Skip to content
2000
Volume 5, Issue 1
  • ISSN: 0250-6882
  • E-ISSN: 0250-6882

Abstract

Background

Type 2 diabetes is a heterogeneous disease characterized by high blood glucose levels. Its prevalence is increasing as a result of lifestyle, related genes expression, and insufficient insulin signaling. The activation or inhibition of some proteins in the insulin signaling pathway play a vital role in glucose uptake into the cells and in maintaining serum glucose homeostasis. Phosphoinositide-3-kinase (PI3K), 3-phosphoinositide-dependent protein kinase-1 (PDK1), Protein kinase B [PKB, also known as the serine and threonine kinase (AKT)], and Rac family small GTPase 1 (RAC1) are key proteins that play important roles in the liberation of Glucose Transported-4 (GLUT4) vesicle, and consequently the uptake of glucose in response to the insulin signal of hyperglycemia.

Objective

In this study, we have focused on the route of targeting insulin signaling proteins for decreasing insulin resistance by targeting the four proteins, PI3K, PDK1, AKT, and RAC1, using studies.

Methods

Docking experiments, using AutoDock algorithms, were performed to predict the activity of eight recently purified derivatives of (GT) and (4-hydroxybenzoic acid, beta-amyrin, beta-sitosterol, chlorogenic acid, lupeol, lupeol-trifluoroacetate, myo-inositol, and stigmasterol) on the insulin signaling proteins. The SwissADME website was used to predict ADMEtox properties for the eight derivatives of the above-mentioned medicinal plants.

Results

Most of the and derivatives have shown variable levels of activation, mainly on the PDK1 and AKT pathways, and to a much lesser extent on the PI3K and RAC1 pathways.

Conclusion

The results have indicated that and derivatives can be potent anti-diabetic drugs, namely in targeting PDK1 and AKT pathways.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/nemj/10.2174/0102506882306428240613104944
2024-06-27
2025-01-31
Loading full text...

Full text loading...

/deliver/fulltext/nemj/5/1/NEMJ-5-E02506882306428.html?itemId=/content/journals/nemj/10.2174/0102506882306428240613104944&mimeType=html&fmt=ahah

References

  1. OlaogunI. FaragM. HamidP. The pathophysiology of type 2 diabetes mellitus in non-obese individuals: An overview of the current understanding.Cureus2020124e761410.7759/cureus.761432399348
    [Google Scholar]
  2. HarreiterJ. RodenM. Diabetes mellitus—definition, classification, diagnosis, screening and prevention (Update 2019).Wien. Klin. Wochenschr.2019131S1Suppl. 161510.1007/s00508‑019‑1450‑430980151
    [Google Scholar]
  3. GlovaciD. FanW. WongN.D. Epidemiology of diabetes mellitus and cardiovascular disease.Curr. Cardiol. Rep.20192142110.1007/s11886‑019‑1107‑y30828746
    [Google Scholar]
  4. DiMeglioL.A. Evans-MolinaC. OramR.A. Type 1 diabetes.Lancet2018391101382449246210.1016/S0140‑6736(18)31320‑529916386
    [Google Scholar]
  5. PopoviciuM.S. KakaN. SethiY. PatelN. ChopraH. CavaluS. Type 1 diabetes mellitus and autoimmune diseases: A critical review of the association and the application of personalized medicine.J. Pers. Med.202313342210.3390/jpm1303042236983604
    [Google Scholar]
  6. O’RahillyS. BarrosoI. WarehamN.J. Genetic factors in type 2 diabetes: The end of the beginning?Science2005307570837037310.1126/science.110434615662000
    [Google Scholar]
  7. SelenD.J. PoweC.E. Gestational diabetes and other adverse pregnancy outcomes in polycystic ovary syndrome.Curr. Opin. Endocrinol. Diabetes Obes.202229652152710.1097/MED.000000000000076935983844
    [Google Scholar]
  8. KimE.J. HaK.H. KimD.J. ChoiY.H. Diabetes and the risk of infection: A national cohort study.Diabetes Metab. J.201943680481410.4093/dmj.2019.007131701687
    [Google Scholar]
  9. PastorA. ConnJ. MacIsaacR.J. BonomoY. Alcohol and illicit drug use in people with diabetes.Lancet Diabetes Endocrinol.20208323924810.1016/S2213‑8587(19)30410‑331958403
    [Google Scholar]
  10. ResminiE. MinutoF. ColaoA. FeroneD. Secondary diabetes associated with principal endocrinopathies: The impact of new treatment modalities.Acta Diabetol.2009462859510.1007/s00592‑009‑0112‑919322513
    [Google Scholar]
  11. Śliwińska-MossońM. Bil-LulaI. MarekG. The cause and effect relationship of diabetes after acute pancreatitis.Biomedicines202311366710.3390/biomedicines1103066736979645
    [Google Scholar]
  12. EvansP.L. McMillinS.L. WeyrauchL.A. WitczakC.A. Regulation of skeletal muscle glucose transport and glucose metabolism by exercise training.Nutrients20191110243210.3390/nu1110243231614762
    [Google Scholar]
  13. ChaitA. den HartighL.J. Adipose tissue distribution, inflammation and its metabolic consequences, including diabetes and cardiovascular disease.Front. Cardiovasc. Med.202072210.3389/fcvm.2020.0002232158768
    [Google Scholar]
  14. ChadtA. Al-HasaniH. Glucose transporters in adipose tissue, liver, and skeletal muscle in metabolic health and disease.Pflugers Arch.202047291273129810.1007/s00424‑020‑02417‑x32591906
    [Google Scholar]
  15. BryantN.J. GouldG.W. Insulin stimulated GLUT4 translocation – Size is not everything!Curr. Opin. Cell Biol.202065283410.1016/j.ceb.2020.02.00632182545
    [Google Scholar]
  16. LiM. ChiX. WangY. SetrerrahmaneS. XieW. XuH. Trends in insulin resistance: Insights into mechanisms and therapeutic strategy.Signal Transduct. Target. Ther.20227121610.1038/s41392‑022‑01073‑035794109
    [Google Scholar]
  17. LeeS. RauchJ. KolchW. Targeting MAPK signaling in cancer: Mechanisms of drug resistance and sensitivity.Int. J. Mol. Sci.2020213110210.3390/ijms2103110232046099
    [Google Scholar]
  18. LetoD. SaltielA.R. Regulation of glucose transport by insulin: Traffic control of GLUT4.Nat. Rev. Mol. Cell Biol.201213638339610.1038/nrm335122617471
    [Google Scholar]
  19. PosnerB.I. Insulin signalling: The inside story.Can. J. Diabetes201741110811310.1016/j.jcjd.2016.07.00227614806
    [Google Scholar]
  20. ChoiE. BaiX.C. The activation mechanism of the insulin receptor: A structural perspective.Annu. Rev. Biochem.202392124727210.1146/annurev‑biochem‑052521‑03325037001136
    [Google Scholar]
  21. AhmedZ. PillayT.S. Adapter protein with a pleckstrin homology (PH) and an Src homology 2 (SH2) domain (APS) and SH2-B enhance insulin-receptor autophosphorylation, extracellular-signal-regulated kinase and phosphoinositide 3-kinase-dependent signalling.Biochem. J.2003371240541210.1042/bj2002158912521378
    [Google Scholar]
  22. StorzP. TokerA. 3′-phosphoinositide-dependent kinase-1 (PDK-1) in PI 3-kinase signaling.Front. Biosci.200271-3d886d90210.2741/storz11897568
    [Google Scholar]
  23. VaraJ.Á.F. CasadoE. de CastroJ. CejasP. Belda-IniestaC. González-BarónM. PI3K/Akt signalling pathway and cancer.Cancer Treat. Rev.200430219320410.1016/j.ctrv.2003.07.00715023437
    [Google Scholar]
  24. SongG. OuyangG. BaoS. The activation of Akt/PKB signaling pathway and cell survival.J. Cell. Mol. Med.200591597110.1111/j.1582‑4934.2005.tb00337.x15784165
    [Google Scholar]
  25. Janecka-WidłaA. MajchrzykK. Mucha-MałeckaA. SłoninaD. BiesagaB. Prognostic potential of Akt, pAkt(Ser473) and pAkt(Thr308) immunoreactivity in relation to HPV prevalence in head and neck squamous cell carcinoma patients.Pathol. Res. Pract.202222915368410.1016/j.prp.2021.15368434839095
    [Google Scholar]
  26. ShanakS. BassalatN. BarghashA. KadanS. ArdahM. ZaidH. Drug discovery of plausible lead natural compounds that target the insulin signaling pathway: Bioinformatics approaches.Evid. Based Complement. Alternat. Med.2022202214210.1155/2022/283288935356248
    [Google Scholar]
  27. LiangJ. OyangL. RaoS. HanY. LuoX. YiP. LinJ. XiaL. HuJ. TanS. TangL. PanQ. TangY. ZhouY. LiaoQ. Rac1, a potential target for tumor therapy.Front. Oncol.20211167442610.3389/fonc.2021.67442634079763
    [Google Scholar]
  28. ChiuT.T. JensenT.E. SylowL. RichterE.A. KlipA. Rac1 signalling towards GLUT4/glucose uptake in skeletal muscle.Cell. Signal.201123101546155410.1016/j.cellsig.2011.05.02221683139
    [Google Scholar]
  29. HopkinsB.D. GoncalvesM.D. CantleyL.C. Insulin–PI3K signalling: An evolutionarily insulated metabolic driver of cancer.Nat. Rev. Endocrinol.202016527628310.1038/s41574‑020‑0329‑932127696
    [Google Scholar]
  30. BlahovaJ. MartiniakovaM. BabikovaM. KovacovaV. MondockovaV. OmelkaR. Pharmaceutical drugs and natural therapeutic products for the treatment of type 2 diabetes mellitus.Pharmaceuticals202114880610.3390/ph1408080634451903
    [Google Scholar]
  31. UusitupaM. KhanT.A. ViguilioukE. KahleovaH. RivelleseA.A. HermansenK. PfeifferA. ThanopoulouA. Salas-SalvadóJ. SchwabU. SievenpiperJ.L. Prevention of type 2 diabetes by lifestyle changes: A systematic review and meta-analysis.Nutrients20191111261110.3390/nu1111261131683759
    [Google Scholar]
  32. ChaudhuryA. DuvoorC. Reddy DendiV.S. KraletiS. ChadaA. RavillaR. MarcoA. ShekhawatN.S. MontalesM.T. KuriakoseK. SasapuA. BeebeA. PatilN. MushamC.K. LohaniG.P. MirzaW. Clinical review of antidiabetic drugs: Implications for type 2 diabetes mellitus management.Front. Endocrinol.20178610.3389/fendo.2017.0000628167928
    [Google Scholar]
  33. VithianK. HurelS. Microvascular complications: Pathophysiology and management.Clin. Med.201010550550910.7861/clinmedicine.10‑5‑50521117389
    [Google Scholar]
  34. HuangD. RefaatM. MohammediK. JayyousiA. Al SuwaidiJ. Abi KhalilC. Macrovascular complications in patients with diabetes and prediabetes.BioMed Res. Int.201720171910.1155/2017/783910129238721
    [Google Scholar]
  35. BlickléJ.F. AndresE. NeyrollesN. BrogardJ.M. [Present status in the treatment of type 2 diabetes mellitus. Insulin-secreting agents].Rev. Med. Interne199920Suppl. 3351s359s10.1016/S0248‑8663(99)80508‑610480186
    [Google Scholar]
  36. AltafQ.A. BarnettA.H. TahraniA.A. Novel therapeutics for type 2 diabetes: Insulin resistance.Diabetes Obes. Metab.201517431933410.1111/dom.1240025308775
    [Google Scholar]
  37. Di MagnoL. Di PastenaF. BordoneR. ConiS. CanettieriG. The mechanism of action of biguanides: New answers to a complex question.Cancers20221413322010.3390/cancers1413322035804992
    [Google Scholar]
  38. ChenY. MaH. ZhuD. ZhaoG. WangL. FuX. ChenW. Discovery of novel insulin sensitizers: Promising approaches and targets.PPAR Res.2017201711310.1155/2017/836091928659972
    [Google Scholar]
  39. ArtasensiA. PedrettiA. VistoliG. FumagalliL. Type 2 diabetes mellitus: A review of multi-target drugs.Molecules2020258198710.3390/molecules2508198732340373
    [Google Scholar]
  40. LauA.N.C. TangT. HalapyH. ThorpeK. YuC.H.Y. Initiating insulin in patients with type 2 diabetes.CMAJ2012184776777610.1503/cmaj.11077922470171
    [Google Scholar]
  41. Abu-LafiS. RayanB. KadanS. Abu-LafiM. RayanA. Anticancer activity and phytochemical composition of wild Gundelia tournefortii. Oncol. Lett.201817171371710.3892/ol.2018.960230655821
    [Google Scholar]
  42. HaniN. AbulailaK. HowesM.J.R. MattanaE. BacciS. SleemK. SarkisL. EddineN.S. BaydounS. ApostolidesN.A. UlianT. Gundelia tournefortii L. (Akkoub): A review of a valuable wild vegetable from Eastern Mediterranean.Genet. Resour. Crop Evol.2024in press10.1007/s10722‑024‑01927‑2
    [Google Scholar]
  43. DharsonoH.D.A. PutriS.A. KurniaD. DudiD. SatariM.H. Ocimum species: A review on chemical constituents and antibacterial activity.Molecules20222719635010.3390/molecules2719635036234883
    [Google Scholar]
  44. AzizahN.S. IrawanB. KusmoroJ. SafriansyahW. FarabiK. OktaviaD. DoniF. MirantiM. Sweet basil (Ocimum basilicum L.)―A review of its botany, phytochemistry, pharmacological activities, and biotechnological development.Plants20231224414810.3390/plants1224414838140476
    [Google Scholar]
  45. KadanS. SassonY. SaadB. ZaidH. Gundelia tournefortii antidiabetic efficacy: Chemical composition and GLUT4 translocation.Evid. Based Complement. Alternat. Med.201820181810.1155/2018/829432029853973
    [Google Scholar]
  46. Guardado YordiE. MatosM.J. BusoP. MartínezA.P. AsanzaM. ScalvenziL. ManfrediniS. TacchiniM. RadiceM. SacchettiG. A comprehensive ethnobotanical profile of Ocimum campechianum (Lamiaceae): From traditional medicine to phytochemical and pharmacological evidences.Plant Biosyst.202215661388140410.1080/11263504.2022.2056647
    [Google Scholar]
  47. MagarR.A. MallikA.R. ChaudharyS. ParajuliS. Ethno-medicinal plants used by the people of Dharan, Eastern Nepal.Indian J. Tradit. Knowl.20222117280
    [Google Scholar]
  48. DhamaK. SharunK. GugjooM.B. TiwariR. AlagawanyM. Iqbal YatooM. ThakurP. IqbalH.M.N. ChaicumpaW. MichalakI. ElnesrS.S. FaragM.R. A comprehensive review on chemical profile and pharmacological activities of Ocimum basilicum.Food Rev. Int.202339111914710.1080/87559129.2021.1900230
    [Google Scholar]
  49. BottegoniG. Protein-ligand docking.Front. Biosci.20111612289230610.2741/385421622177
    [Google Scholar]
  50. BhhataraiB. WaltersW.P. HopC.E.C.A. LanzaG. EkinsS. Opportunities and challenges using artificial intelligence in ADME/Tox.Nat. Mater.201918541842210.1038/s41563‑019‑0332‑531000801
    [Google Scholar]
  51. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep4271728256516
    [Google Scholar]
  52. Domínguez-VillaF.X. Durán-IturbideN.A. Ávila-ZárragaJ.G. Synthesis, molecular docking, and in silico ADME/Tox profiling studies of new 1-aryl-5-(3-azidopropyl)indol-4-ones: Potential inhibitors of SARS CoV-2 main protease.Bioorg. Chem.202110610449710.1016/j.bioorg.2020.10449733261847
    [Google Scholar]
  53. KadanS. SaadB. SassonY. ZaidH. In vitro evaluation of anti-diabetic activity and cytotoxicity of chemically analysed Ocimum basilicum extracts.Food Chem.20161961066107410.1016/j.foodchem.2015.10.04426593590
    [Google Scholar]
  54. KadanS. MelamedS. BenvalidS. TietelZ. SassonY. ZaidH. Gundelia tournefortii: Fractionation, chemical composition and GLUT4 translocation enhancement in muscle cell line.Molecules20212613378510.3390/molecules2613378534206320
    [Google Scholar]
  55. KimS. ThiessenP.A. BoltonE.E. ChenJ. FuG. GindulyteA. HanL. HeJ. HeS. ShoemakerB.A. WangJ. YuB. ZhangJ. BryantS.H. PubChem substance and compound databases.Nucleic Acids Res.201644D1D1202D121310.1093/nar/gkv95126400175
    [Google Scholar]
  56. LoweD.M. CorbettP.T. Murray-RustP. GlenR.C. Chemical name to structure: OPSIN, an open source solution.J. Chem. Inf. Model.201151373975310.1021/ci100384d21384929
    [Google Scholar]
  57. O’BoyleN.M. BanckM. JamesC.A. MorleyC. VandermeerschT. HutchisonG.R. Open babel: An open chemical toolbox.J. Cheminform.2011313310.1186/1758‑2946‑3‑3321982300
    [Google Scholar]
  58. RizviS.M.D. ShakilS. HaneefM. A simple click by click protocol to perform docking: AutoDock 4.2 made easy for non-bioinformaticians.EXCLI J.20131283185726648810
    [Google Scholar]
  59. BorsariC. KelesE. RageotD. TreyerA. BohnackerT. BisseggerL. De PascaleM. MeloneA. SriramaratnamR. BeaufilsF. HamburgerM. HebeisenP. LöscherW. FabbroD. HillmannP. WymannM.P. 4-(Difluoromethyl)-5-(4-((3 R, 5 S )-3,5-dimethylmorpholino)-6-(( R )-3-methylmorpholino)-1,3,5-triazin-2-yl)pyridin-2-amine (PQR626), a potent, orally available, and brain-penetrant mtor inhibitor for the treatment of neurological disorders.J. Med. Chem.20206322135951361710.1021/acs.jmedchem.0c0062033166139
    [Google Scholar]
  60. Garcia-VilocaM. BayascasJ.R. LluchJ.M. González-LafontÀ. Molecular insights into the regulation of 3-phosphoinositide-dependent protein kinase 1: Modeling the interaction between the kinase and the pleckstrin homology domains.ACS Omega2022729251862519910.1021/acsomega.2c0202035910176
    [Google Scholar]
  61. Du-CunyL. SongZ. MosesS. PowisG. MashE.A. MeuilletE.J. ZhangS. Computational modeling of novel inhibitors targeting the Akt pleckstrin homology domain.Bioorg. Med. Chem.200917196983699210.1016/j.bmc.2009.08.02219734051
    [Google Scholar]
  62. SriramuluD.K. LeeS.G. Effect of molecular properties of the protein-ligand complex on the prediction accuracy of AutoDock.J. Mol. Graph. Model.202110610792110.1016/j.jmgm.2021.10792133887523
    [Google Scholar]
  63. MengX.Y. ZhangH.X. MezeiM. CuiM. Molecular docking: A powerful approach for structure-based drug discovery.Curr. Computeraided Drug Des.20117214615710.2174/15734091179567760221534921
    [Google Scholar]
  64. ForliS. HueyR. PiqueM.E. SannerM.F. GoodsellD.S. OlsonA.J. Computational protein–ligand docking and virtual drug screening with the AutoDock suite.Nat. Protoc.201611590591910.1038/nprot.2016.05127077332
    [Google Scholar]
  65. LamW.W.T. SiuS.W.I. PyMOL mControl: Manipulating molecular visualization with mobile devices.Biochem. Mol. Biol. Educ.2017451768310.1002/bmb.2098727292587
    [Google Scholar]
  66. MorrisG.M. GoodsellD.S. HueyR. OlsonA.J. Distributed automated docking of flexible ligands to proteins: Parallel applications of AutoDock 2.4.J. Comput. Aided Mol. Des.199610429330410.1007/BF001244998877701
    [Google Scholar]
  67. SeeligerD. de GrootB.L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina.J. Comput. Aided Mol. Des.201024541742210.1007/s10822‑010‑9352‑620401516
    [Google Scholar]
  68. WaringM.J. Lipophilicity in drug discovery.Expert Opin. Drug Discov.20105323524810.1517/1746044100360509822823020
    [Google Scholar]
  69. LeucutaS.E. Selecting oral bioavailability enhancing formulations during drug discovery and development.Expert Opin. Drug Discov.20149213915010.1517/17460441.2014.87788124387781
    [Google Scholar]
  70. WilkinsonG.R. Drug metabolism and variability among patients in drug response.N. Engl. J. Med.2005352212211222110.1056/NEJMra03242415917386
    [Google Scholar]
  71. ZaidH. TamrakarA.K. RazzaqueM.S. EfferthT. Diabetes and metabolism disorders medicinal plants: A glance at the past and a look to the future 2018.Evid. Based Complement. Alternat. Med.201820181310.1155/2018/584329830364074
    [Google Scholar]
  72. ChiappelliF. ProloP. CajulisO.S. Evidence-based research in complementary and alternative medicine I: history.Evid. Based Complement. Alternat. Med.20052445345810.1093/ecam/neh10616322801
    [Google Scholar]
  73. HeJ.H. ChenL.X. LiH. Progress in the discovery of naturally occurring anti-diabetic drugs and in the identification of their molecular targets.Fitoterapia201913427028910.1016/j.fitote.2019.02.03330840917
    [Google Scholar]
  74. ShanakS. BassalatN. AlbzoorR. KadanS. ZaidH. In vitro and in silico evaluation for the inhibitory action of O. basilicum methanol extract on α-glucosidase and α-amylase.Evid. Based Complement. Alternat. Med.202120211910.1155/2021/551577534306136
    [Google Scholar]
  75. CarnagarinR. DharmarajanA.M. DassC.R. Molecular aspects of glucose homeostasis in skeletal muscle – A focus on the molecular mechanisms of insulin resistance.Mol. Cell. Endocrinol.2015417C526210.1016/j.mce.2015.09.00426362689
    [Google Scholar]
/content/journals/nemj/10.2174/0102506882306428240613104944
Loading
/content/journals/nemj/10.2174/0102506882306428240613104944
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test