M.C. Fabbri A. Caprio M. Phosphodiesterase type 5 (PDE5) in the adipocyte: A novel player in fat metabolism? Trends Endocrinol. Metab. 2011 22 10 404 411 10.1016/j.tem.2011.05.004 21741267
    [Google Scholar]
  85. Ayala J.E. Bracy D.P. Julien B.M. Rottman J.N. Fueger P.T. Wasserman D.H. Chronic treatment with sildenafil improves energy balance and insulin action in high fat-fed conscious mice. Diabetes 2007 56 4 1025 1033 10.2337/db06‑0883 17229936
    [Google Scholar]
  86. Ramirez C.E. Nian H. Yu C. Gamboa J.L. Luther J.M. Brown N.J. Shibao C.A. Treatment with sildenafil improves insulin sensitivity in prediabetes: A randomized, controlled trial. J. Clin. Endocrinol. Metab. 2015 100 12 4533 4540 10.1210/jc.2015‑3415 26580240
    [Google Scholar]
  87. Santi D. Giannetta E. Isidori A.M. Vitale C. Aversa A. Simoni M. Therapy of endocrine disease: Effects of chronic use of phosphodiesterase inhibitors on endothelial markers in type 2 diabetes mellitus: A meta-analysis. Eur. J. Endocrinol. 2015 172 3 R103 R114 10.1530/EJE‑14‑0700 25277671
    [Google Scholar]
  88. Phosphodiesterase inhibitors. 2021 Available from: https://my.clevelandclinic.org/health/treatments/23211-phosphodiesterase-inhibitors
  89. Rabe K.F. Watz H. Chronic obstructive pulmonary disease. Lancet 2017 389 10082 1931 1940 10.1016/S0140‑6736(17)31222‑9 28513453
    [Google Scholar]
  90. Papi A. Brightling C. Pedersen S.E. Reddel H.K. Asthma. Lancet 2018 391 10122 783 800 10.1016/S0140‑6736(17)33311‑1 29273246
    [Google Scholar]
  91. Spina D. Page C. P. Xanthines and phosphodiesterase inhibitors. Handb Exp Pharmacol 2017 237 63 91
    [Google Scholar]
  92. Cardiovascular diseases (CVDs). 2022 Available from: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
  93. Sun B. Li H. Shakur Y. Hensley J. Hockman S. Kambayashi J. Manganiello V. Liu Y. Role of phosphodiesterase type 3A and 3B in regulating platelet and cardiac function using subtype-selective knockout mice. Cell. Signal. 2007 19 8 1765 1771 10.1016/j.cellsig.2007.03.012 17482796
    [Google Scholar]
  94. Boehncke W.H. Schön M.P. Psoriasis. Lancet 2015 386 9997 983 994 10.1016/S0140‑6736(14)61909‑7 26025581
    [Google Scholar]
  95. Tollefson M.M. Bruckner A.L. Cohen B.A. Antaya R. Bruckner A. Horii K. Silverberg N.B. Wright T. Atopic dermatitis: Skin-directed management. Pediatrics 2014 134 6 e1735 e1744 10.1542/peds.2014‑2812 25422009
    [Google Scholar]
  96. Li H. Zuo J. Tang W. Phosphodiesterase-4 inhibitors for the treatment of inflammatory diseases. Front. Pharmacol. 2018 9 1048 10.3389/fphar.2018.01048 30386231
    [Google Scholar]
  97. Patai Z. Guttman A. Mikus E.G. Potential L-type voltage–operated calcium channel blocking effect of drotaverine on functional models. J. Pharmacol. Exp. Ther. 2016 359 3 442 451 10.1124/jpet.116.237271 27738091
    [Google Scholar]
  98. Atik A. Harding R. De Matteo R. Kondos-Devcic D. Cheong J. Doyle L.W. Tolcos M. Caffeine for apnea of prematurity: Effects on the developing brain. Neurotoxicology 2017 58 94 102 10.1016/j.neuro.2016.11.012 27899304
    [Google Scholar]
  99. Rundfeldt C. Socała K. Wlaź P. The atypical anxiolytic drug, tofisopam, selectively blocks phosphodiesterase isoenzymes and is active in the mouse model of negative symptoms of psychosis. J. Neural Transm. 2010 117 11 1319 1325 10.1007/s00702‑010‑0507‑3 20967473
    [Google Scholar]
  100. Vardi M. Nini A. Phosphodiesterase inhibitors for erectile dysfunction in patients with diabetes mellitus. Cochrane Libr. 2007 2009 1 CD002187 10.1002/14651858.CD002187.pub3 17253475
    [Google Scholar]
  101. Kloner R.A. Novel phosphodiesterase type 5 inhibitors: Assessing hemodynamic effects and safety parameters. Clin. Cardiol. 2004 27 S1 Suppl. 1 20 25 10.1002/clc.4960271306 15115192
    [Google Scholar]
  102. Snyder G. L. Vanover K. E. PDE inhibitors for the treatment of schizophrenia. Adv Neurobiol 2017 17 385 409
    [Google Scholar]
  103. Chen Y. Li S. Zhong X. Kang Z. Chen R. PDE-7 inhibitor BRL-50481 reduces neurodegeneration and long-term memory deficits in mice following sevoflurane exposure. ACS Chem. Neurosci. 2020 11 9 1353 1358 10.1021/acschemneuro.0c00106 32271540
    [Google Scholar]
  104. Kim H.J. Song J.Y. Park T.I. Choi W.S. Kim J.H. Kwon O.S. Lee J.Y. The effects of BRL-50481 on ovalbumin-induced asthmatic lung inflammation exacerbated by co-exposure to Asian sand dust in the murine model. Arch. Pharm. Res. 2022 45 1 51 62 10.1007/s12272‑021‑01367‑x 34984603
    [Google Scholar]
  105. Baillie G.S. Tejeda G.S. Kelly M.P. Therapeutic targeting of 3′,5′-cyclic nucleotide phosphodiesterases: Inhibition and beyond. Nat. Rev. Drug Discov. 2019 18 10 770 796 10.1038/s41573‑019‑0033‑4 31388135
    [Google Scholar]
  106. Halimi S. Schweizer A. Minic B. Foley J. Dejager S. Combination treatment in the management of type 2 diabetes: Focus on vildagliptin and metformin as a single tablet. Vasc. Health Risk Manag. 2008 4 3 481 492 18827867
    [Google Scholar]
  107. Zeynaloo E. Stone L.D. Dikici E. Ricordi C. Deo S.K. Bachas L.G. Daunert S. Lanzoni G. Delivery of therapeutic agents and cells to pancreatic islets: Towards a new era in the treatment of diabetes. Mol. Aspects Med. 2022 83 101063 10.1016/j.mam.2021.101063 34961627
    [Google Scholar]
  108. What is personalized medicine?. 2023 Available from: https://www.jax.org/personalized-medicine/precision-medicine-and-you/what-is-precision-medicine
  109. Shi Y. Lu A. Wang X. Belhadj Z. Wang J. Zhang Q. A review of existing strategies for designing long-acting parenteral formulations: Focus on underlying mechanisms, and future perspectives. Acta Pharm. Sin. B 2021 11 8 2396 2415 10.1016/j.apsb.2021.05.002 34522592
    [Google Scholar]
  110. Ortiz-Martínez M. González-González M. Martagón A.J. Hlavinka V. Willson R.C. Rito-Palomares M. Recent developments in biomarkers for diagnosis and screening of Type 2 diabetes mellitus. Curr. Diab. Rep. 2022 22 3 95 115 10.1007/s11892‑022‑01453‑4 35267140
    [Google Scholar]
  111. Huang S. A. Lie J. D. Phosphodiesterase-5 (PDE5) inhibitors in the management of erectile dysfunction. P T 2013 38 7 407 419
    [Google Scholar]
  112. Poolsup N. Suksomboon N. Aung N. Effect of phosphodiesterase-5 inhibitors on glycemic control in person with type 2 diabetes mellitus: A systematic review and meta-analysis. J. Clin. Transl. Endocrinol. 2016 6 50 55 10.1016/j.jcte.2016.11.003 29067241
    [Google Scholar]
  113. Yanagawa H. Nishiya M. Miyamoto T. Shikishima M. Imura M. Nakanishi R. Ariuchi K. Akaishi A. Takai S. Abe S. Kisyuku M. Kageyama C. Sato C. Yamagami M. Urakawa N. Sone S. Irahara M. Clinical trials for drug approval: A pilot study of the view of doctors at Tokushima University hospital. J. Med. Invest. 2006 53 3-4 292 296 10.2152/jmi.53.292 16953067
    [Google Scholar]
  114. Paterick T.E. Patel N. Tajik A.J. Chandrasekaran K. Improving health outcomes through patient education and partnerships with patients. Proc. Bayl. Univ. Med. Cent. 2017 30 1 112 113 10.1080/08998280.2017.11929552 28152110
    [Google Scholar]
  115. Tiwari P. Recent trends in therapeutic approaches for diabetes management: A comprehensive update. J. Diabetes Res. 2015 2015 1 11 10.1155/2015/340838 26273667
    [Google Scholar]
  116. What are they, how do they work, what are they used for, and more. 2020 Available from: https://www.osmosis.org/answers/phosphodiesterase-inhibitors
  117. Thakur J.S. Thakur S. Sharma D.R. Mohindroo N.K. Thakur A. Negi P.C. Hearing loss with phosphodiesterase‐5 inhibitors. Laryngoscope 2013 123 6 1527 1530 10.1002/lary.23865 23553123
    [Google Scholar]
  118. Tsalamandris S. Antonopoulos A.S. Oikonomou E. Papamikroulis G.A. Vogiatzi G. Papaioannou S. Deftereos S. Tousoulis D. The role of inflammation in diabetes: Current concepts and future perspectives. Eur. Cardiol. 2019 14 1 50 59 10.15420/ecr.2018.33.1 31131037
    [Google Scholar]
  119. Roden D.M. Wilke R.A. Kroemer H.K. Stein C.M. Pharmacogenomics. Circulation 2011 123 15 1661 1670 10.1161/CIRCULATIONAHA.109.914820 21502584
    [Google Scholar]
  120. Ali T. Roberts D.N. Tierney W.M. Long-term safety concerns with proton pump inhibitors. Am. J. Med. 2009 122 10 896 903 10.1016/j.amjmed.2009.04.014 19786155
    [Google Scholar]
  121. Dorcely B. Katz K. Jagannathan R. Chiang S.S. Oluwadare B. Goldberg I.J. Bergman M. Novel biomarkers for prediabetes, diabetes, and associated complications. Diabetes Metab. Syndr. Obes. 2017 10 345 361 10.2147/DMSO.S100074 28860833
    [Google Scholar]
  122. Standards of medical care in diabetes--2012 Diabetes Care 2012 35 Suppl 1 S11 S63
    [Google Scholar]
  123. Sankar V. Saaed Y. Joseph R. Azizi H. Thomas P. Serious drug-drug interactions in the prescriptions of diabetic patients. Med. Sci. (Basel) 2015 3 4 93 103 10.3390/medsci3040093 29083394
    [Google Scholar]
  124. Laxminarayan R. Chow J. Shahid-Salles S.A. Intervention cost-effectiveness: Overview of main messages. Disease Control Priorities in Developing Countries 2nd ed 2006
    [Google Scholar]
  125. Knott E. Assi M. Rao S. Ghosh M. Pearse D. Phosphodiesterase inhibitors as a therapeutic approach to neuroprotection and repair. Int. J. Mol. Sci. 2017 18 4 696 10.3390/ijms18040696 28338622
    [Google Scholar]
  126. Kilanowska A. Ziółkowska A. Role of phosphodiesterase in the biology and pathology of diabetes. Int. J. Mol. Sci. 2020 21 21 8244 10.3390/ijms21218244 33153226
    [Google Scholar]
  127. Naithani N. Sinha S. Misra P. Vasudevan B. Sahu R. Precision medicine: Concept and tools. Med J Armed Forces India 2021 77 3 249 257
    [Google Scholar]
  128. Matera M.G. Ora J. Cavalli F. Rogliani P. Cazzola M. New avenues for phosphodiesterase inhibitors in asthma. J. Exp. Pharmacol. 2021 13 291 302 10.2147/JEP.S242961 33758554
    [Google Scholar]
  129. Liebl A. Khunti K. Orozco-Beltran D. Yale J.F. Health economic evaluation of type 2 diabetes mellitus: A clinical practice focused review. Clin. Med. Insights Endocrinol. Diabetes 2015 8 CMED.S20906 10.4137/CMED.S20906 25861233
    [Google Scholar]
  130. Losi S. Berra C.C.F. Fornengo R. Pitocco D. Biricolti G. Orsini Federici M. The role of patient preferences in adherence to treatment in chronic disease: A narrative review. Drug Target Insights 2021 15 13 20 10.33393/dti.2021.2342 34785884
    [Google Scholar]
  131. Bhatt J. Bathija P. Ensuring access to quality health care in vulnerable communities. Acad. Med. 2018 93 9 1271 1275 10.1097/ACM.0000000000002254 29697433
    [Google Scholar]
  132. Chatterjee S. Davies M.J. Current management of diabetes mellitus and future directions in care. Postgrad. Med. J. 2015 91 1081 612 621 10.1136/postgradmedj‑2014‑133200 26453594
    [Google Scholar]
/content/journals/nemj/10.2174/0102506882344901241218070917
Loading
/content/journals/nemj/10.2174/0102506882344901241218070917
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Diabetes ; Nervous system ; Respiratory system ; Erectile dysfunction ; PDE-inhibitors
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test