Skip to content
2000
Volume 5, Issue 1
  • ISSN: 0250-6882
  • E-ISSN: 0250-6882

Abstract

Background

Nowadays, the resistance to available antibiotics could be mentioned as a global threat to public health. The aim of this preliminary study was to conduct a retrospective survey associated with the prevalence of Nosocomial Infections (NIs) and the pattern of microbial resistance in a tertiary care referral hospital (Alzahra), Isfahan, Iran.

Methods

The data between the years 2016 to 2022 were extracted from the official database of hospital NI records. The microbiological culture results, represented by non-repetitive specimens, were further analyzed for pathogens and the pattern of antibiotic resistance. Then antibiotic susceptibility testing was done using standard methods of disk diffusion or Phoenix M50. The recorded variables have been presented as mean ± standard deviation, prevalence, and percentage. Data were analyzed using SPSS version 20.

Results

For a duration of 5.5 years, the period prevalence of NIs was recorded as 2%, with more than 50% associated with ventilator-associated events and urinary tract infections. , and were the main pathogens. Further study of specimens from the year 2022 (n= 898) confirmed the most isolated bacteria as (n = 290, 32%), n= 206, n=125, 14%), (n = 116, 13%), (n = 95, 11%), and P (n = 66, 7%). Resistance (R%) in Isfahan the whole country was confirmed for (third or fourth generation of cephalosporins: R = 80.9 82%), fluoroquinolones (R = 76.6 73%), beta-lactamase inhibitors (R = 75 79%), carbapenems (R = 65.7 66%), and so on, respectively.

Conclusion

There has been reported an increase in the proportion of isolates resistant to cephalosporins, fluoroquinolones, and others. The variety of latent pathogens resistant to frequently administered antibiotics highlights the significance of continued and homogenous antimicrobial evidence-based pharmacotherapy investigations in Isfahan, Iran. Further studies in this direction are recommended.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/nemj/10.2174/0102506882306922240603081511
2024-07-19
2025-01-19
Loading full text...

Full text loading...

/deliver/fulltext/nemj/5/1/NEMJ-5-E02506882306922.html?itemId=/content/journals/nemj/10.2174/0102506882306922240603081511&mimeType=html&fmt=ahah

References

  1. WangY. OuyangY. XuX. SunS. TianX. LiuH. XiaY. Dissemination and characteristics of carbapenem-resistant Klebsiella pneumoniae in nine district hospitals in southwestern China.Front. Microbiol.202314126940810.3389/fmicb.2023.126940837942077
    [Google Scholar]
  2. MadaniSH KhazaeiS KananiM ShahiM Antibiotic resistance pattern of E. coli isolated from urine culture in Imam Reza Hospital Kermanshah-2006.J Kermanshah Univ Med Sci.2008123e79965
    [Google Scholar]
  3. OrganizationWH Report on the burden of endemic health care-associated infection worldwide.Available from: https://www.who.int/publications/i/item/report-on-the-burden-of-endemic-health-care-associated-infection-worldwide 2011
  4. ZhouX. CobosG.S. RuijsG.J.H.M. KampingaG.A. ArendsJ.P. BorstD.M. MöllerL.V. HolmanN.D. SchuursT.A. van CoppenraetB.L.E. WeelJ.F. van ZeijlJ.H. KöckR. RossenJ.W.A. FriedrichA.W. Epidemiology of extended-spectrum β-lactamase-producing E. coli and vancomycin-resistant enterococci in the Northern Dutch–German cross-border region.Front. Microbiol.20178191410.3389/fmicb.2017.0191429051750
    [Google Scholar]
  5. GhamariT.Z. Nosocomial urinary tract infections in a tertiary hospital; Preliminary study of antibiotics susceptibility testing and pathogen types.Antiinfect. Agents2024222e25102322269610.2174/0122113525258170231016081424
    [Google Scholar]
  6. GhamariZ.T. Investigation of nosocomial urinary tract infections post transplantation, main pathogens, and sensitivity tests.Curr. Drug Ther.R. Discovery20231910.2174/0115748855271275231115064229
    [Google Scholar]
  7. GhamariT.Z. Preliminary study of antibiotics susceptibility testing and pathogens associated with nosocomial infections in a tertiary hospital.Antiinfect. Agents2024222e27102322286510.2174/0122113525259607231020063637
    [Google Scholar]
  8. GhamariT.Z. PalizbanA.A. Tacrolimus pharmacotherapy: Infectious complications and toxicity in organ transplant recipients; an updated review.Curr. Drug Res. Rev.202310.2174/012589977525932623121207324038151846
    [Google Scholar]
  9. GhamariT.Z. PalizbanA.A. TredgerM.J. Clinical monitoring of tacrolimus after liver transplantation using pentamer formation assay and microparticle enzyme immunoassay.Drugs R D.200451172210.2165/00126839‑200405010‑0000314725486
    [Google Scholar]
  10. GhamariT.Z. PalizbanA.A. Laboratory monitoring of cyclosporine pre-dose concentration (C 0) after kidney transplantation in isfahan.IJMS20032828185
    [Google Scholar]
  11. AndersonD.J. Surgical site infections.Infect. Dis. Clin. North Am.201125113515310.1016/j.idc.2010.11.00421315998
    [Google Scholar]
  12. KhademiF. YousefiA. KaramiP. GhazviniK. GhanbariF. Prevalence and antimicrobial susceptibility patterns of bacteria isolated from different clinical infections in Hamadan, Iran.Infect. Epidemiol. Med.20162381310.18869/modares.iem.2.3.8
    [Google Scholar]
  13. KhanH.A. BaigF.K. MehboobR. Nosocomial infections: Epidemiology, prevention, control and surveillance.Asian Pac. J. Trop. Biomed.20177547848210.1016/j.apjtb.2017.01.019
    [Google Scholar]
  14. KhanH.A. AhmadA. MehboobR. Nosocomial infections and their control strategies.Asian Pac. J. Trop. Biomed.20155750951410.1016/j.apjtb.2015.05.001
    [Google Scholar]
  15. KalanuriaA.A. ZaiW. MirskiM. Ventilator-associated pneumonia in the ICU.Crit. Care201418220810.1186/cc1377525029020
    [Google Scholar]
  16. RaoR KhanAA MathaiD Prevalence and risk factors for hospital-acquired infections “clean care is safer care.Int. J. Recent Sci. Res20201143802138028
    [Google Scholar]
  17. MajumderM.M.I. AhmedT. AhmedS. KhanA.R. Microbiology of catheter associated urinary tract infection. microbiology of urinary tract infections-microbial agents and predisposing factors.IntechOpen2018121
    [Google Scholar]
  18. MahfouzA. Nosocomial infections in a neonatal intensive careunit in south-western Saudi Arabia.East Mediterr Health J.2010161404
    [Google Scholar]
  19. GiannellaM. PascaleR. GutiérrezG.B. CanoA. VialeP. The use of predictive scores in the management of patients with carbapenem-resistant Klebsiella pneumoniae infection.Expert Rev. Anti Infect. Ther.201917426527310.1080/14787210.2019.159559030876375
    [Google Scholar]
  20. ZongZ. WuA. HuB. Infection control in the era of antimicrobial resistance in China: Progress, Challenges, and opportunities.Clin. Infect. Dis.202071S4S372S37810.1093/cid/ciaa151433367579
    [Google Scholar]
  21. LuterbachC.L. ChenL. KomarowL. OstrowskyB. KayeK.S. HansonB. AriasC.A. DesaiS. GallagherJ.C. NovickE. PagkalinawanS. LautenbachE. WortmannG. KalayjianR.C. EilertsonB. FarrellJ.J. McCartyT. HillC. FowlerV.G.Jr KreiswirthB.N. BonomoR.A. van DuinD. Transmission of Carbapenem-Resistant Klebsiella pneumoniae in US Hospitals.Clin. Infect. Dis.202376222923710.1093/cid/ciac79136173830
    [Google Scholar]
  22. SchauflerK. EchelmeyerT. SchwabeM. GuentherS. BohnertJ.A. BeckerK. FickenscherH. BueterA. MaschkowitzG. KrumbholzA. NurjadiD. HeidenS.E. EgerE. Convergent Klebsiella pneumoniae strains belonging to a sequence type 307 outbreak clone combine cefiderocol and carbapenem resistance with hypervirulence.Emerg. Microbes Infect.2023122227109610.1080/22221751.2023.227109637842870
    [Google Scholar]
  23. HeidenS.E. HübnerN.O. BohnertJ.A. HeideckeC.D. KramerA. BalauV. GiererW. SchaeferS. EckmannsT. GatermannS. EgerE. GuentherS. BeckerK. SchauflerK. A Klebsiella pneumoniae ST307 outbreak clone from Germany demonstrates features of extensive drug resistance, hypermucoviscosity, and enhanced iron acquisition.Genome Med.202012111310.1186/s13073‑020‑00814‑633298160
    [Google Scholar]
  24. LiuZ. GuanJ. ChenZ. TaiC. DengZ. ChaoY. OuH.Y. CpxR promotes the carbapenem antibiotic resistance of Klebsiella pneumoniae by directly regulating the expression and the dissemination of bla KPC on the IncFII conjugative plasmid.Emerg. Microbes Infect.2023122225642710.1080/22221751.2023.225642737672539
    [Google Scholar]
  25. EspositoF. CardosoB. SelleraF.P. SanoE. CastilloF.D. FontanaH. FugaB. MouraQ. SatoM.I.Z. BrandãoC.J. LincopanN. Expansion of healthcare-associated hypervirulent KPC-2-producing Klebsiella pneumoniae ST11/KL64 beyond hospital settings.One Health20231710059410.1016/j.onehlt.2023.10059437448770
    [Google Scholar]
  26. BouzaE. MuñozP. BurilloA. How to treat severe Acinetobacter baumannii infections.Curr. Opin. Infect. Dis.202336659660810.1097/QCO.000000000000097437930071
    [Google Scholar]
  27. PiccicaM. SpinicciM. BottaA. BiancoV. LagiF. GrazianiL. FaragonaA. ParrellaR. GianiT. BartoliniA. MorroniG. BernardoM. RossoliniG.M. TavioM. GiacomettiA. BartoloniA. Cefiderocol use for the treatment of infections by carbapenem-resistant Gram-negative bacteria: An Italian multicentre real-life experience.J. Antimicrob. Chemother.202378112752276110.1093/jac/dkad29837807834
    [Google Scholar]
  28. HombachM. ZbindenR. BöttgerE.C. Standardisation of disk diffusion results for antibiotic susceptibility testing using the sirscan automated zone reader.BMC Microbiol.201313122510.1186/1471‑2180‑13‑22524099061
    [Google Scholar]
  29. What’s New in the 2019 CLSI Standards for Antimicrobial Susceptibility Testing (AST)?Available from: https://clsi.org/media/3062/clsi-update-2019_21819_final_fullsizedhandouts.pdf 2019
  30. LiuJ.Y. DickterJ.K. Nosocomial Infections.Gastrointest. Endosc. Clin. N. Am.202030463765210.1016/j.giec.2020.06.00132891222
    [Google Scholar]
  31. TianL. SunZ. ZhangZ. Antimicrobial resistance of pathogens causing nosocomial bloodstream infection in Hubei Province, China, from 2014 to 2016: A multicenter retrospective study.BMC Public Health2018181112110.1186/s12889‑018‑6013‑530219056
    [Google Scholar]
  32. NimerN.A. Nosocomial Infection and Antibiotic-Resistant Threat in the Middle East.Infect. Drug Resist.20221563163910.2147/IDR.S35175535241915
    [Google Scholar]
  33. PeacockS.J. ParkhillJ. BrownN.M. Changing the paradigm for hospital outbreak detection by leading with genomic surveillance of nosocomial pathogens.Microbiology2018164101213121910.1099/mic.0.00070030052172
    [Google Scholar]
  34. SaxH. SchreiberP.W. ClackL. RatzD. SaintS. GreeneM.T. KusterS.P. Preventing healthcare-associated infection in Switzerland: Results of a national survey.Infect. Control Hosp. Epidemiol.202041559760010.1017/ice.2019.35132279671
    [Google Scholar]
  35. RangelovaV. RaychevaR. KevorkyanA. KrastevaM. DermendzhievT. Surveillance of Nosocomial Infections in a Bulgarian Neonatal Intensive Care Unit.Folia Med.202062475376110.3897/folmed.62.e5043733415917
    [Google Scholar]
  36. GugliottaC. DeianaG. DettoriM. SotgiuG. AzaraA. CastigliaP. Prevalence study on health-care associated infections and on the use of antimicrobials carried out with the light protocol of the European Centre for Disease Prevention and Control.Ann. Ig.202032435736710.7416/ai.2020.235932744294
    [Google Scholar]
  37. RaoofiS. KanP.F. RafieiS. HosseinipalangiZ. MejarehN.Z. KhaniS. AbdollahiB. TalabS.F. SanaeiM. ZarabiF. DolatiY. AhmadiN. RaoofiN. SarhadiY. MasoumiM. HosseiniS.B. ValiN. GholamaliN. AsadiS. AhmadiS. AhmadiB. ChomaluB.Z. AsadollahiE. RajabiM. GharagozlooD. NejatifarZ. SoheyliradR. JalaliS. AghajaniF. NavidriahyM. DeylamiS. NasiriM. ZareeiM. GolmohammadiZ. ShabaniH. TorabiF. ShabaninejadH. NematiA. AmerzadehM. AryankhesalA. GhashghaeeA. Global prevalence of nosocomial infection: A systematic review and meta-analysis.PLoS One2023181e027424810.1371/journal.pone.027424836706112
    [Google Scholar]
  38. LiangR. WangD. HuM. GuY. WangM. HuD. ZhuM. WangM. In vitro activity of ceftazidime/avibactam, imipenem/relebactam and meropenem/vaborbactam alone or in combination with polymyxin B against carbapenem resistant Acinetobacter baumannii.J. Antibiot.202376954054710.1038/s41429‑023‑00631‑037217796
    [Google Scholar]
  39. LeeY. BaeI.K. KimJ. JeongS.H. LeeK. Dissemination of ceftazidime-resistant Acinetobacter baumannii clonal complex 92 in Korea.J. Appl. Microbiol.201211261207121110.1111/j.1365‑2672.2012.05283.x22404202
    [Google Scholar]
  40. KakutaN. NakanoR. NakanoA. SuzukiY. TanouchiA. MasuiT. HoriuchiS. EndoS. KakutaR. OnoY. YanoH. A novel mismatched PCR-restriction fragment length polymorphism assay for rapid detection of gyrA and parC mutations associated with fluoroquinolone resistance in Acinetobacter baumannii. Ann. Lab. Med.2020401273210.3343/alm.2020.40.1.2731432636
    [Google Scholar]
  41. MohammedM.A. SalimM.T.A. AnwerB.E. AboshanabK.M. AboulwafaM.M. Impact of target site mutations and plasmid associated resistance genes acquisition on resistance of Acinetobacter baumannii to fluoroquinolones.Sci. Rep.20211112013610.1038/s41598‑021‑99230‑y34635692
    [Google Scholar]
  42. DoiY. WachinoJ. ArakawaY. Aminoglycoside Resistance.Infect. Dis. Clin. North Am.201630252353710.1016/j.idc.2016.02.01127208771
    [Google Scholar]
  43. ChiuC.H. LeeH.Y. TsengL.Y. ChenC.L. ChiaJ.H. SuL.H. LiuS.Y. Mechanisms of resistance to ciprofloxacin, ampicillin/sulbactam and imipenem in Acinetobacter baumannii clinical isolates in Taiwan.Int. J. Antimicrob. Agents201035438238610.1016/j.ijantimicag.2009.12.00920138741
    [Google Scholar]
  44. KangH.J. LimS.K. LeeY.J. Genetic characterization of third- or fourth-generation cephalosporin-resistant avian pathogenic Escherichia coli isolated from broilers.Front. Vet. Sci.20229105532010.3389/fvets.2022.105532036504870
    [Google Scholar]
  45. SeoK.W. ShimJ.B. KimY.B. SonS.H. Bi NohE. YoonS. LimS.K. Ju LeeY. Impacts and characteristics of antimicrobial resistance of Escherichia coli isolates by administration of third-generation cephalosporins in layer hatcheries.Vet. Microbiol.202024310864310.1016/j.vetmic.2020.10864332273023
    [Google Scholar]
  46. LivermoreD.M. Current epidemiology and growing resistance of gram-negative pathogens.Korean J. Intern. Med.201227212814210.3904/kjim.2012.27.2.12822707882
    [Google Scholar]
  47. ZhuD.M. LiQ.H. ShenY. ZhangQ. Risk factors for quinolone-resistant Escherichia coli infection: A systematic review and meta-analysis.Antimicrob. Resist. Infect. Control2020911110.1186/s13756‑019‑0675‑331938541
    [Google Scholar]
  48. GohL.P.W. MarbawiH. GohS.M. AsisB.A.A.K. GansauJ.A. The prevalence of hospital-acquired infections in Southeast Asia (1990-2022).J. Infect. Dev. Ctries.202317213914610.3855/jidc.1713536897896
    [Google Scholar]
/content/journals/nemj/10.2174/0102506882306922240603081511
Loading
/content/journals/nemj/10.2174/0102506882306922240603081511
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test