Skip to content
2000
image of Effects of Daily Low-calorie Fruit Consumption on Vitamin C Levels, Oxidative Stress, and Cardiovascular Risk Factors in Prediabetic Individuals

Abstract

Background:

The study investigated the impact of incorporating fruits or fruit juices into the diets of prediabetic individuals to mitigate oxidative stress. Previous research presented divergent approaches, making replication of findings challenging. This study aimed to evaluate whether advising the consumption of two low-calorie fruits daily could improve oxidative stress, glycemic control, and anthropometric measurements in prediabetic individuals.

Methods:

An open-label, parallel, randomized controlled trial was conducted at a medical college hospital in Mangalore, Karnataka, India. Thirty participants, aged 40-70 years, with impaired fasting glucose or impaired glucose tolerance, were recruited through screening of first-degree relatives of patients with type 2 diabetes. Participants were randomly allocated in a 1:1 ratio to either the intervention group, which consumed two low-calorie fruits daily or a wait-list control group. The inclusion criteria were adults aged 40-70 years with prediabetes. Exclusion criteria included a history of diabetes, chronic diseases, normal glucose tolerance, smoking, alcohol use, recent antioxidant/vitamin use, and participation in dietary trials within the past year. Outcomes included plasma vitamin C levels and blood pressure, oxidative stress markers, glycemic parameters, and anthropometric measures. Over three months, measurements were taken at the beginning and end of the study. Statistical analysis was performed using the Wilcoxon signed-rank test and Mann-Whitney U test, with a significance level set at < 0.05.

Results:

The mean age of participants was 43.1 ± 10.1 years in the intervention group and 44.7 ± 9.6 years in the control group. The intervention group demonstrated a significant 15% increase in plasma vitamin C levels [mean change: 4.0 µmol/L; = 0.021; 95% CI: 1.2–6.8], whereas the control group experienced a 9% decrease. Systolic blood pressure decreased significantly in the intervention group [mean change: -3.0 mmHg; = 0.04; 95% CI: -4.5 to -1.5], while the control group showed an increase. No significant differences were observed between groups in terms of oxidative stress markers, glycemic parameters, or anthropometric measures.

Conclusion:

Overall, our study provided insights into the effects of incorporating low-calorie fruits into the diet of individuals with prediabetes. While improvements in vitamin C levels and systolic blood pressure were observed, there were no significant changes in oxidative stress, glycemic status, anthropometry, and other antioxidant measures. These findings contribute to the existing literature on the potential benefits of fruit consumption in individuals with prediabetes, highlighting the importance of vitamin C as a biomarker and its potential role in blood pressure regulation and cardiovascular benefits. This study also highlights plasma vitamin C as a promising biomarker for assessing the effects of fruit supplementation. Additionally, this study suggests that broader dietary and lifestyle modifications may be necessary to achieve comprehensive metabolic improvements, particularly in prediabetic individuals.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/nemj/10.2174/0102506882304910241218054732
2024-12-24
2025-01-31
Loading full text...

Full text loading...

/deliver/fulltext/nemj/10.2174/0102506882304910241218054732/e02506882304910.html?itemId=/content/journals/nemj/10.2174/0102506882304910241218054732&mimeType=html&fmt=ahah

References

  1. Tabák A.G. Herder C. Rathmann W. Brunner E.J. Kivimäki M. Prediabetes: A high-risk state for diabetes development. Lancet 2012 379 9833 2279 2290 10.1016/S0140‑6736(12)60283‑9 22683128
    [Google Scholar]
  2. Bansal N. Prediabetes diagnosis and treatment: A review. World J. Diabetes 2015 6 2 296 303 10.4239/wjd.v6.i2.296 25789110
    [Google Scholar]
  3. American Diabetes Association 2. Classification and diagnosis of diabetes: Standards of medical care in diabetes 2020. Diabetes Care 2020 43 Suppl. 1 S14 S31 10.2337/dc20‑S002 31862745
    [Google Scholar]
  4. Hostalek U. Global epidemiology of prediabetes: Present and future perspectives. Clin. Diabetes Endocrinol. 2019 5 1 5 10.1186/s40842‑019‑0080‑0 31086677
    [Google Scholar]
  5. Kleinherenbrink W. Osei E. den Hertog H.M. Zandbergen A.A.M. Prediabetes and macrovascular disease: Review of the association, influence on outcome and effect of treatment. Eur. J. Intern. Med. 2018 55 6 11 10.1016/j.ejim.2018.07.001 30007840
    [Google Scholar]
  6. Mutie P.M. Pomares-Millan H. Atabaki-Pasdar N. Jordan N. Adams R. Daly N.L. Tajes J.F. Giordano G.N. Franks P.W. An investigation of causal relationships between prediabetes and vascular complications. Nat. Commun. 2020 11 1 4592 10.1038/s41467‑020‑18386‑9 32929089
    [Google Scholar]
  7. Beulens J.W.J. Rutters F. Rydén L. Schnell O. Mellbin L. Hart H.E. Vos R.C. Risk and management of pre-diabetes. Eur. J. Prev. Cardiol. 2019 26 2_suppl Suppl. 47 54 10.1177/2047487319880041 31766914
    [Google Scholar]
  8. Rasmussen S.S. Glümer C. Sandbaek A. Lauritzen T. Borch-Johnsen K. Progression from impaired fasting glucose and impaired glucose tolerance to diabetes in a high-risk screening programme in general practice: The addition study, denmark. Diabetologia 2007 50 2 293 297 10.1007/s00125‑006‑0530‑y 17143605
    [Google Scholar]
  9. Mainous A.G. Mansoor H. Rahmanian K.P. Carek P.J. Perception of risk of developing diabetes among patients with undiagnosed prediabetes: The impact of health care provider advice. Clin. Diabetes 2019 37 3 221 226 10.2337/cd18‑0050 31371852
    [Google Scholar]
  10. Owei I. Umekwe N. Ceesay F. Dagogo-Jack S. Awareness of prediabetes status and subsequent health behavior, body weight, and blood glucose levels. J. Am. Board Fam. Med. 2019 32 1 20 27 10.3122/jabfm.2019.01.180242 30610138
    [Google Scholar]
  11. Maschirow L. Khalaf K. Al-Aubaidy H.A. Jelinek H.F. Inflammation, coagulation, endothelial dysfunction and oxidative stress in prediabetes: Biomarkers as a possible tool for early disease detection for rural screening. Clin. Biochem. 2015 48 9 581 585 10.1016/j.clinbiochem.2015.02.015 25753569
    [Google Scholar]
  12. Vidya Bernhardt G. Shivappa P. R Pinto J. Ks R. Ramakrishna Pillai J. Kumar Srinivasamurthy S. Paul Samuel V. Probiotics-role in alleviating the impact of alcohol liver disease and alcohol deaddiction: A systematic review. Front. Nutr. 2024 11 1372755 10.3389/fnut.2024.1372755 39290562
    [Google Scholar]
  13. Abel E.D. Giffin J. Ingelfinger J.R. Peek M. Reusch J.E.B. Rosen C.J. Sagendorf A. Thomas E. Sr Type 2 diabetes — controlling the epidemic, episode 1: Understanding and preventing type 2 diabetes. N. Engl. J. Med. 2023 389 10 10.1056/NEJMp2308230
    [Google Scholar]
  14. Bernhardt V.G. Pinto J.R.T. Pai V.R. In silico docking for validation of drug leads on superoxide dismutase of Homo sapiens and Plasmodium falciparum. Biomed. Res. 2010 21 2 214 220
    [Google Scholar]
  15. Pizzino G. Irrera N. Cucinotta M. Pallio G. Mannino F. Arcoraci V. Squadrito F. Altavilla D. Bitto A. Oxidative stress: Harms and benefits for human health. Oxid. Med. Cell. Longev. 2017 2017 1 8416763 10.1155/2017/8416763 28819546
    [Google Scholar]
  16. Bhatti J.S. Sehrawat A. Mishra J. Sidhu I.S. Navik U. Khullar N. Kumar S. Bhatti G.K. Reddy P.H. Oxidative stress in the pathophysiology of type 2 diabetes and related complications: Current therapeutics strategies and future perspectives. Free Radic. Biol. Med. 2022 184 114 134 10.1016/j.freeradbiomed.2022.03.019 35398495
    [Google Scholar]
  17. Ahmed I. Siddiqui H.I. Qureshi G.S. Bernhardt G.V. A review of literature on the pharmacogenomics of single-nucleotide polymorphisms. Biom. Biotechnol. Res. J. 2022 6 1 14 20 10.4103/bbrj.bbrj_245_21
    [Google Scholar]
  18. Yang H. Jin X. Kei Lam C.W. Yan S.K. Oxidative stress and diabetes mellitus. Clin. Chem. Lab. Med. 2011 49 11 1773 1782 10.1515/cclm.2011.250 21810068
    [Google Scholar]
  19. Bernhardt G.V. Bernhardt K. Shivappa P. Pinto J.R.T. Immunoinformatic prediction to identify Staphylococcus aureus peptides that bind to CD8+ T-cells as potential vaccine candidates. Vet. World 2024 17 6 1413 1422 10.14202/vetworld.2024.1413‑1422 39077442
    [Google Scholar]
  20. Burgos-Morón E. Abad-Jiménez Z. Martínez de Marañón A. Iannantuoni F. Escribano-López I. López-Domènech S. Salom C. Jover A. Mora V. Roldan I. Solá E. Rocha M. Víctor V.M. Relationship between oxidative stress, ER Stress, and inflammation in type 2 diabetes: The battle continues. J. Clin. Med. 2019 8 9 1385 10.3390/jcm8091385 31487953
    [Google Scholar]
  21. Bernhardt G.V. Shivappa P. Shantaram M. Jayakar V. Lokapur V. Pinto J.R.T. Phagocytic and oxidative burst activity of neutrophils in type 2 diabetic patients with foot ulcers. Biomedicine 2021 41 4 776 780 10.1055/s‑0041‑1734096
    [Google Scholar]
  22. Broedbaek K. Weimann A. Stovgaard E.S. Poulsen H.E. Urinary 8-oxo-7,8-dihydro-2′-deoxyguanosine as a biomarker in type 2 diabetes. Free Radic. Biol. Med. 2011 51 8 1473 1479 10.1016/j.freeradbiomed.2011.07.007 21820047
    [Google Scholar]
  23. Gawlik K. Naskalski J.W. Fedak D. Pawlica-Gosiewska D. Grudzień U. Dumnicka P. Małecki M.T. Solnica B. Markers of antioxidant defense in patients with type 2 diabetes. Oxid. Med. Cell. Longev. 2016 2016 1 2352361 10.1155/2016/2352361 26640613
    [Google Scholar]
  24. Giacco F. Brownlee M. Oxidative stress and diabetic complications. Circ. Res. 2010 107 9 1058 1070 10.1161/CIRCRESAHA.110.223545 21030723
    [Google Scholar]
  25. Bernhardt V. D’souza J.R.T. Shetty A. Evaluation of neutrophil function, opsonising capacity and lymphocyte proliferation for risk of developing ischemic heart disease in type 2 diabetes mellitus patients. Int. J. Pharm. Pharm. Sci. 2012 4 3 318 322
    [Google Scholar]
  26. Bernhardt V. D’souza J.R.T. Immunomodulatory potential of herbal medicine in type 2 DM patients as evaluated by neutrophil phagocytic index, serum opsonisation and lymphocyte proliferation rate. Asian J. Pharm. Clin. Res. 2012 5 2 36 41
    [Google Scholar]
  27. Yucel C. Calci E. Onur A. Comparison of oxidative stress parameters in patients with prediabetes and type 2 diabetes mellitus: A preliminary study. Int. J. Med. Biochem. 2021 4 1 14 18 10.14744/ijmb.2021.49198
    [Google Scholar]
  28. Zhao C.N. Meng X. Li Y. Li S. Liu Q. Tang G.Y. Li H.B. Fruits for prevention and treatment of cardiovascular diseases. Nutrients 2017 9 6 598 10.3390/nu9060598 28608832
    [Google Scholar]
  29. Zhou D.D. Luo M. Shang A. Mao Q.Q. Li B.Y. Gan R.Y. Li H.B. Antioxidant food components for the prevention and treatment of cardiovascular diseases: Effects, mechanisms, and clinical studies. Oxid. Med. Cell. Longev. 2021 2021 1 6627355 10.1155/2021/6627355 33574978
    [Google Scholar]
  30. Christensen A.S. Viggers L. Hasselström K. Gregersen S. Effect of fruit restriction on glycemic control in patients with type 2 diabetes – a randomized trial. Nutr. J. 2013 12 1 29 10.1186/1475‑2891‑12‑29 23497350
    [Google Scholar]
  31. Du H. Li L. Bennett D. Guo Y. Turnbull I. Yang L. Bragg F. Bian Z. Chen Y. Chen J. Millwood I.Y. Sansome S. Ma L. Huang Y. Zhang N. Zheng X. Sun Q. Key T.J. Collins R. Peto R. Chen Z. Fresh fruit consumption in relation to incident diabetes and diabetic vascular complications: A 7-y prospective study of 0.5 million Chinese adults. PLoS Med. 2017 14 4 e1002279 10.1371/journal.pmed.1002279 28399126
    [Google Scholar]
  32. Bondonno N.P. Davey R.J. Murray K. Radavelli-Bagatini S. Bondonno C.P. Blekkenhorst L.C. Sim M. Magliano D.J. Daly R.M. Shaw J.E. Lewis J.R. Hodgson J.M. Associations between fruit intake and risk of diabetes in the AusDiab cohort. J. Clin. Endocrinol. Metab. 2021 106 10 e4097 e4108 10.1210/clinem/dgab335 34076673
    [Google Scholar]
  33. Jenkins D.J.A. Spence J.D. Giovannucci E.L. Kim Y. Josse R.G. Vieth R. Sahye-Pudaruth S. Paquette M. Patel D. Blanco Mejia S. Viguiliouk E. Nishi S.K. Kavanagh M. Tsirakis T. Kendall C.W.C. Pichika S.C. Sievenpiper J.L. Supplemental vitamins and minerals for cardiovascular disease prevention and treatment. J. Am. Coll. Cardiol. 2021 77 4 423 436 10.1016/j.jacc.2020.09.619 33509399
    [Google Scholar]
  34. Hegde S.V. Adhikari P. M N. D’Souza V. Effect of daily supplementation of fruits on oxidative stress indices and glycaemic status in type 2 diabetes mellitus. Complement. Ther. Clin. Pract. 2013 19 2 97 100 10.1016/j.ctcp.2012.12.002 23561067
    [Google Scholar]
  35. Durante A. Bronzato S. Dietary supplements and cardiovascular diseases. Int. J. Prev. Med. 2018 9 1 80 10.4103/ijpvm.IJPVM_179_17 30283612
    [Google Scholar]
  36. Traber M.G. Stevens J.F. Vitamins C and E: Beneficial effects from a mechanistic perspective. Free Radic. Biol. Med. 2011 51 5 1000 1013 10.1016/j.freeradbiomed.2011.05.017 21664268
    [Google Scholar]
  37. Landete J.M. Dietary intake of natural antioxidants: Vitamins and polyphenols. Crit. Rev. Food Sci. Nutr. 2013 53 7 706 721 10.1080/10408398.2011.555018 23638931
    [Google Scholar]
  38. Ighodaro O.M. Molecular pathways associated with oxidative stress in diabetes mellitus. Biomed. Pharmacother. 2018 108 656 662 10.1016/j.biopha.2018.09.058 30245465
    [Google Scholar]
  39. Zhang P. Li T. Wu X. Nice E.C. Huang C. Zhang Y. Oxidative stress and diabetes: Antioxidative strategies. Front. Med. 2020 14 5 583 600 10.1007/s11684‑019‑0729‑1 32248333
    [Google Scholar]
  40. Bernhardt V. D’Souza J. Shantaram M. In vivo genetic damage induced by commercial Malathion and the antigenotoxic role of Withania somnifera. Int. J. Integr. Biol. 2011 11 2 78
    [Google Scholar]
  41. Younus H. Therapeutic potentials of superoxide dismutase. Int. J. Health Sci. 2018 12 3 88 93 29896077
    [Google Scholar]
  42. Bernhardt V.G. Pinto J.R.T. Pai V.R. Superoxide dismutase: An alternate target for Plasmodium. Biomed. Res. 2009 20 2 127 135
    [Google Scholar]
  43. Hermsdorff H.H.M. Barbosa K.B.F. Volp A.C.P. Puchau B. Bressan J. Zulet M.Á. Martínez J.A. Vitamin C and fibre consumption from fruits and vegetables improves oxidative stress markers in healthy young adults. Br. J. Nutr. 2012 107 8 1119 1127 10.1017/S0007114511004235 21899800
    [Google Scholar]
  44. Paquette M. Medina Larqué A.S. Weisnagel S.J. Desjardins Y. Marois J. Pilon G. Dudonné S. Marette A. Jacques H. Strawberry and cranberry polyphenols improve insulin sensitivity in insulin-resistant, non-diabetic adults: A parallel, double-blind, controlled and randomised clinical trial. Br. J. Nutr. 2017 117 4 519 531 10.1017/S0007114517000393 28290272
    [Google Scholar]
  45. Gouda M. Moustafa A. Hussein L. Hamza M. Three week dietary intervention using apricots, pomegranate juice or/and fermented sour sobya and impact on biomarkers of antioxidative activity, oxidative stress and erythrocytic glutathione transferase activity among adults. Nutr. J. 2015 15 1 52 10.1186/s12937‑016‑0173‑x 27175476
    [Google Scholar]
  46. Folchetti L.D. Monfort-Pires M. de Barros C.R. Martini L.A. Ferreira S.R.G. Association of fruits and vegetables consumption and related-vitamins with inflammatory and oxidative stress markers in prediabetic individuals. Diabetol. Metab. Syndr. 2014 6 1 22 10.1186/1758‑5996‑6‑22 24548603
    [Google Scholar]
  47. Barouti A.A. Tynelius P. Lager A. Björklund A. Fruit and vegetable intake and risk of prediabetes and type 2 diabetes: results from a 20-year long prospective cohort study in Swedish men and women. Eur. J. Nutr. 2022 61 6 3175 3187 10.1007/s00394‑022‑02871‑6 35435501
    [Google Scholar]
  48. Stocks J. Dormandy T.L. The autoxidation of human red cell lipids induced by hydrogen peroxide. Br. J. Haematol. 1971 20 1 95 111 10.1111/j.1365‑2141.1971.tb00790.x 5540044
    [Google Scholar]
  49. Beutler E. Duron O. Kelly B.M. Improved method for the determination of blood glutathione. J. Lab. Clin. Med. 1963 61 882 888 13967893
    [Google Scholar]
  50. Tietz N.W. Methods of determination of ascorbic acid. Textbook of Clinical Chemistry Burtis C.A. Ashwood E.R. Bruns D.E. Saunders Elsevier 1986 960 962
    [Google Scholar]
  51. Beauchamp C. Fridovich I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 1971 44 1 276 287 10.1016/0003‑2697(71)90370‑8 4943714
    [Google Scholar]
  52. Duthie S.J. Duthie G.G. Russell W.R. Kyle J.A.M. Macdiarmid J.I. Rungapamestry V. Stephen S. Megias-Baeza C. Kaniewska J.J. Shaw L. Milne L. Bremner D. Ross K. Morrice P. Pirie L.P. Horgan G. Bestwick C.S. Effect of increasing fruit and vegetable intake by dietary intervention on nutritional biomarkers and attitudes to dietary change: A randomised trial. Eur. J. Nutr. 2018 57 5 1855 1872 10.1007/s00394‑017‑1469‑0 28560503
    [Google Scholar]
  53. Carter P. Gray L.J. Troughton J. Khunti K. Davies M.J. Fruit and vegetable intake and incidence of type 2 diabetes mellitus: systematic review and meta-analysis. BMJ 2010 341 aug18 4 c4229 10.1136/bmj.c4229 20724400
    [Google Scholar]
  54. Rondanelli M. Barrile G.C. Cavioni A. Donati P. Genovese E. Mansueto F. Mazzola G. Patelli Z. Pirola M. Razza C. Russano S. Sivieri C. Tartara A. Valentini E.M. Perna S. A narrative review on strategies for the reversion of prediabetes to normoglycemia: Food pyramid, physical activity, and self-monitoring innovative glucose devices. Nutrients 2023 15 23 4943 10.3390/nu15234943 38068801
    [Google Scholar]
  55. Mourouti N. Mavrogianni C. Mouratidou T. Liatis S. Valve P. Rurik I. Torzsa P. Cardon G. Bazdarska Y. Iotova V. Moreno L.A. Makrilakis K. Manios Y. The Association of lifestyle patterns with prediabetes in adults from families at high risk for type 2 diabetes in Europe: The feel diabetes study. Nutrients 2023 15 14 3155 10.3390/nu15143155 37513573
    [Google Scholar]
  56. Shrestha A. Tamrakar D. Ghinanju B. Shrestha D. Khadka P. Adhikari B. Shrestha J. Waiwa S. Pyakurel P. Bhandari N. Karmacharya B.M. Shrestha A. Shrestha R. Bhatta R.D. Malik V. Mattei J. Spiegelman D. Effects of a dietary intervention on cardiometabolic risk and food consumption in a workplace. PLoS One 2024 19 4 e0301826 10.1371/journal.pone.0301826 38656951
    [Google Scholar]
  57. Wilson R. Willis J. Gearry R. Skidmore P. Fleming E. Frampton C. Carr A. Inadequate vitamin C status in prediabetes and type 2 diabetes mellitus: Associations with glycaemic control, obesity, and smoking. Nutrients 2017 9 9 997 10.3390/nu9090997 28891932
    [Google Scholar]
  58. Feskens E.J. Virtanen S.M. Räsänen L. Tuomilehto J. Stengård J. Pekkanen J. Nissinen A. Kromhout D. Dietary factors determining diabetes and impaired glucose tolerance. A 20-year follow-up of the finnish and dutch cohorts of the seven countries study. Diabetes Care 1995 18 8 1104 1112 10.2337/diacare.18.8.1104 7587845
    [Google Scholar]
  59. Harding A.H. Wareham N.J. Bingham S.A. Khaw K. Luben R. Welch A. Forouhi N.G. Plasma vitamin C level, fruit and vegetable consumption, and the risk of new-onset type 2 diabetes mellitus: The European prospective investigation of cancer--Norfolk prospective study. Arch. Intern. Med. 2008 168 14 1493 1499 10.1001/archinte.168.14.1493 18663161
    [Google Scholar]
  60. Afkhami-Ardekani M. Shojaoddiny-Ardekani A. Effect of vitamin C on blood glucose, serum lipids & serum insulin in type 2 diabetes patients. Indian J. Med. Res. 2007 126 5 471 474 18160754
    [Google Scholar]
  61. Juraschek S.P. Guallar E. Appel L.J. Miller E.R. III Effects of vitamin C supplementation on blood pressure: A meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2012 95 5 1079 1088 10.3945/ajcn.111.027995 22492364
    [Google Scholar]
  62. Yuan X. Li X. Ji Z. Xiao J. Zhang L. Zhang W. Su H. Kaliannan K. Long Y. Shao Z. Effects of vitamin C supplementation on blood pressure and hypertension control in response to ambient temperature changes in patients with essential hypertension. Clin. Exp. Hypertens. 2019 41 5 414 421 10.1080/10641963.2018.1501056 30183398
    [Google Scholar]
  63. Bei R. Bei R. Mistretta A. Marventano S. Calabrese G. Masuelli L. Giganti M.G. Modesti A. Galvano F. Gazzolo D. Effects of vitamin C on health: A review of evidence. Front. Biosci. 2013 18 3 1017 1029 10.2741/4160 23747864
    [Google Scholar]
  64. Mortensen A. Lykkesfeldt J. Does vitamin C enhance nitric oxide bioavailability in a tetrahydrobiopterin-dependent manner? In vitro, in vivo and clinical studies. Nitric Oxide 2014 36 51 57 10.1016/j.niox.2013.12.001 24333161
    [Google Scholar]
  65. Bhat S.S. Hegde K.S. Habibullah M.A. Bernhardt V. Incipient enamel lesions remineralization using casein phosphopeptide amorphous calcium phosphate cream with and without fluoride: A laser fluorescence study. J. Clin. Pediatr. Dent. 2012 36 4 253 355 10.17796/jcpd.36.4.n724080213335810 23019831
    [Google Scholar]
  66. Gagnon C. Daly R.M. Carpentier A. Lu Z.X. Shore-Lorenti C. Sikaris K. Jean S. Ebeling P.R. Effects of combined calcium and vitamin D supplementation on insulin secretion, insulin sensitivity and β-cell function in multi-ethnic vitamin D-deficient adults at risk for type 2 diabetes: a pilot randomized, placebo-controlled trial. PLoS One 2014 9 10 e109607 10.1371/journal.pone.0109607 25299668
    [Google Scholar]
  67. Suematsu N. Ojaimi C. Recchia F.A. Wang Z. Skayian Y. Xu X. Zhang S. Kaminski P.M. Sun D. Wolin M.S. Kaley G. Hintze T.H. Potential mechanisms of low-sodium diet-induced cardiac disease: superoxide-NO in the heart. Circ. Res. 2010 106 3 593 600 10.1161/CIRCRESAHA.109.208397 20007914
    [Google Scholar]
  68. Canoy D. Nazarzadeh M. Copland E. Bidel Z. Rao S. Li Y. Rahimi K. How much lowering of blood pressure is required to prevent cardiovascular disease in patients with and without previous cardiovascular disease? Curr. Cardiol. Rep. 2022 24 7 851 860 10.1007/s11886‑022‑01706‑4 35524880
    [Google Scholar]
  69. Reed J. Bain S. Kanamarlapudi V. A review of current trends with type 2 diabetes epidemiology, aetiology, pathogenesis, treatments and future perspectives. Diabetes Metab. Syndr. Obes. 2021 14 3567 3602 10.2147/DMSO.S319895 34413662
    [Google Scholar]
/content/journals/nemj/10.2174/0102506882304910241218054732
Loading
/content/journals/nemj/10.2174/0102506882304910241218054732
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Oxidative stress ; Blood pressure ; Vitamin C ; Fruit intake ; Biomarkers ; Prediabetes
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test