Skip to content
2000
Volume 5, Issue 1
  • ISSN: 0250-6882
  • E-ISSN: 0250-6882
side by side viewer icon HTML

Abstract

Background

The study investigated the impact of incorporating fruits or fruit juices into the diets of prediabetic individuals to mitigate oxidative stress. Previous research presented divergent approaches, making replication of findings challenging. This study aimed to evaluate whether advising the consumption of two low-calorie fruits daily could improve oxidative stress, glycemic control, and anthropometric measurements in prediabetic individuals.

Methods

An open-label, parallel, randomized controlled trial was conducted at a medical college hospital in Mangalore, Karnataka, India. Thirty participants, aged 40-70 years, with impaired fasting glucose or impaired glucose tolerance, were recruited through screening of first-degree relatives of patients with type 2 diabetes. Participants were randomly allocated in a 1:1 ratio to either the intervention group, which consumed two low-calorie fruits daily or a wait-list control group. The inclusion criteria were adults aged 40-70 years with prediabetes. Exclusion criteria included a history of diabetes, chronic diseases, normal glucose tolerance, smoking, alcohol use, recent antioxidant/vitamin use, and participation in dietary trials within the past year. Outcomes included plasma vitamin C levels and blood pressure, oxidative stress markers, glycemic parameters, and anthropometric measures. Over three months, measurements were taken at the beginning and end of the study. Statistical analysis was performed using the Wilcoxon signed-rank test and Mann-Whitney U test, with a significance level set at < 0.05.

Results

The mean age of participants was 43.1 ± 10.1 years in the intervention group and 44.7 ± 9.6 years in the control group. The intervention group demonstrated a significant 15% increase in plasma vitamin C levels (mean change: 4.0 µmol/L; = 0.021; 95% CI: 1.2–6.8), whereas the control group experienced a 9% decrease. Systolic blood pressure decreased significantly in the intervention group (mean change: -3.0 mmHg; = 0.04; 95% CI: -4.5 to -1.5), while the control group showed an increase. No significant differences were observed between groups in terms of oxidative stress markers, glycemic parameters, or anthropometric measures.

Conclusion

Overall, our study provided insights into the effects of incorporating low-calorie fruits into the diet of individuals with prediabetes. While improvements in vitamin C levels and systolic blood pressure were observed, there were no significant changes in oxidative stress, glycemic status, anthropometry, and other antioxidant measures. These findings contribute to the existing literature on the potential benefits of fruit consumption in individuals with prediabetes, highlighting the importance of vitamin C as a biomarker and its potential role in blood pressure regulation and cardiovascular benefits. This study also highlights plasma vitamin C as a promising biomarker for assessing the effects of fruit supplementation. Additionally, this study suggests that broader dietary and lifestyle modifications may be necessary to achieve comprehensive metabolic improvements, particularly in prediabetic individuals.

Clinical Trial Registration Number

(CTRI/2011/05/001739).

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/nemj/10.2174/0102506882304910241218054732
2024-01-01
2025-04-22
The full text of this item is not currently available.

References

  1. TabákA.G. HerderC. RathmannW. BrunnerE.J. KivimäkiM. Prediabetes: A high-risk state for diabetes development.Lancet201237998332279229010.1016/S0140‑6736(12)60283‑922683128
    [Google Scholar]
  2. BansalN. Prediabetes diagnosis and treatment: A review.World J. Diabetes20156229630310.4239/wjd.v6.i2.29625789110
    [Google Scholar]
  3. American Diabetes Association 2. Classification and diagnosis of diabetes: Standards of medical care in diabetes 2020.Diabetes Care202043Suppl. 1S14S3110.2337/dc20‑S00231862745
    [Google Scholar]
  4. HostalekU. Global epidemiology of prediabetes: Present and future perspectives.Clin. Diabetes Endocrinol.201951510.1186/s40842‑019‑0080‑031086677
    [Google Scholar]
  5. KleinherenbrinkW. OseiE. den HertogH.M. ZandbergenA.A.M. Prediabetes and macrovascular disease: Review of the association, influence on outcome and effect of treatment.Eur. J. Intern. Med.20185561110.1016/j.ejim.2018.07.00130007840
    [Google Scholar]
  6. MutieP.M. Pomares-MillanH. Atabaki-PasdarN. JordanN. AdamsR. DalyN.L. TajesJ.F. GiordanoG.N. FranksP.W. An investigation of causal relationships between prediabetes and vascular complications.Nat. Commun.2020111459210.1038/s41467‑020‑18386‑932929089
    [Google Scholar]
  7. BeulensJ.W.J. RuttersF. RydénL. SchnellO. MellbinL. HartH.E. VosR.C. Risk and management of pre-diabetes.Eur. J. Prev. Cardiol.2019262_supplSuppl.475410.1177/204748731988004131766914
    [Google Scholar]
  8. RasmussenS.S. GlümerC. SandbaekA. LauritzenT. Borch-JohnsenK. Progression from impaired fasting glucose and impaired glucose tolerance to diabetes in a high-risk screening programme in general practice: The addition study, denmark.Diabetologia200750229329710.1007/s00125‑006‑0530‑y17143605
    [Google Scholar]
  9. MainousA.G. MansoorH. RahmanianK.P. CarekP.J. Perception of risk of developing diabetes among patients with undiagnosed prediabetes: The impact of health care provider advice.Clin. Diabetes201937322122610.2337/cd18‑005031371852
    [Google Scholar]
  10. OweiI. UmekweN. CeesayF. Dagogo-JackS. Awareness of prediabetes status and subsequent health behavior, body weight, and blood glucose levels.J. Am. Board Fam. Med.2019321202710.3122/jabfm.2019.01.18024230610138
    [Google Scholar]
  11. MaschirowL. KhalafK. Al-AubaidyH.A. JelinekH.F. Inflammation, coagulation, endothelial dysfunction and oxidative stress in prediabetes: Biomarkers as a possible tool for early disease detection for rural screening. Clin Biochem.201548958158510.1016/j.clinbiochem.2015.02.01525753569
    [Google Scholar]
  12. Vidya BernhardtG. ShivappaP. R PintoJ. KsR. Ramakrishna PillaiJ. Kumar SrinivasamurthyS. Paul SamuelV. Probiotics-role in alleviating the impact of alcohol liver disease and alcohol deaddiction: A systematic review.Front. Nutr.202411137275510.3389/fnut.2024.137275539290562
    [Google Scholar]
  13. AbelE.D. GiffinJ. IngelfingerJ.R. PeekM. ReuschJ.E.B. RosenC.J. SagendorfA. ThomasE.Sr Type 2 diabetes — controlling the epidemic, episode 1: Understanding and preventing type 2 diabetes.N. Engl. J. Med.20233891010.1056/NEJMp2308230
    [Google Scholar]
  14. BernhardtV.G. PintoJ.R.T. PaiV.R. In silico docking for validation of drug leads on superoxide dismutase of Homo sapiens and Plasmodium falciparum.Biomed. Res.2010212214220
    [Google Scholar]
  15. PizzinoG. IrreraN. CucinottaM. PallioG. ManninoF. ArcoraciV. SquadritoF. AltavillaD. BittoA. Oxidative stress: Harms and benefits for human health.Oxid. Med. Cell. Longev.201720171841676310.1155/2017/841676328819546
    [Google Scholar]
  16. BhattiJ.S. SehrawatA. MishraJ. SidhuI.S. NavikU. KhullarN. KumarS. BhattiG.K. ReddyP.H. Oxidative stress in the pathophysiology of type 2 diabetes and related complications: Current therapeutics strategies and future perspectives.Free Radic. Biol. Med.202218411413410.1016/j.freeradbiomed.2022.03.01935398495
    [Google Scholar]
  17. AhmedI. SiddiquiH.I. QureshiG.S. BernhardtG.V. A review of literature on the pharmacogenomics of single-nucleotide polymorphisms.Biomed Biotechnol Res J202261142010.4103/bbrj.bbrj_245_21
    [Google Scholar]
  18. YangH. JinX. Kei LamC.W. YanS.K. Oxidative stress and diabetes mellitus.Clin. Chem. Lab. Med.201149111773178210.1515/cclm.2011.25021810068
    [Google Scholar]
  19. BernhardtG.V. BernhardtK. ShivappaP. PintoJ.R.T. Immunoinformatic prediction to identify Staphylococcus aureus peptides that bind to CD8+ T-cells as potential vaccine candidates.Vet. World20241761413142210.14202/vetworld.2024.1413‑142239077442
    [Google Scholar]
  20. Burgos-MorónE. Abad-JiménezZ. Martínez de MarañónA. IannantuoniF. Escribano-LópezI. López-DomènechS. SalomC. JoverA. MoraV. RoldanI. SoláE. RochaM. VíctorV.M. Relationship between oxidative stress, ER Stress, and inflammation in type 2 diabetes: The battle continues.J. Clin. Med.201989138510.3390/jcm809138531487953
    [Google Scholar]
  21. BernhardtG.V. ShivappaP. ShantaramM. JayakarV. LokapurV. PintoJ.R.T. Phagocytic and oxidative burst activity of neutrophils in type 2 diabetic patients with foot ulcers.Biomedicine202141477678010.1055/s‑0041‑1734096
    [Google Scholar]
  22. BroedbaekK. WeimannA. StovgaardE.S. PoulsenH.E. Urinary 8-oxo-7,8-dihydro-2′-deoxyguanosine as a biomarker in type 2 diabetes.Free Radic. Biol. Med.20115181473147910.1016/j.freeradbiomed.2011.07.00721820047
    [Google Scholar]
  23. GawlikK. NaskalskiJ.W. FedakD. Pawlica-GosiewskaD. GrudzieńU. DumnickaP. MałeckiM.T. SolnicaB. Markers of antioxidant defense in patients with type 2 diabetes.Oxid. Med. Cell. Longev.201620161235236110.1155/2016/235236126640613
    [Google Scholar]
  24. GiaccoF. BrownleeM. Oxidative stress and diabetic complications.Circ. Res.201010791058107010.1161/CIRCRESAHA.110.22354521030723
    [Google Scholar]
  25. BernhardtV. D’souzaJ.R.T. ShettyA. Evaluation of neutrophil function, opsonising capacity and lymphocyte proliferation for risk of developing ischemic heart disease in type 2 diabetes mellitus patients.Int. J. Pharm. Pharm. Sci.201243318322
    [Google Scholar]
  26. BernhardtV. D’souzaJ.R.T. Immunomodulatory potential of herbal medicine in type 2 DM patients as evaluated by neutrophil phagocytic index, serum opsonisation and lymphocyte proliferation rate.Asian J. Pharm. Clin. Res.2012523641
    [Google Scholar]
  27. YucelC. CalciE. OnurA. Comparison of oxidative stress parameters in patients with prediabetes and type 2 diabetes mellitus: A preliminary study.Int. J. Med. Biochem.202141141810.14744/ijmb.2021.49198
    [Google Scholar]
  28. ZhaoC.N. MengX. LiY. LiS. LiuQ. TangG.Y. LiH.B. Fruits for prevention and treatment of cardiovascular diseases.Nutrients20179659810.3390/nu906059828608832
    [Google Scholar]
  29. ZhouD.D. LuoM. ShangA. MaoQ.Q. LiB.Y. GanR.Y. LiH.B. Antioxidant food components for the prevention and treatment of cardiovascular diseases: Effects, mechanisms, and clinical studies.Oxid. Med. Cell. Longev.202120211662735510.1155/2021/662735533574978
    [Google Scholar]
  30. ChristensenA.S. ViggersL. HasselströmK. GregersenS. Effect of fruit restriction on glycemic control in patients with type 2 diabetes – a randomized trial.Nutr. J.20131212910.1186/1475‑2891‑12‑2923497350
    [Google Scholar]
  31. DuH. LiL. BennettD. GuoY. TurnbullI. YangL. BraggF. BianZ. ChenY. ChenJ. MillwoodI.Y. SansomeS. MaL. HuangY. ZhangN. ZhengX. SunQ. KeyT.J. CollinsR. PetoR. ChenZ. Fresh fruit consumption in relation to incident diabetes and diabetic vascular complications: A 7-y prospective study of 0.5 million Chinese adults.PLoS Med.2017144e100227910.1371/journal.pmed.100227928399126
    [Google Scholar]
  32. BondonnoN.P. DaveyR.J. MurrayK. Radavelli-BagatiniS. BondonnoC.P. BlekkenhorstL.C. SimM. MaglianoD.J. DalyR.M. ShawJ.E. LewisJ.R. HodgsonJ.M. Associations between fruit intake and risk of diabetes in the AusDiab cohort.J. Clin. Endocrinol. Metab.202110610e4097e410810.1210/clinem/dgab33534076673
    [Google Scholar]
  33. JenkinsD.J.A. SpenceJ.D. GiovannucciE.L. KimY. JosseR.G. ViethR. Sahye-PudaruthS. PaquetteM. PatelD. Blanco MejiaS. ViguilioukE. NishiS.K. KavanaghM. TsirakisT. KendallC.W.C. PichikaS.C. SievenpiperJ.L. Supplemental vitamins and minerals for cardiovascular disease prevention and treatment.J. Am. Coll. Cardiol.202177442343610.1016/j.jacc.2020.09.61933509399
    [Google Scholar]
  34. HegdeS.V. AdhikariP. MN. D’SouzaV. Effect of daily supplementation of fruits on oxidative stress indices and glycaemic status in type 2 diabetes mellitus.Complement. Ther. Clin. Pract.20131929710010.1016/j.ctcp.2012.12.00223561067
    [Google Scholar]
  35. DuranteA. BronzatoS. Dietary supplements and cardiovascular diseases.Int. J. Prev. Med.2018918010.4103/ijpvm.IJPVM_179_1730283612
    [Google Scholar]
  36. TraberM.G. StevensJ.F. Vitamins C and E: Beneficial effects from a mechanistic perspective.Free Radic. Biol. Med.20115151000101310.1016/j.freeradbiomed.2011.05.01721664268
    [Google Scholar]
  37. LandeteJ.M. Dietary intake of natural antioxidants: Vitamins and polyphenols.Crit. Rev. Food Sci. Nutr.201353770672110.1080/10408398.2011.55501823638931
    [Google Scholar]
  38. IghodaroO.M. Molecular pathways associated with oxidative stress in diabetes mellitus.Biomed. Pharmacother.201810865666210.1016/j.biopha.2018.09.05830245465
    [Google Scholar]
  39. ZhangP. LiT. WuX. NiceE.C. HuangC. ZhangY. Oxidative stress and diabetes: Antioxidative strategies.Front. Med.202014558360010.1007/s11684‑019‑0729‑132248333
    [Google Scholar]
  40. BernhardtV. D’SouzaJ. ShantaramM. In vivo genetic damage induced by commercial Malathion and the antigenotoxic role of Withania somnifera.Int. J. Integr. Biol.201111278
    [Google Scholar]
  41. YounusH. Therapeutic potentials of superoxide dismutase.Int. J. Health Sci.2018123889329896077
    [Google Scholar]
  42. BernhardtV.G. PintoJ.R.T. PaiV.R. Superoxide dismutase: An alternate target for Plasmodium. Biomed. Res.2009202127135
    [Google Scholar]
  43. HermsdorffH.H.M. BarbosaK.B.F. VolpA.C.P. PuchauB. BressanJ. ZuletM.Á. MartínezJ.A. Vitamin C and fibre consumption from fruits and vegetables improves oxidative stress markers in healthy young adults.Br. J. Nutr.201210781119112710.1017/S000711451100423521899800
    [Google Scholar]
  44. PaquetteM. Medina LarquéA.S. WeisnagelS.J. DesjardinsY. MaroisJ. PilonG. DudonnéS. MaretteA. JacquesH. Strawberry and cranberry polyphenols improve insulin sensitivity in insulin-resistant, non-diabetic adults: A parallel, double-blind, controlled and randomised clinical trial.Br. J. Nutr.2017117451953110.1017/S000711451700039328290272
    [Google Scholar]
  45. GoudaM. MoustafaA. HusseinL. HamzaM. Three week dietary intervention using apricots, pomegranate juice or/and fermented sour sobya and impact on biomarkers of antioxidative activity, oxidative stress and erythrocytic glutathione transferase activity among adults.Nutr. J.20151515210.1186/s12937‑016‑0173‑x27175476
    [Google Scholar]
  46. FolchettiL.D. Monfort-PiresM. de BarrosC.R. MartiniL.A. FerreiraS.R.G. Association of fruits and vegetables consumption and related-vitamins with inflammatory and oxidative stress markers in prediabetic individuals.Diabetol. Metab. Syndr.2014612210.1186/1758‑5996‑6‑2224548603
    [Google Scholar]
  47. BaroutiA.A. TyneliusP. LagerA. BjörklundA. Fruit and vegetable intake and risk of prediabetes and type 2 diabetes: results from a 20-year long prospective cohort study in Swedish men and women.Eur. J. Nutr.20226163175318710.1007/s00394‑022‑02871‑635435501
    [Google Scholar]
  48. StocksJ. DormandyT.L. The autoxidation of human red cell lipids induced by hydrogen peroxide.Br. J. Haematol.19712019511110.1111/j.1365‑2141.1971.tb00790.x5540044
    [Google Scholar]
  49. BeutlerE. DuronO. KellyB.M. Improved method for the determination of blood glutathione.J. Lab. Clin. Med.19636188288813967893
    [Google Scholar]
  50. TietzN.W. Methods of determination of ascorbic acid.Textbook of Clinical Chemistry BurtisC.A. AshwoodE.R. BrunsD.E. Saunders Elsevier1986960962
    [Google Scholar]
  51. BeauchampC. FridovichI. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels.Anal. Biochem.197144127628710.1016/0003‑2697(71)90370‑84943714
    [Google Scholar]
  52. DuthieS.J. DuthieG.G. RussellW.R. KyleJ.A.M. MacdiarmidJ.I. RungapamestryV. StephenS. Megias-BaezaC. KaniewskaJ.J. ShawL. MilneL. BremnerD. RossK. MorriceP. PirieL.P. HorganG. BestwickC.S. Effect of increasing fruit and vegetable intake by dietary intervention on nutritional biomarkers and attitudes to dietary change: A randomised trial.Eur. J. Nutr.20185751855187210.1007/s00394‑017‑1469‑028560503
    [Google Scholar]
  53. CarterP. GrayL.J. TroughtonJ. KhuntiK. DaviesM.J. Fruit and vegetable intake and incidence of type 2 diabetes mellitus: systematic review and meta-analysis.BMJ2010341c422910.1136/bmj.c422920724400
    [Google Scholar]
  54. RondanelliM. BarrileG.C. CavioniA. DonatiP. GenoveseE. MansuetoF. MazzolaG. PatelliZ. PirolaM. RazzaC. RussanoS. SivieriC. TartaraA. ValentiniE.M. PernaS. A narrative review on strategies for the reversion of prediabetes to normoglycemia: Food pyramid, physical activity, and self-monitoring innovative glucose devices.Nutrients20231523494310.3390/nu1523494338068801
    [Google Scholar]
  55. MouroutiN. MavrogianniC. MouratidouT. LiatisS. ValveP. RurikI. TorzsaP. CardonG. BazdarskaY. IotovaV. MorenoL.A. MakrilakisK. ManiosY. The Association of lifestyle patterns with prediabetes in adults from families at high risk for type 2 diabetes in Europe: The feel diabetes study.Nutrients20231514315510.3390/nu1514315537513573
    [Google Scholar]
  56. ShresthaA. TamrakarD. GhinanjuB. ShresthaD. KhadkaP. AdhikariB. ShresthaJ. WaiwaS. PyakurelP. BhandariN. KarmacharyaB.M. ShresthaA. ShresthaR. BhattaR.D. MalikV. MatteiJ. SpiegelmanD. Effects of a dietary intervention on cardiometabolic risk and food consumption in a workplace.PLoS One2024194e030182610.1371/journal.pone.030182638656951
    [Google Scholar]
  57. WilsonR. WillisJ. GearryR. SkidmoreP. FlemingE. FramptonC. CarrA. Inadequate vitamin C status in prediabetes and type 2 diabetes mellitus: Associations with glycaemic control, obesity, and smoking.Nutrients20179999710.3390/nu909099728891932
    [Google Scholar]
  58. FeskensE.J. VirtanenS.M. RäsänenL. TuomilehtoJ. StengårdJ. PekkanenJ. NissinenA. KromhoutD. Dietary factors determining diabetes and impaired glucose tolerance. A 20-year follow-up of the finnish and dutch cohorts of the seven countries study.Diabetes Care19951881104111210.2337/diacare.18.8.11047587845
    [Google Scholar]
  59. HardingA.H. WarehamN.J. BinghamS.A. KhawK. LubenR. WelchA. ForouhiN.G. Plasma vitamin C level, fruit and vegetable consumption, and the risk of new-onset type 2 diabetes mellitus: The European prospective investigation of cancer--Norfolk prospective study.Arch. Intern. Med.2008168141493149910.1001/archinte.168.14.149318663161
    [Google Scholar]
  60. Afkhami-ArdekaniM. Shojaoddiny-ArdekaniA. Effect of vitamin C on blood glucose, serum lipids & serum insulin in type 2 diabetes patients.Indian J. Med. Res.2007126547147418160754
    [Google Scholar]
  61. JuraschekS.P. GuallarE. AppelL.J. MillerE.R.III Effects of vitamin C supplementation on blood pressure: A meta-analysis of randomized controlled trials.Am. J. Clin. Nutr.20129551079108810.3945/ajcn.111.02799522492364
    [Google Scholar]
  62. YuanX. LiX. JiZ. XiaoJ. ZhangL. ZhangW. SuH. KaliannanK. LongY. ShaoZ. Effects of vitamin C supplementation on blood pressure and hypertension control in response to ambient temperature changes in patients with essential hypertension.Clin. Exp. Hypertens.201941541442110.1080/10641963.2018.150105630183398
    [Google Scholar]
  63. BeiR. BeiR. MistrettaA. MarventanoS. CalabreseG. MasuelliL. GigantiM.G. ModestiA. GalvanoF. GazzoloD. Effects of vitamin C on health: A review of evidence.Front. Biosci.20131831017102910.2741/416023747864
    [Google Scholar]
  64. MortensenA. LykkesfeldtJ. Does vitamin C enhance nitric oxide bioavailability in a tetrahydrobiopterin-dependent manner? In vitro, in vivo and clinical studies.Nitric Oxide201436515710.1016/j.niox.2013.12.00124333161
    [Google Scholar]
  65. BhatS.S. HegdeK.S. HabibullahM.A. BernhardtV. Incipient enamel lesions remineralization using casein phosphopeptide amorphous calcium phosphate cream with and without fluoride: A laser fluorescence study.J. Clin. Pediatr. Dent.201236425335510.17796/jcpd.36.4.n72408021333581023019831
    [Google Scholar]
  66. GagnonC. DalyR.M. CarpentierA. LuZ.X. Shore-LorentiC. SikarisK. JeanS. EbelingP.R. Effects of combined calcium and vitamin D supplementation on insulin secretion, insulin sensitivity and β-cell function in multi-ethnic vitamin D-deficient adults at risk for type 2 diabetes: a pilot randomized, placebo-controlled trial.PLoS One2014910e10960710.1371/journal.pone.010960725299668
    [Google Scholar]
  67. SuematsuN. OjaimiC. RecchiaF.A. WangZ. SkayianY. XuX. ZhangS. KaminskiP.M. SunD. WolinM.S. KaleyG. HintzeT.H. Potential mechanisms of low-sodium diet-induced cardiac disease: superoxide-NO in the heart.Circ. Res.2010106359360010.1161/CIRCRESAHA.109.20839720007914
    [Google Scholar]
  68. CanoyD. NazarzadehM. CoplandE. BidelZ. RaoS. LiY. RahimiK. How much lowering of blood pressure is required to prevent cardiovascular disease in patients with and without previous cardiovascular disease?Curr. Cardiol. Rep.202224785186010.1007/s11886‑022‑01706‑435524880
    [Google Scholar]
  69. ReedJ. BainS. KanamarlapudiV. A review of current trends with type 2 diabetes epidemiology, aetiology, pathogenesis, treatments and future perspectives.Diabetes Metab. Syndr. Obes.2021143567360210.2147/DMSO.S31989534413662
    [Google Scholar]
/content/journals/nemj/10.2174/0102506882304910241218054732
Loading
/content/journals/nemj/10.2174/0102506882304910241218054732
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Biomarkers; Blood pressure; Fruit intake; Oxidative stress; Prediabetes; Vitamin C
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test