Skip to content
2000
Volume 5, Issue 1
  • ISSN: 0250-6882
  • E-ISSN: 0250-6882

Abstract

Neurodegenerative diseases, characterized by the progressive degeneration of neurons, represent a significant and growing global health concern. Despite extensive research, the underlying molecular mechanisms driving these conditions remain elusive. Enzyme dysregulation has emerged as a pivotal player in the pathogenesis of various neurodegenerative disorders, including Alzheimer's, Parkinson's, and Huntington's diseases. Understanding and targeting these enzymes hold immense therapeutic potential for mitigating disease progression. This abstract summarizes the current state of knowledge regarding the involvement of enzymes in neurodegenerative diseases and explores the potential therapeutic interventions aimed at enzyme inhibition. First, we provide an overview of the key enzymes implicated in each disorder and highlight their specific roles in neurodegenerative processes. Next, we delve into the intricate interplay between enzyme dysregulation and disease progression, elucidating the cascade of events leading to neuronal death and cognitive decline. Additionally, we explore promising preclinical and clinical studies that have shown encouraging results in inhibiting specific enzymes, validating the therapeutic potential of targeting these pathways. In conclusion, targeting enzyme inhibition in neurodegenerative diseases holds immense promise as a therapeutic avenue to slow disease progression and improve patients' quality of life. Nevertheless, considerable challenges lie ahead, necessitating collaborative efforts among researchers, clinicians, and pharmaceutical companies to develop safe, effective, and precise interventions for combating these devastating disorders. With continued advancements in molecular biology and drug discovery, we remain optimistic that the targeted modulation of enzymes will pave the way for innovative and transformative treatments in the realm of neurodegenerative diseases.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/nemj/10.2174/0102506882311325240815105251
2024-08-29
2025-01-19
Loading full text...

Full text loading...

/deliver/fulltext/nemj/5/1/NEMJ-5-E02506882311325.html?itemId=/content/journals/nemj/10.2174/0102506882311325240815105251&mimeType=html&fmt=ahah

References

  1. LampteyR.N.L. ChaulagainB. TrivediR. GothwalA. LayekB. SinghJ. A review of the common neurodegenerative disorders: Current therapeutic approaches and the potential role of nanotherapeutics.Int. J. Mol. Sci.2022233185110.3390/ijms2303185135163773
    [Google Scholar]
  2. SheikhS. SafiaE. HaqueE. MirS.S. Neurodegenerative diseases: Multifactorial conformational diseases and their therapeutic interventions.J. Neurodegener. Dis.201320131810.1155/2013/56348126316993
    [Google Scholar]
  3. GuoC. SunL. ChenX. ZhangD. Oxidative stress, mitochondrial damage and neurodegenerative diseases.Neural Regen. Res.20138212003201410.3969/J.ISSN.1673‑5374.2013.21.00925206509
    [Google Scholar]
  4. ChenA.Y. AdamekR.N. DickB.L. CredilleC.V. MorrisonC.N. CohenS.M. Targeting Metalloenzymes for Therapeutic Intervention.Chem. Rev.201911921323145510.1021/acs.chemrev.8b0020130192523
    [Google Scholar]
  5. WarehamL.K. LiddelowS.A. TempleS. BenowitzL.I. Di PoloA. WellingtonC. GoldbergJ.L. HeZ. DuanX. BuG. DavisA.A. ShekharK. TorreA.L. ChanD.C. Canto-SolerM.V. FlanaganJ.G. SubramanianP. RossiS. BrunnerT. BovenkampD.E. CalkinsD.J. Solving neurodegeneration: Common mechanisms and strategies for new treatments.Mol. Neurodegener.20221712310.1186/s13024‑022‑00524‑035313950
    [Google Scholar]
  6. SharmaV.K. Parkinson's Disease: Progress and Promises.Int J Contemp Res Rev2010162459
    [Google Scholar]
  7. BotoT. TomchikS.M. The excitatory, the inhibitory, and the modulatory: Mapping chemical neurotransmission in the brain.Neuron2019101576376510.1016/j.neuron.2019.02.02130844392
    [Google Scholar]
  8. CooperG. M. The central role of enzymes as biological catalysts.The cell: A molecular approach.Sunderland, MassachusettsSinauer Associates Inc.2nd ed.2000
    [Google Scholar]
  9. AngeloniC. MalagutiM. PrataC. FreschiM. BarbalaceM. HreliaS. Mechanisms underlying neurodegenerative disorders and potential neuroprotective activity of agrifood by-products.Antioxidants20221219410.3390/antiox1201009436670956
    [Google Scholar]
  10. DelauneK. P. AlsayouriK. Physiology, Noncompetitive InhibitorTreasure Island (FL)StatPearls2022
    [Google Scholar]
  11. StrelowJ. Mechanism of action assays for enzymes.Assay Guidance Manual.Bethesda (MD)National Library Of Medicine2012
    [Google Scholar]
  12. MaradeshaT. PatilS.M. PhanindraB. AcharR.R. SilinaE. StupinV. RamuR. Multiprotein inhibitory Effect of dietary polyphenol rutin from whole green jackfruit flour targeting different stages of diabetes mellitus: Defining a bio-computational stratagem.Separations20229926210.3390/separations9090262
    [Google Scholar]
  13. HoldgateG. A. MeekT. D. GrimleyR. L. Mechanistic enzymology in drug discovery: A fresh perspective .Nat Rev Drug Discov201817211513210.1038/nrd.2017.219
    [Google Scholar]
  14. GhoshA.K. SamantaI. MondalA. LiuW.R. Covalent inhibition in drug discovery.ChemMedChem201914988990610.1002/cmdc.20190010730816012
    [Google Scholar]
  15. CobbC.A. ColeM.P. Oxidative and nitrative stress in neurodegeneration.Neurobiol. Dis.20158442110.1016/j.nbd.2015.04.02026024962
    [Google Scholar]
  16. DragM. SalvesenG.S. Emerging principles in protease-based drug discovery.Nat. Rev. Drug Discov.20109969070110.1038/nrd305320811381
    [Google Scholar]
  17. McIsaacT.L. FritzN.E. QuinnL. MuratoriL.M. Cognitive-motor interference in neurodegenerative disease: A narrative review and implications for clinical management.Front. Psychol.20189OCT206110.3389/fpsyg.2018.0206130425673
    [Google Scholar]
  18. JackC.R.Jr KnopmanD.S. JagustW.J. PetersenR.C. WeinerM.W. AisenP.S. ShawL.M. VemuriP. WisteH.J. WeigandS.D. LesnickT.G. PankratzV.S. DonohueM.C. TrojanowskiJ.Q. Tracking pathophysiological processes in Alzheimer’s disease: An updated hypothetical model of dynamic biomarkers.Lancet Neurol.201312220721610.1016/S1474‑4422(12)70291‑023332364
    [Google Scholar]
  19. AarslandD. AndersenK. LarsenJ.P. LolkA. Kragh-SørensenP. Prevalence and characteristics of dementia in Parkinson disease: An 8-year prospective study.Arch. Neurol.200360338739210.1001/archneur.60.3.38712633150
    [Google Scholar]
  20. PaulsenJ.S. ZhaoH. StoutJ.C. BrinkmanR.R. GuttmanM. RossC.A. ComoP. ManningC. HaydenM.R. ShoulsonI. Clinical markers of early disease in persons near onset of Huntington’s disease.Neurology200157465866210.1212/WNL.57.4.65811524475
    [Google Scholar]
  21. HodgesJ.R. PattersonK. Semantic dementia: A unique clinicopathological syndrome.Lancet Neurol.20076111004101410.1016/S1474‑4422(07)70266‑117945154
    [Google Scholar]
  22. KotlyarA.B. VinogradovA.D. Interaction of the membrane-bound succinate dehydrogenase with substrate and competitive inhibitors.Biochim. Biophys. Acta Protein Struct. Mol. Enzymol.19847841243410.1016/0167‑4838(84)90168‑76691982
    [Google Scholar]
  23. ZolghadriS. BahramiA. Hassan KhanM.T. Munoz-MunozJ. Garcia-MolinaF. Garcia-CanovasF. SabouryA.A. A comprehensive review on tyrosinase inhibitors.J. Enzyme Inhib. Med. Chem.201934127930910.1080/14756366.2018.154576730734608
    [Google Scholar]
  24. HajizadehM. Moosavi-MovahediZ. SheibaniN. Moosavi-MovahediA.A. An outlook on suicide enzyme inhibition and drug design.J. Indian Chem. Soc.20221951575159210.1007/s13738‑021‑02416‑4
    [Google Scholar]
  25. ColovićM.B. KrstićD.Z. Lazarević-PaštiT.D. BondžićA.M. VasićV.M. Acetylcholinesterase inhibitors: Pharmacology and toxicology.Curr. Neuropharmacol.201311331533510.2174/1570159X1131103000624179466
    [Google Scholar]
  26. RobinsonP.K. Enzymes: Principles and biotechnological applications.Essays Biochem.20155914110.1042/bse059000126504249
    [Google Scholar]
  27. VermaG. BhushanB. SinghG. Pharmacological strategies for enzyme inhibition in disease therapeutics: A comprehensive review.Curr Enzyme Inhib.202420296108
    [Google Scholar]
  28. ÖzdemirZ. AlagözM.A. BahçecioğluÖ.F. GökS. Monoamine Oxidase-B (MAO-B) Inhibitors in the Treatment of Alzheimers and Parkinsons Disease.Curr. Med. Chem.202128296045606510.2174/1875533XMTEzjOTQcw33538661
    [Google Scholar]
  29. ZhaoL. ChengX. ZhongC. Implications of successful symptomatic treatment in parkinson’s disease for therapeutic strategies of alzheimer’s disease.ACS Chem. Neurosci.201910292293010.1021/acschemneuro.8b0045030474958
    [Google Scholar]
  30. ZhongC. A molecular approach in drug development for Alzheimer’s disease.Biomed Pharmacother2018106553565
    [Google Scholar]
  31. ShengJ. ZhangS. WuL. KumarG. LiaoY. GkP. FanH. Inhibition of phosphodiesterase: A novel therapeutic target for the treatment of mild cognitive impairment and Alzheimer’s disease.Front. Aging Neurosci.202214101918710.3389/fnagi.2022.101918736268188
    [Google Scholar]
  32. KatsunoM. SahashiK. IguchiY. HashizumeA. Preclinical progression of neurodegenerative diseases.Nagoya J. Med. Sci.201880328929810.18999/NAGJMS.80.3.28930214078
    [Google Scholar]
  33. SinghA. KukretiR. SasoL. KukretiS. Oxidative stress: A key modulator in neurodegenerative diseases.Molecules2019248158310.3390/molecules2408158331013638
    [Google Scholar]
  34. VassarR. BACE1 inhibitor drugs in clinical trials for Alzheimer’s disease.Alzheimers Res. Ther.2014698910.1186/s13195‑014‑0089‑725621019
    [Google Scholar]
  35. EganM.F. KostJ. TariotP.N. AisenP.S. CummingsJ.L. VellasB. SurC. MukaiY. VossT. FurtekC. MahoneyE. Harper MozleyL. VandenbergheR. MoY. MichelsonD. Randomized trial of verubecestat for mild-to-moderate alzheimer’s disease.N. Engl. J. Med.2018378181691170310.1056/NEJMoa170644129719179
    [Google Scholar]
  36. TabriziS.J. LeavittB.R. LandwehrmeyerG.B. WildE.J. SaftC. BarkerR.A. BlairN.F. CraufurdD. PrillerJ. RickardsH. RosserA. KordasiewiczH.B. CzechC. SwayzeE.E. NorrisD.A. BaumannT. GerlachI. SchobelS.A. PazE. SmithA.V. BennettC.F. LaneR.M. Targeting Huntingtin Expression in Patients with Huntington’s Disease.N. Engl. J. Med.2019380242307231610.1056/NEJMoa190090731059641
    [Google Scholar]
  37. MillerT. A Phase I, randomised, first-in-human study of an antisense oligonucleotide directed against sod1 delivered intrathecally in SOD1-Familial ALS Patients.Lancet Neurol.2013125435442
    [Google Scholar]
  38. VasconcelosC. RibasV. Shared molecular pathways in glaucoma and other neurodegenerative diseases: Insights from RNA-Seq analysis and miRNA regulation for promising therapeutic avenues.Cells20231217215510.3390/cells12172155
    [Google Scholar]
  39. Ferreira-VieiraT.H. GuimaraesI.M. SilvaF.R. RibeiroF.M. Alzheimer’s disease: Targeting the Cholinergic System.Curr. Neuropharmacol.201614110111510.2174/1570159X1366615071616572626813123
    [Google Scholar]
  40. WilkinsonD.G. FrancisP.T. SchwamE. Payne-ParrishJ. Cholinesterase inhibitors used in the treatment of Alzheimer’s disease: The relationship between pharmacological effects and clinical efficacy.Drugs Aging200421745347810.2165/00002512‑200421070‑0000415132713
    [Google Scholar]
  41. AbubakarM.B. SanusiK.O. UgusmanA. MohamedW. KamalH. IbrahimN.H. KhooC.S. KumarJ. Alzheimer’s Disease: An update and insights into pathophysiology.Front. Aging Neurosci.20221474240810.3389/fnagi.2022.74240835431894
    [Google Scholar]
  42. StanciuG. D. Alzheimer’s disease pharmacotherapy in relation to cholinergic system involvement.Biomolecules20191014010.3390/biom10010040
    [Google Scholar]
  43. MarucciG. BuccioniM. BenD.D. LambertucciC. VolpiniR. AmentaF. Efficacy of acetylcholinesterase inhibitors in Alzheimer’s disease.Neuropharmacology202119010835210.1016/j.neuropharm.2020.10835233035532
    [Google Scholar]
  44. MüllerT. Rivastigmine in the treatment of patients with Alzheimer’s disease.Neuropsychiatr. Dis. Treat.20073221121810.2147/nedt.2007.3.2.21119300554
    [Google Scholar]
  45. WilcockG.K. LilienfeldS. GaensE. Efficacy and safety of galantamine in patients with mild to moderate Alzheimer’s disease: Multicentre randomised controlled trial.BMJ200032172741445144910.1136/bmj.321.7274.144511110737
    [Google Scholar]
  46. McGleenonB.M. DynanK.B. PassmoreA.P. Acetylcholinesterase inhibitors in Alzheimer’s disease.Br. J. Clin. Pharmacol.199948447148010.1046/j.1365‑2125.1999.00026.x10583015
    [Google Scholar]
  47. MossD. E. Improving anti-neurodegenerative benefits of acetylcholinesterase inhibitors in alzheimer’s disease: Are irreversible inhibitors the future?Int. J. Mol. Sci.20202110343810.3390/ijms21103438
    [Google Scholar]
  48. CacabelosR. Donepezil in Alzheimer’s disease: From conventional trials to pharmacogenetics.Neuropsychiatr. Dis. Treat.20073330333319300564
    [Google Scholar]
  49. EzzatS. M. SalemM. A. El MahdyN. M. RagabM. F. Rivastigmine.Naturally Occurring Chemicals Against Alzheimer's DiseaseCambridge, MassachusettsAcademic press202310.1016/B978‑0‑12‑819212‑2.00007‑4
    [Google Scholar]
  50. SchilströmB. IvanovV. B. WikerC. SvenssonT. H. Galantamine enhances dopaminergic neurotransmission in vivo via allosteric potentiation of nicotinic acetylcholine receptors.Neuropsychopharmacology2007321435310.1038/sj.npp.1301087
    [Google Scholar]
  51. AngelopoulouE. Pharmacological and non-pharmacological treatments for depression in parkinson’s disease: An updated review.Medicina (Kaunas)2023598145410.3390/medicina59081454
    [Google Scholar]
  52. PahwaR. LyonsK.E. PahwaR. A review of ropinirole prolonged release in Parkinson’s disease.Clin. Interv. Aging20094117918610.2147/CIA.S335819503779
    [Google Scholar]
  53. FinbergJ.P.M. Pharmacology of rasagiline, a new MAO-B Inhibitor drug for the treatment of parkinson’s disease with neuroprotective potential.Rambam Maimonides Med. J.201011e000310.5041/RMMJ.1000323908775
    [Google Scholar]
  54. ZahoorI. ShafiA. HaqE. Pharmacological treatment of parkinson’s disease.Parkinson’s Disease: Pathogenesis and Clinical AspectsBrisbane (AU)Codon Publications201812914410.15586/codonpublications.parkinsonsdisease.2018.ch730702845
    [Google Scholar]
  55. DaviesJ.A. SaadabadiA. Selegiline.Comprehensive Pharmacology ReferenceAmsterdamElsevier20071410.1016/B978‑008055232‑3.62607‑8
    [Google Scholar]
  56. LechtS. HaroutiunianS. HoffmanA. LazaroviciP. Rasagiline - a novel MAO B inhibitor in Parkinson’s disease therapy.Ther. Clin. Risk Manag.20073346747418488080
    [Google Scholar]
  57. AjmalM.R. Protein Misfolding and Aggregation in Proteinopathies: Causes, Mechanism and Cellular Response.Diseases20231113010.3390/diseases1101003036810544
    [Google Scholar]
  58. ShermanD.J. LiJ. Proteasome inhibitors: Harnessing proteostasis to combat disease.Molecules202025367110.3390/molecules2503067132033280
    [Google Scholar]
  59. SweeneyP. ParkH. BaumannM. DunlopJ. FrydmanJ. KopitoR. McCampbellA. LeblancG. VenkateswaranA. NurmiA. HodgsonR. Protein misfolding in neurodegenerative diseases: Implications and strategies.Transl. Neurodegener.201761610.1186/s40035‑017‑0077‑528293421
    [Google Scholar]
  60. GeorgeD.E. TepeJ.J. Advances in proteasome enhancement by small molecules.Biomolecules20211112178910.3390/biom1112178934944433
    [Google Scholar]
  61. Correa MarreroM. Barrio-HernandezI. Toward understanding the biochemical determinants of protein degradation rates.ACS Omega2021685091510010.1021/acsomega.0c0531833681549
    [Google Scholar]
  62. HyunD.H. LeeJ. A New insight into an alternative therapeutic approach to restore redox homeostasis and functional mitochondria in neurodegenerative diseases.Antioxidants2021111710.3390/antiox1101000735052511
    [Google Scholar]
  63. GoldbergA.L. Protein degradation and protection against misfolded or damaged proteins.Nature2003426696889589910.1038/nature0226314685250
    [Google Scholar]
  64. DantumaN.P. BottL.C. The ubiquitin-proteasome system in neurodegenerative diseases: Precipitating factor, yet part of the solution.Front. Mol. Neurosci.20147JULY7010.3389/fnmol.2014.0007025132814
    [Google Scholar]
  65. VassarR. KovacsD.M. YanR. WongP.C. The β-secretase enzyme BACE in health and Alzheimer’s disease: Regulation, cell biology, function, and therapeutic potential.J. Neurosci.20092941127871279410.1523/JNEUROSCI.3657‑09.200919828790
    [Google Scholar]
  66. O’BrienR.J. WongP.C. Amyloid precursor protein processing and Alzheimer’s disease.Annu. Rev. Neurosci.201134118520410.1146/annurev‑neuro‑061010‑11361321456963
    [Google Scholar]
  67. LukiwW.J. Amyloid beta (Aβ) peptide modulators and other current treatment strategies for Alzheimer’s disease (AD).Expert Opin. Emerg. Drugs2012171436010.1517/14728214.2012.67255922439907
    [Google Scholar]
  68. MurphyM.P. LeVineH.III Alzheimer’s disease and the amyloid-β peptide.J. Alzheimers Dis.201019131132310.3233/JAD‑2010‑122120061647
    [Google Scholar]
  69. BazzariF.H. BazzariA.H. BACE1 inhibitors for alzheimer’s disease: The past, present and any future?Molecules20222724882310.3390/molecules2724882336557955
    [Google Scholar]
  70. DongX. Current strategies for brain drug delivery.Theranostics2018861481149310.7150/thno.2125429556336
    [Google Scholar]
  71. LiS-C. SklarG.E. Min Sen OhV. Chuen LiS. Factors affecting therapeutic compliance: A review from the patient’s perspective.Ther. Clin. Risk Manag.20084126928610.2147/TCRM.S145818728716
    [Google Scholar]
  72. EganM.F. MukaiY. VossT. KostJ. StoneJ. FurtekC. MahoneyE. CummingsJ.L. TariotP.N. AisenP.S. VellasB. LinesC. MichelsonD. Further analyses of the safety of verubecestat in the phase 3 EPOCH trial of mild-to-moderate Alzheimer’s disease.Alzheimers Res. Ther.20191116810.1186/s13195‑019‑0520‑131387606
    [Google Scholar]
  73. YiannopoulouK.G. PapageorgiouS.G. Current and future treatments in alzheimer disease: An update.J. Cent. Nerv. Syst. Dis.20201210.1177/117957352090739732165850
    [Google Scholar]
  74. KandaswamyE. ZuoL. Recent advances in treatment of coronary artery disease: Role of science and technology.Int. J. Mol. Sci.201819242410.3390/ijms1902042429385089
    [Google Scholar]
  75. SchenkD. BasiG.S. PangalosM.N. Treatment strategies targeting amyloid β-protein.Cold Spring Harb. Perspect. Med.201229a00638710.1101/cshperspect.a00638722951439
    [Google Scholar]
  76. YanR. VassarR. Targeting the β secretase BACE1 for Alzheimer’s disease therapy.Lancet Neurol.201413331932910.1016/S1474‑4422(13)70276‑X24556009
    [Google Scholar]
  77. ForanE. TrottiD. Glutamate transporters and the excitotoxic path to motor neuron degeneration in amyotrophic lateral sclerosis.Antioxid. Redox Signal.20091171587160210.1089/ars.2009.244419413484
    [Google Scholar]
  78. FoersterB.R. PomperM.G. CallaghanB.C. PetrouM. EddenR.A.E. MohamedM.A. WelshR.C. CarlosR.C. BarkerP.B. FeldmanE.L. An imbalance between excitatory and inhibitory neurotransmitters in amyotrophic lateral sclerosis revealed by use of 3-T proton magnetic resonance spectroscopy.JAMA Neurol.20137081009101610.1001/jamaneurol.2013.23423797905
    [Google Scholar]
  79. Armada-MoreiraA. GomesJ.I. PinaC.C. SavchakO.K. Gonçalves-RibeiroJ. ReiN. PintoS. MoraisT.P. MartinsR.S. RibeiroF.F. SebastiãoA.M. CrunelliV. VazS.H. Going the Extra (Synaptic) Mile: Excitotoxicity as the road toward neurodegenerative diseases.Front. Cell. Neurosci.2020149010.3389/fncel.2020.0009032390802
    [Google Scholar]
  80. ChoH. ShuklaS. Role of edaravone as a treatment option for patients with amyotrophic lateral sclerosis.Pharmaceuticals (Basel)20201412910.3390/ph1401002933396271
    [Google Scholar]
  81. KimS.K. New sight: Enzymes as targets for drug development.Curr. Issues Mol. Biol.20234597650765210.3390/cimb4509048237754266
    [Google Scholar]
  82. RamsayR. R. TiptonK. F. Assessment of enzyme inhibition: A review with examples from the development of monoamine oxidase and cholinesterase inhibitory drugs.Molecules.2017227119210.3390/molecules22071192
    [Google Scholar]
/content/journals/nemj/10.2174/0102506882311325240815105251
Loading
/content/journals/nemj/10.2174/0102506882311325240815105251
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test