Skip to content
2000
Volume 5, Issue 1
  • ISSN: 0250-6882
  • E-ISSN: 0250-6882
side by side viewer icon HTML

Abstract

Introduction

The WHO Emergency Committee advocates preventive strategies for COVID-19 management, emphasising vaccines as highly effective but acknowledging their limitations. Chloroquine and hydroxychloroquine, initially effective against COVID-19, were discontinued due to severe side effects. Further clinical trials are imperative to establish the safety and efficacy of new antiviral agents, some of which may have harmful effects on human development.

Objectives

The shortcomings of various conventional treatments have prompted urgent efforts to discover safe, natural compounds that may be useful in combating COVID-19. This study aims to review research that has investigated the potential of traditional phytotherapies used by different populations for the prevention and symptomatic treatment of COVID-19 infection.

Methods

This paper reviewed scientific studies published through searching on search engines such as PubMed, Scopus, Google Scholar, ScienceDirect and Elsevier from May until October 2023.

Results

The preventive and anti-COVID-19 attributes of Traditional Chinese Medicine, Ayurvedic formulations and African medicinal plants have been substantiated in research. In Nepal, recommendations endorse the utilisation of medicinal plants for herbal teas and homemade sanitizers. , . and ., along with are crucial Indonesian medicinal plants with potential for treating COVID-19. was predominantly chosen for relieving coughs and sore throats associated with COVID-19 in Saudi Arabia.

Discussion

The immunomodulatory properties of medicinal plants, which may prove useful in combating COVID-19, have been verified elevation of the level of peripheral WBCs, IgM, IgG; inhibition of leukotrienes and prostaglandins, maintenance of the integrity of intestinal mucosal barrier and regulation of HMGB1. The antiviral effects of herbs, including the inhibition of viral DNA and RNA replication, down-regulation of oxidative stress, and the impediment of SARS-CoV-2 access to vascular endothelial cells, suggest their potential to facilitate earlier recovery from COVID-19 infection.

Conclusion

Advancing scientific research in phytotherapy promises the possibility of novel approaches for effectively managing future infectious diseases and pandemics.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/nemj/10.2174/0102506882300219240315061704
2024-04-22
2025-01-31
Loading full text...

Full text loading...

/deliver/fulltext/nemj/5/1/NEMJ-5-E02506882300219.html?itemId=/content/journals/nemj/10.2174/0102506882300219240315061704&mimeType=html&fmt=ahah

References

  1. Van DoornH.R. YuH. Viral respiratory infections.Hunter’s Tropical Medicine and Emerging Infectious Diseases. Elsevier PMC COVID-19 Collection. RyanE.T. HillD.R. Elsevier2019284288
    [Google Scholar]
  2. MaisonN. OmonyJ. RinderknechtS. KolbergL. Meyer-BühnM. von MutiusE. HübnerJ. von BothU. Old foes following news ways?—Pandemic-related changes in the epidemiology of viral respiratory tract infections.Infection202452120921810.1007/s15010‑023‑02085‑w37644253
    [Google Scholar]
  3. ChikoweI. MtewaA.G. TemboD. SmithD. IbrahimE. MwamatopeB. NkhunguluJ. KumpalumeP. KumpalumeP. MaroyiA. Potential of Malawi’s medicinal plants in COVID-19 disease management: A review.Malawi Med. J.20213328510710.4314/mmj.v33i2.434777704
    [Google Scholar]
  4. OgunrinolaO.O. KanmodiR.I. OgunrinolaO.A. Medicinal plants as immune booster in the palliative management of viral diseases: A perspective on coronavirus.Food Front.2022318395[Available from: https://doi.org/10.1002/fft2.107].10.1002/fft2.107
    [Google Scholar]
  5. TornerN. The end of COVID-19 public health emergency of international concern (PHEIC): And now what?Vacunas2023202337362832
    [Google Scholar]
  6. BurkiT. WHO ends the COVID-19 public health emergency.Lancet Respir. Med.202311758810.1016/S2213‑2600(23)00217‑537247628
    [Google Scholar]
  7. KhalifeJ. Effective strategies against COVID-19 and the importance of infection sequelae.Glob. Health Res. Policy2022714910.1186/s41256‑022‑00283‑x36494763
    [Google Scholar]
  8. World Health OrganizationWHO roadmap on uses of COVID-19 vaccines in the context of Omicron and high population immunity.Available from: https://www.who.int/publications/i/item/WHO-2019-nCoV-Vaccines-SAGE-Prioritization-2023.2 2023
  9. WuN. Joyal-DesmaraisK. RibeiroP.A.B. VieiraA.M. StojanovicJ. SanuadeC. YipD. BaconS.L. Long-term effectiveness of COVID-19 vaccines against infections, hospitalisations, and mortality in adults: Findings from a rapid living systematic evidence synthesis and meta-analysis up to December, 2022.Lancet Respir. Med.202311543945210.1016/S2213‑2600(23)00015‑236780914
    [Google Scholar]
  10. PhumthumM. NguanchooV. BalslevH. Medicinal plants used for treating mild COVID-19 symptoms among thai karen and hmong.Front. Pharmacol.20211269989710.3389/fphar.2021.69989734354592
    [Google Scholar]
  11. KontoghiorghesG.J. KolnagouA. FettaS. KontoghiorgheC.N. Conventional and unconventional approaches for innovative drug treatments in COVID-19: Looking outside of plato’s cave.Int. J. Mol. Sci.20212213720810.3390/ijms2213720834281262
    [Google Scholar]
  12. AkindeleA.J. AgunbiadeF.O. SofidiyaM.O. COVID-19 pandemic: A case for phytomedicines.Nat Prod Commun20201581934578X2094508610.1177/1934578X20945086
    [Google Scholar]
  13. ZebeamanM. TadesseM.G. BachhetiR.K. BachhetiA. GebeyhuR. ChaubeyK.K. Plants and plant-derived molecules as natural immunomodulators.BioMed Res. Int.2023202311410.1155/2023/771129737313550
    [Google Scholar]
  14. AllegraS. De FranciaS. TurcoF. BertaggiaI. ChiaraF. ArmandoT. StortoS. MussaM.V. Phytotherapy and drugs: Can their interactions increase side effects in cancer patients?J. Xenobiot.2023131758910.3390/jox1301000736810432
    [Google Scholar]
  15. RahmanM.M. BibiS. RahamanM.S. RahmanF. IslamF. KhanM.S. HasanM.M. ParvezA. HossainM.A. MaeesaS.K. IslamM.R. NajdaA. Al-malkyH.S. MohamedH.R.H. AlGwaizH.I.M. AwajiA.A. GermoushM.O. KensaraO.A. Abdel-DaimM.M. SaeedM. KamalM.A. Natural therapeutics and nutraceuticals for lung diseases: Traditional significance, phytochemistry, and pharmacology.Biomed. Pharmacother.202215011304110.1016/j.biopha.2022.11304135658211
    [Google Scholar]
  16. ChoiS.H. WHO traditional medicine strategy and activities. “Standardization with evidence-based approaches”.J. Acupunct. Meridian Stud.20081215315410.1016/S2005‑2901(09)60037‑620633469
    [Google Scholar]
  17. FerrariR. Writing narrative style literature reviews.Med. Writ.201524423023510.1179/2047480615Z.000000000329
    [Google Scholar]
  18. SoleymaniS NaghizadehA KarimiM ZareiA MardiR KordafshariG COVID-19: General strategies for herbal therapies.J Evid Based Integr Med.2022272515690X21105364110.1177/2515690X211053641
    [Google Scholar]
  19. LiuM. GaoY. YuanY. YangK. ShiS. ZhangJ. TianJ. Efficacy and safety of integrated traditional chinese and western medicine for corona virus disease 2019 (COVID-19): A systematic review and meta-analysis.Pharmacol. Res.202015810489610.1016/j.phrs.2020.10489632438037
    [Google Scholar]
  20. LiZ.X. ZhaoG.D. XiongW. LinghuK.G. MaQ.S. CheangW.S. YuH. WangY. Immunomodulatory effects of a new whole ingredients extract from astragalus: A combined evaluation on chemistry and pharmacology.Chin. Med.20191411210.1186/s13020‑019‑0234‑030962814
    [Google Scholar]
  21. ZhaoZ. LiY. ZhouL. ZhouX. XieB. ZhangW. SunJ. Prevention and treatment of COVID-19 using traditional chinese medicine: A review.Phytomedicine20218515330810.1016/j.phymed.2020.15330832843234
    [Google Scholar]
  22. YangZ. LiuY. WangL. LinS. DaiX. YanH. GeZ. RenQ. WangH. ZhuF. WangS. Traditional Chinese medicine against COVID-19: Role of the gut microbiota.Biomed. Pharmacother.202214911278710.1016/j.biopha.2022.11278735279010
    [Google Scholar]
  23. AnJ. LiuY. WangY. FanR. HuX. ZhangF. YangJ. ChenJ. The role of intestinal mucosal barrier in autoimmune disease: A potential target.Front. Immunol.20221387171310.3389/fimmu.2022.87171335844539
    [Google Scholar]
  24. DeyP. ChaudhuriS.R. EfferthT. PalS. The intestinal 3M (microbiota, metabolism, metabolome) zeitgeist - from fundamentals to future challenges.Free Radic. Biol. Med.202117626528510.1016/j.freeradbiomed.2021.09.02634610364
    [Google Scholar]
  25. BabichO. SukhikhS. ProsekovA. AsyakinaL. IvanovaS. Medicinal plants to strengthen immunity during a pandemic.Pharmaceuticals2020131031310.3390/ph1310031333076514
    [Google Scholar]
  26. WulandariS. The role of HMGB1 in COVID-19-induced cytokine storm and its potential therapeutic targets.Rev. Immunol.2023169211713110.1111/imm.1362336571562
    [Google Scholar]
  27. ThimmulappaR.K. NagarajuM.K.K. ShivamalluC. SubramaniamK.J.T. RadhakrishnanA. BhojrajS. KuppusamyG. Antiviral and immunomodulatory activity of curcumin: A case for prophylactic therapy for COVID-19.Heliyon202172e0635010.1016/j.heliyon.2021.e0635033655086
    [Google Scholar]
  28. BahramsoltaniR RahimiR FarzaeiMH Pharmacokinetic interactions of curcuminoids with conventional drugs: A review.J Ethnopharmacol.201720911210.1016/j.jep.2017.07.022
    [Google Scholar]
  29. KhemariyaP. AgrawalA. MinnoorE. Formulation of dispersible ayurvedic kadha tablet for the management of cold and cough.Japan. J Med Res2023111710.33425/2993‑6799.1004
    [Google Scholar]
  30. ShahB. Ayurveda and alternative medicine guidelines of preventive measures and management protocol for COVID-19 in Nepal.Available from: https://www.covidlawlab.org/wp-content/uploads/2021/01/Nepal_2020.04.27_Guidelines_Ayurveda-and-Alternative-Medicine-Guidelines-of-Preventive-Measures-and-Management-Protocol-for-COVID-19-in-Nepal_EN.pdf 2020
  31. TabarsaM. YouS. YelithaoK. PalanisamyS. PrabhuN.M. NanM. Isolation, structural elucidation and immuno-stimulatory properties of polysaccharides from Cuminum cyminum.Carbohydr. Polym.202023011563610.1016/j.carbpol.2019.11563631887877
    [Google Scholar]
  32. KariaR. GuptaI. KhandaitH. YadavA. YadavA. COVID-19 and its modes of transmission.SN Compr. Clin. Med.20202101798180110.1007/s42399‑020‑00498‑432904860
    [Google Scholar]
  33. HaridasM. SasidharV. NathP. AbhithajJ. SabuA. RammanoharP. Compounds of Citrus medica and Zingiber officinale for COVID-19 inhibition: in silico evidence for cues from Ayurveda.Future J. Pharm. Sci.2021711310.1186/s43094‑020‑00171‑633457429
    [Google Scholar]
  34. LuJ. GuanS. ShenX. QianW. HuangG. DengX. XieG. Immunosuppressive activity of 8-gingerol on immune responses in mice.Molecules20111632636264510.3390/molecules1603263621441866
    [Google Scholar]
  35. OladeleJ.O. AjayiE.I. OyelekeO.M. OladeleO.T. OlowookereB.D. AdeniyiB.M. OyewoleO.I. OladijiA.T. A systematic review on COVID-19 pandemic with special emphasis on curative potentials of Nigeria based medicinal plants.Heliyon202069e0489710.1016/j.heliyon.2020.e0489732929412
    [Google Scholar]
  36. BachiegaT.F. SforcinJ.M. Lemongrass and citral effect on cytokines production by murine macrophages.J. Ethnopharmacol.2011137190991310.1016/j.jep.2011.07.02121782918
    [Google Scholar]
  37. LuoX. ZhangY. LiH. RenM. LiuY. LiuY. ZhangY. KuangZ. CaiY. ChenY. NiX. Clinical evidence on the use of chinese herbal medicine for acute infectious diseases: An overview of systematic reviews.Front. Pharmacol.20221375297810.3389/fphar.2022.75297835281902
    [Google Scholar]
  38. YuS. WangJ. ShenH. Network pharmacology-based analysis of the role of traditional Chinese herbal medicines in the treatment of COVID-19.Ann. Palliat. Med.20209243744610.21037/apm.2020.03.2732233641
    [Google Scholar]
  39. JiaZ. WuY. Clinical applications and pharmacological research progress of Lianhua Qingwen capsules/granules.J. Tradit. Chin. Med. Sci.20218210110910.1016/j.jtcms.2021.05.001
    [Google Scholar]
  40. LiY XiaoP LiuN ZhangZ. Efficacy and safety of chinese medicine lianhua qingwen for treating COVID-19: An updated meta-analysis.Front Pharmacol.20221388882010.3389/fphar.2022.888820
    [Google Scholar]
  41. ZhanY.Q. ChenR.F. ZhengQ.S. LiX.W. LiuY.N. MootsikapunP. ChayakulkeereeM. ArttawejkulP. LanT.T.N. LiuG.G. LuH.Z. LiuQ.Q. ZhongN.S. YangZ.F. ZhengJ.P. Efficacy and safety of Lianhua Qingwen capsules combined with standard of care in the treatment of adult patients with mild to moderate COVID-19 (FLOSAN): Protocol for a randomized, double-blind, international multicenter clinical trial.J. Thorac. Dis.20231552859287210.21037/jtd‑23‑28137324081
    [Google Scholar]
  42. MengT DingJ ShenS XuY WangP SongX Xuanfei Baidu decoction in the treatment of coronavirus disease 2019 (COVID-19): Efficacy and potential mechanisms.Heliyon201999e1916310.1016/j.heliyon.2023.e19163
    [Google Scholar]
  43. JainJ. KumarA. NarayananV. RamaswamyR.S. SathiyarajeswaranP. Shree DeviM.S. KannanM. SunilS. Antiviral activity of ethanolic extract of Nilavembu Kudineer against dengue and chikungunya virus through in vitro evaluation.J. Ayurveda Integr. Med.202011332933510.1016/j.jaim.2018.05.00630685096
    [Google Scholar]
  44. Mahaboob AliA.A. BugarcicA. NaumovskiN. GhildyalR. Ayurvedic formulations: Potential COVID-19 therapeutics?Phytomed. Plus20222310028610.1016/j.phyplu.2022.10028635474908
    [Google Scholar]
  45. World Health OrganizationGlobal strategies and plans of action that are scheduled to expire within one year WHO traditional medicine strategy: 2014-2023. EXECUTIVE BOARD 152nd session, Provisional agenda item 23. 2022.Available from: https://apps.who.int/gb/ebwha/pdf_files/EB152/B152_37-en.pdf 2022
    [Google Scholar]
  46. NovikaR.G.H. WahidahN.J. YunusA. SumarnoL. IlyasM.F. Clinical effect of Echinacea purpurea as an antiviral and its effect on reproductive hormones.J. Pharm. Pharmacogn. Res.202412225526310.56499/jppres23.1784_12.2.255
    [Google Scholar]
  47. CioccarelliC. Sánchez-RodríguezR. AngioniR. VenegasF.C. BertoldiN. MunariF. CattelanA. MolonB. ViolaA. IL1β promotes TMPRSS2 expression and SARS-CoV-2 cell entry through the p38 MAPK-GATA2 axis.Front. Immunol.20211278135210.3389/fimmu.2021.78135234950146
    [Google Scholar]
  48. EzeM.O. EjikeC.E.C.C. IfeonuP. UdeinyaI.J. UdenigweC.C. UzoegwuP.N. Anti-COVID-19 potential of Azadirachta indica (Neem) leaf extract.Sci. Afr.202216e0118410.1016/j.sciaf.2022.e0118435434432
    [Google Scholar]
  49. LisantiE. SajuthiD. AgilM. ArifiantiniR.I. The effect of aqueous seed extract of neem (Azadirachta indica A. Juss) on liver histology of male mice (Mus musculus albinus).AIP Conf. Proc.20192019060004
    [Google Scholar]
  50. DengY. CaoM. ShiD. YinZ. JiaR. XuJ. WangC. LvC. LiangX. HeC. YangZ. ZhaoJ. Toxicological evaluation of neem (Azadirachta indica) oil: Acute and subacute toxicity.Environ. Toxicol. Pharmacol.201335224024610.1016/j.etap.2012.12.01523353547
    [Google Scholar]
  51. MloziS.H. The role of natural products from medicinal plants against COVID-19: Traditional medicine practice in Tanzania.Heliyon202286e0973910.1016/j.heliyon.2022.e0973935747321
    [Google Scholar]
  52. ZrigA. the effect of phytocompounds of medicinal plants on coronavirus (2019-ncov) infection.Pharm. Chem. J.202255101080108410.1007/s11094‑021‑02540‑835125554
    [Google Scholar]
  53. PanikarS. ShobaG. ArunM. SahayarayanJ.J. NanthiniU.R.A. ChinnathambiA. AlharbiS.A. NasifO. KimH.J. Essential oils as an effective alternative for the treatment of COVID-19: Molecular interaction analysis of protease (Mpro) with pharmacokinetics and toxicological properties.J. Infect. Public Health202114560161010.1016/j.jiph.2020.12.03733848890
    [Google Scholar]
  54. MortuzaM.G. RoniM.A.H. KumerA. BiswasS. SalehM.A. IslamS. SadafS. AktherF. A computational study on selected alkaloids as SARS-CoV-2 inhibitors: PASS prediction, molecular docking, ADMET analysis, DFT, and molecular dynamics simulations.Biochem. Res. Int.2023202311310.1155/2023/997527537181403
    [Google Scholar]
  55. HerL. KanjanasilpJ. ChaiyakunaprukN. SawangjitR. Efficacy and safety of Eucalyptus for relieving cough: A systematic review and meta-analysis of randomized controlled trials.J. Integr. Complement. Med.202228321822610.1089/jicm.2021.022635294302
    [Google Scholar]
  56. PurwitasariN. SiswodihardjoS. AlhootM. AgilM. Pharmacological potential of some indonesian medicinal plants as promising options for COVID-19 during the pandemic era: A literature review.J. Med. Chem. Sci.202361127352749
    [Google Scholar]
  57. SheikhH.I. ZakariaN.H. MajidA.F.A. ZamzuriF. FadhlinaA. HairaniM.A.S. Promising roles of Zingiber officinale roscoe, Curcuma longa L., and Momordica charantia L. as immunity modulators against COVID-19: A bibliometric analysis.J. Agric. Food Res.20231410068010.1016/j.jafr.2023.10068037346755
    [Google Scholar]
  58. JafarzadehA. JafarzadehS. NematiM. Therapeutic potential of ginger against COVID-19: Is there enough evidence?J. Tradit. Chin. Med. Sci.20218426727910.1016/j.jtcms.2021.10.001
    [Google Scholar]
  59. LiuS.Y. WangW. KeJ.P. ZhangP. ChuG.X. BaoG.H. Discovery of camellia sinensis catechins as SARS-CoV-2 3CL protease inhibitors through molecular docking, intra and extra cellular assays.Phytomedicine20229615385310.1016/j.phymed.2021.15385334799184
    [Google Scholar]
  60. MhatreS. GuravN. ShahM. PatravaleV. Entry-inhibitory role of catechins against SARS-CoV-2 and its UK variant.Comput. Biol. Med.202113510456010.1016/j.compbiomed.2021.10456034147855
    [Google Scholar]
  61. AlmuqbilM. AlshaikhS. AlrumayhN. AlnahdiF. FallatahE. AlmutairiS. ImranM. KamalM. AlmehmadiM. AlsaiariA.A. AlqarniW.A.A. AlasmariA.M. AlwarthanS. RabaanA.A. AlmadaniM.E. AsdaqS.M.B. Role of natural products in the management of COVID-19: A Saudi Arabian perspective.Healthcare20231111158410.3390/healthcare1111158437297724
    [Google Scholar]
  62. AhmadS. AbbasiH.W. ShahidS. GulS. AbbasiS.W. Molecular docking, simulation and MM-PBSA studies of nigella sativa compounds: A computational quest to identify potential natural antiviral for COVID-19 treatment.J. Biomol. Struct. Dyn.202139124225423310.1080/07391102.2020.177512932462996
    [Google Scholar]
  63. Mashayekhi-SardooH. RezaeeR. KarimiG. Nigella sativa (black seed) safety: An overview.Asian Biomed.202014412713710.1515/abm‑2020‑002037551386
    [Google Scholar]
  64. World Health OrganizationWHO traditional medicine strategy: 2014-2023.Available from: https://www.who.int/publications-detail-redirect/9789241506096
  65. LiangZ. HuH. LiJ. YaoD. WangY. UngC.O.L. Advancing the regulation of traditional and complementary medicine products: A comparison of five regulatory systems on traditional medicines with a long history of use.Evid. Based Complement. Alternat. Med.20212021Oct11610.1155/2021/583394534745290
    [Google Scholar]
  66. RybickaM. ZhaoJ. PiotrowiczK. PtasnikS. MitkaK. Kocot-KępskaM. HuiK.K. Promoting whole person health: Exploring the role of traditional Chinese medicine in Polish healthcare.J. Integr. Med.202321650951710.1016/j.joim.2023.10.00137925335
    [Google Scholar]
  67. AguP.C. AfiukwaC.A. OrjiO.U. EzehE.M. OfokeI.H. OgbuC.O. UgwujaE.I. AjaP.M. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management.Sci. Rep.20231311339810.1038/s41598‑023‑40160‑237592012
    [Google Scholar]
  68. SarkarA. SenS. A comparative analysis of the molecular interaction techniques for in silico drug design.Int. J. Pept. Res. Ther.2020261209223[DOI: https://doi.org/10.1007/s10989-019-09830-6].10.1007/s10989‑019‑09830‑6
    [Google Scholar]
  69. DeyP. Low bioavailability hinders drug discovery against COVID-19, guided by in silico docking.Br. J. Pharmacol.2021178374174210.1111/bph.1532533283265
    [Google Scholar]
/content/journals/nemj/10.2174/0102506882300219240315061704
Loading
/content/journals/nemj/10.2174/0102506882300219240315061704
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): COVID-19; Immunomodulatory; Phytotherapy; Preventive; SARS-CoV-2; Therapeutic
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test