Skip to content
2000
Volume 5, Issue 1
  • ISSN: 0250-6882
  • E-ISSN: 0250-6882

Abstract

Background

The studies of agglutinating and adsorbing abilities of IgM and IgG antibodies towards the red blood cells (RBCs) and tissue cells are scarce.

Objectives

The study aimed to estimate the differences in the avidity of blood group-specific IgM and IgG antibodies to RBCs and epithelial cells.

Methods

The reaction of hemagglutination, adsorption, mixed agglutination reaction and saliva inhibition test were used. Anti-B 2-54 monoclonal antibody, polyclonal citrated plasma and the heated plasma were used for investigation of IgM and IgG antibodies.

Results

IgM antibodies showed high adsorbing ability to RBCs and epithelial cells in an alkaline medium.

On the contrary, the heated plasma containing IgG antibodies showed high adsorbing ability to RBCs and epithelial cells in the acid medium as compared to the alkaline medium. Complete adsorption of IgG antibodies was observed by epithelial cells as compared to erythrocytes.

A mixed agglutination reaction confirmed the strong binding of anti-B IgG antibodies with group B epithelial cells in an acid medium.

Conclusion

The binding of polyclonal IgM and IgG group-specific antibodies with red blood cells and epithelial cells depends on the opposite values of pH of the medium. IgG antibodies completely adsorb on epithelial cells contrary to IgM antibodies.

Highlights

Blood group-specific IgG antibodies showed high avidity to epithelial cells as compared to red blood cells. IgG antibodies demonstrated high agglutinating ability in alkaline medium and strong adsorbing ability in acid medium contrary to IgM antibodies, demonstrating high adsorption properties in alkaline medium.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/nemj/10.2174/0102506882280860231124113912
2024-01-01
2025-04-23
The full text of this item is not currently available.

References

  1. StussiG. HuggelK. LutzH.U. SchanzU. RiebenR. SeebachJ.D. Isotype-specific detection of ABO blood group antibodies using a novel flow cytometric method.Br. J. Haematol.2005130695496310.1111/j.1365‑2141.2005.05705.x16156865
    [Google Scholar]
  2. KasaiY. TakagiR. KobayashiS. OwakiT. YamaguchiN. FukudaH. SakaiY. SumitaY. KanaiN. IsomotoH. KanetakaK. OhkiT. AsahinaI. NagaiK. NakaoK. TakedaN. OkanoT. EguchiS. YamatoM. A stable protocol for the fabrication of transplantable human oral mucosal epithelial cell sheets for clinical application.Regen. Ther.202014879410.1016/j.reth.2019.11.00731988998
    [Google Scholar]
  3. RanjanS PandeyP SetyaD KumariS. A Prospective Observational Study to Compare Heat Inactivated ABO Isoagglutinin Titres Performed by CITY is and CAT with Solid Phase Red Cell Adhesion (SPRCA) in O Blood Group Individuals.Int J Blood Res Disord2022908510.23937/2469‑5696/1410085
    [Google Scholar]
  4. FungM.K. GrossmanB.J. HillyerC.D. WesthoffC.M. AABB Technical manual.18th edn. Bethesda, MD2014
    [Google Scholar]
  5. HuZ. ChenY. GaoM. ChiX. HeY. ZhangC. YangY. LiY. LvY. HuangY. DengX. Novel strategy for primary epithelial cell isolation: Combination of hyaluronidase and collagenase I.Cell Prolif.2023561e1332010.1111/cpr.1332035920005
    [Google Scholar]
  6. LlopisF. Carbonell-UberosF. PlanellesM.D. MonteroM. PuigN. AtienzaT. AlbaE. MontoroJ.A. A monolayer coagglutination microplate technique for typing red blood cells.Vox Sang.1997721263010.1046/j.1423‑0410.1997.00026.x9031497
    [Google Scholar]
  7. BrecherM.E. American Association of Blood Banks, Technical manual.14th edBethesdaAmerican Association of Blood Banks2002
    [Google Scholar]
  8. FanX. AngA. Pollock-BarZivS.M. DipchandA.I. RuizP. WilsonG. PlattJ.L. WestL.J. Donor-specific B-cell tolerance after ABO-incompatible infant heart transplantation.Nat. Med.200410111227123310.1038/nm112615502841
    [Google Scholar]
  9. WrightJM The A and B blood group substances on odontogenic epitheliumJ. Dent. Res.201610.1177/00220345790580021501
    [Google Scholar]
  10. DabelsteenE. FejerskovO. FrancoisD. Ultrastructural localization of blood group antigen A and cell coat on human buccal epithelial cells.Acta Pathol. Microbiol. Scand. Sect. B Microbiol. Immunol.197482B111312110.1111/j.1699‑0463.1974.tb02301.x4133518
    [Google Scholar]
  11. ByrneK.M. MercadoC.M.C. NnabueT.N. PaigeT.D. FlegelW.A. Inhibition of blood group antibodies by soluble substances.Immunohematology2019351192210.21307/immunohematology‑2020‑00830908075
    [Google Scholar]
  12. HögmanC.F. KillanderJ. The reactivity of blood group A isoantibodies fractionated by DEAE-chromatography and gel filtration IN THE “mixed agglutination” and “serological adhesion” tests.Acta Pathol. Microbiol. Scand.196255335736410.1111/j.1699‑0463.1962.tb04137.x13908226
    [Google Scholar]
  13. MaH. Ó’FágáinC. O’KennedyR. Antibody stability: A key to performance - Analysis, influences and improvement.Biochimie202017721322510.1016/j.biochi.2020.08.01932891698
    [Google Scholar]
  14. PamphilonD.H. ScottM.L. Robin Coombs: His life and contribution to haematology and transfusion medicine.Br. J. Haematol.2007137540140810.1111/j.1365‑2141.2007.06531.x17488485
    [Google Scholar]
  15. SwinburneL.M. FrankB.B. CoombsR.R.A. The A antigen on the buccal epithelial cells of man.Vox Sang.19616327428610.1111/j.1423‑0410.1961.tb03163.x13774310
    [Google Scholar]
  16. MarconiM. NowotnyA. PantkeP. DiemerT. WeidnerW. Antisperm antibodies detected by mixed agglutination reaction and immunobead test are not associated with chronic inflammation and infection of the seminal tract.Andrologia200840422723410.1111/j.1439‑0272.2008.00848.x18727732
    [Google Scholar]
  17. KunathikomS. WorasatitC. ToongsuwanS. Relationship between the direct mixed antiglobulin reaction (MAR) test and spontaneous sperm agglutination in men from infertile couples.J. Med. Assoc. Thai.199578289937629450
    [Google Scholar]
  18. DingZ. ZhangX. LiH. Application of IgG antibody titer and subtype in diagnosis and severity assessment of hemolytic disease of the newborn.Transl. Pediatr.20221191544155110.21037/tp‑22‑38536247885
    [Google Scholar]
  19. DavisC.S. MiliaD. GottschallJ.L. WeigeltJ.A. Massive transfusion associated with a hemolytic transfusion reaction: Necessary precautions for prevention.Transfusion20195982532253510.1111/trf.1540531241167
    [Google Scholar]
  20. MuthanaS.M. XiaL. CampbellC.T. ZhangY. GildersleeveJ.C. Competition between serum IgG, IgM, and IgA anti-glycan antibodies.PLoS One2015103e011929810.1371/journal.pone.011929825807519
    [Google Scholar]
  21. StorryJ.R. OlssonM.L. The ABO blood group system revisited: A review and update.Immunohematology2009252485910.21307/immunohematology‑2019‑23119927620
    [Google Scholar]
  22. Proceedings of the fourth international workshop on monoclonal antibodies against human red blood cell and related antigens. Under the aegis of the institut national de la transfusion saguine and of the etablissement francais du sangTransfus Clin Biol200291110811958157
    [Google Scholar]
  23. TobianA.A.R. ShireyR.S. KingK.E. ABO antibody titer monitoring for incompatible renal transplantation.Transfusion201151345445710.1111/j.1537‑2995.2011.03049.x21388388
    [Google Scholar]
  24. SimmonsD.P. SavageW.J. Hemolysis from ABO incompatibility.Hematol. Oncol. Clin. North Am.201529342944310.1016/j.hoc.2015.01.00326043383
    [Google Scholar]
  25. RowleyS.D. DonatoM.L. BhattacharyyaP. Red blood cell-incompatible allogeneic hematopoietic progenitor cell transplantation.Bone Marrow Transplant.20114691167118510.1038/bmt.2011.13521897398
    [Google Scholar]
  26. ShinY.H. LeeT. ChangW.B. The significance of the first living donor kidney transplantation in Jeju: A case report.Korean J. Transplant.202236323123510.4285/kjt.22.003336275993
    [Google Scholar]
  27. BoothG.S. GehrieE.A. BolanC.D. SavaniB.N. Clinical guide to ABO-incompatible allogeneic stem cell transplantation.Biol. Blood Marrow Transplant.20131981152115810.1016/j.bbmt.2013.03.01823571461
    [Google Scholar]
  28. LvM. ShenM. MoX. Development of allogeneic hematopoietic stem cell transplantation in 2022: Regenerating “Groot” to heal the world.Innovation20234110037310.1016/j.xinn.2023.10037336794169
    [Google Scholar]
  29. SundlingC. LauA.W.Y. BourneK. YoungC. LauriantoC. HermesJ.R. MenziesR.J. ButtD. KräutlerN.J. ZahraD. SuanD. BrinkR. Positive selection of IgG+ over IgM+ B cells in the germinal center reaction.Immunity20215459881001.e510.1016/j.immuni.2021.03.01333857421
    [Google Scholar]
  30. YamamotoK. SakuraiR. MotosukeM. Fully-automatic blood-typing chip exploiting bubbles for quick dilution and detection.Biomicrofluidics202014202411110.1063/5.000626432549921
    [Google Scholar]
  31. MarshW.L. Scoring of hemagglutination reactions.Transfusion197212535235310.1111/j.1537‑2995.1972.tb04459.x5072588
    [Google Scholar]
/content/journals/nemj/10.2174/0102506882280860231124113912
Loading
/content/journals/nemj/10.2174/0102506882280860231124113912
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Adsorption; Antigens; Immunoglobulin; Organ; pH; Transplantation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test