Skip to content
2000
Volume 5, Issue 1
  • ISSN: 0250-6882
  • E-ISSN: 0250-6882

Abstract

Background

In the year 2009, Remdesivir or Veklury was discovered by Gilead Sciences for the management of hepatitis C, Ebola and Marburg virus disease through injection into a vein and then a few years later, 22nd Oct 2020 (United States), the drug was recommended for the management of COVID-19 under a provisional guideline.

Objective

The aim of this systematic review was to address pharmacotherapy approaches associated with the efficacy and side effects of remdesivir for the treatment of viral infections.

Methods

This is a focused, in-depth consequent guide approach and literature search, with a methodical assessment associated with the terms “ and and ” that was done through Pubmed, Scopus, and Web of Science from their inception to 29 Oct 2023.

Results

101 studies included , , and experiments to test remdesivir therapeutic efficacy were selected based on the current, knowledgeable, and high-quality topics of manuscripts. Regarding efficacy, in addition to COVID-19, remdesivir shows therapeutic efficacy in other virus infections, such as hepatitis C, Ebola, and Marburg. In patients with COVID-19, remdesivir shortens the time to recovery, lowering progression to mechanical ventilation and decreasing hospital resources. Combination with dexamethasone in selected patients who need minimal conventional oxygen but are at high risk of severe COVID-19 was reported beneficial. Combination with chloroquine or hydroxychloroquine may cause a decrease in the antiviral activity of remdesivir, but dexamatason reported minimal or no reduction in drug exposure. However, synergistic effects were reported in combination with favipiravir, but methotrexate toxicity needs to be evaluated. Significant improvement in 'patients' conditions was reported in combination with methylprednisolone pulse therapy. Infusion-related reactions such as nausea, elevated liver enzymes, sweating, and hypotension are the most common side effects.

Conclusion

Different studies showed that with remdesivir pharmacotherapy, in addition to significant improvement in the recovery rate in those with COVID-19, the risk of adverse effects was significantly lower than in the control groups. To verify efficacy and side effects, besides attentive consideration of kidney and liver function, further evidence-based pharmacotherapy studies of remdesivir seem advantageous.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/nemj/10.2174/0102506882271767240102091440
2024-04-19
2025-01-31
Loading full text...

Full text loading...

/deliver/fulltext/nemj/5/1/NEMJ-5-E02506882271767.html?itemId=/content/journals/nemj/10.2174/0102506882271767240102091440&mimeType=html&fmt=ahah

References

  1. Tolou-GhamariZ. Coronavirus and disease such as cancer.Clin. Cancer Investig. J.202110397333[https://doi.org/10.4103/ccij.ccij_5_21].
    [Google Scholar]
  2. LiuY.C. KuoR.L. ShihS.R. COVID-19: The first documented coronavirus pandemic in history.Biomed. J.202043432833310.1016/j.bj.2020.04.00732387617
    [Google Scholar]
  3. LiX. CuiW. ZhangF. Who Was the First Doctor to Report the COVID-19 Outbreak in Wuhan, China?J. Nucl. Med.202061678278310.2967/jnumed.120.24726232303602
    [Google Scholar]
  4. World Health Organization Novel coronavirus — China2020Available from: https://www.who.int/csr/don/12-january-2020-novel-coronavirus-china/en/
  5. CocciaM. The impact of first and second wave of the COVID-19 pandemic in society: Comparative analysis to support control measures to cope with negative effects of future infectious diseases.Environ. Res.202119711109910.1016/j.envres.2021.11109933819476
    [Google Scholar]
  6. CocciaM. Factors determining the diffusion of COVID-19 and suggested strategy to prevent future accelerated viral infectivity similar to COVID.Sci. Total Environ.202072972913847410.1016/j.scitotenv.2020.13847432498152
    [Google Scholar]
  7. CocciaM. Comparative critical decisions in management.Global Encyclopedia of Public Administration, Public Policy, and Governance. FarazmandA. ChamSpringer Nature2021[https://doi.org/10.1007/978-3-319-31816-5_3969-1]
    [Google Scholar]
  8. CocciaM. Sources of technological innovation: Radical and incremental innovation problem-driven to support competitive advantage of firms.Technol. Anal. Strateg. Manage.201729910481061[https://doi.org/10.1080/09537325.2016.1268682].10.1080/09537325.2016.1268682
    [Google Scholar]
  9. ArditoL. CocciaM. Messeni PetruzzelliA. Technological exaptation and crisis management: Evidence from COVID-19 outbreaks.R & D Manag.2021514381392[https://doi: 10.1111/radm.12455].10.1111/radm.12455
    [Google Scholar]
  10. DeFoorN. PaulS. LiS. BassoE.K.G. StevensonV. BrowningJ.L. PraterA.K. BrindleyS. TaoG. PickrellA.M. Remdesivir increases mtDNA copy number causing mild alterations to oxidative phosphorylation.Sci. Rep.20231311533910.1038/s41598‑023‑42704‑y37714940
    [Google Scholar]
  11. Gilead announces approval of veklury (remdesivir) in japan for patients with severe COVID-19.Available from : https://www.gilead.com/news-and-press/press-room/press-releases/2020/5/gilead-announces-approval-of-veklury-remdesivir-in-japan-for-patients-with-severe-covid19 2020
  12. PicarazziF. VicentiI. SaladiniF. ZazziM. MoriM. Targeting the rdrp of emerging RNA viruses: The structure-based drug design challenge.Molecules20202523569510.3390/molecules2523569533287144
    [Google Scholar]
  13. KataevV.E. GarifullinB.F. Antiviral nucleoside analogs.Chem. Heterocycl. Compd.202157432634110.1007/s10593‑021‑02912‑834007086
    [Google Scholar]
  14. WarrenT.K. JordanR. LoM.K. RayA.S. MackmanR.L. SolovevaV. SiegelD. PerronM. BannisterR. HuiH.C. LarsonN. StrickleyR. WellsJ. StuthmanK.S. Van TongerenS.A. GarzaN.L. DonnellyG. ShurtleffA.C. RettererC.J. GharaibehD. ZamaniR. KennyT. EatonB.P. GrimesE. WelchL.S. GombaL. WilhelmsenC.L. NicholsD.K. NussJ.E. NagleE.R. KugelmanJ.R. PalaciosG. DoerfflerE. NevilleS. CarraE. ClarkeM.O. ZhangL. LewW. RossB. WangQ. ChunK. WolfeL. BabusisD. ParkY. StrayK.M. TranchevaI. FengJ.Y. BarauskasO. XuY. WongP. BraunM.R. FlintM. McMullanL.K. ChenS.S. FearnsR. SwaminathanS. MayersD.L. SpiropoulouC.F. LeeW.A. NicholS.T. CihlarT. BavariS. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys.Nature2016531759438138510.1038/nature1718026934220
    [Google Scholar]
  15. HolshueM.L. DeBoltC. LindquistS. LofyK.H. WiesmanJ. BruceH. SpittersC. EricsonK. WilkersonS. TuralA. DiazG. CohnA. FoxL. PatelA. GerberS.I. KimL. TongS. LuX. LindstromS. PallanschM.A. WeldonW.C. BiggsH.M. UyekiT.M. PillaiS.K. Washington State 2019-nCoV Case Investigation Team First case of 2019 novel coronavirus in the united states.N. Engl. J. Med.20203821092993610.1056/NEJMoa200119132004427
    [Google Scholar]
  16. AborasS.I. AbdineH.H. RagabM.A.A. KoranyM.A. A review on analytical strategies for the assessment of recently approved direct acting antiviral drugs.Crit. Rev. Anal. Chem.20225281878190010.1080/10408347.2021.192345634138669
    [Google Scholar]
  17. WarrenT.K. KaneC.D. WellsJ. StuthmanK.S. Van TongerenS.A. GarzaN.L. DonnellyG. SteffensJ. GombaL. WeidnerJ.M. NorrisS. ZengX. BannisterR. CihlarT. BavariS. PorterD.P. IversenP.L. Remdesivir is efficacious in rhesus monkeys exposed to aerosolized Ebola virus.Sci. Rep.20211111945810.1038/s41598‑021‑98971‑034593911
    [Google Scholar]
  18. MadelainV. BaizeS. JacquotF. ReynardS. FizetA. BarronS. SolasC. LacarelleB. CarbonnelleC. MentréF. RaoulH. de LamballerieX. GuedjJ. Ebola viral dynamics in nonhuman primates provides insights into virus immuno-pathogenesis and antiviral strategies.Nat. Commun.201891401310.1038/s41467‑018‑06215‑z30275474
    [Google Scholar]
  19. LoM.K. FeldmannF. GaryJ.M. JordanR. BannisterR. CroninJ. PatelN.R. KlenaJ.D. NicholS.T. CihlarT. ZakiS.R. FeldmannH. SpiropoulouC.F. de WitE. Remdesivir (GS-5734) protects African green monkeys from Nipah virus challenge.Sci. Transl. Med.201911494eaau924210.1126/scitranslmed.aau924231142680
    [Google Scholar]
  20. PorterD.P. WeidnerJ.M. GombaL. BannisterR. BlairC. JordanR. WellsJ. WetzelK. GarzaN. Van TongerenS. DonnellyG. SteffensJ. MoreauA. BearssJ. LeeE. BavariS. CihlarT. WarrenT.K. Remdesivir (GS-5734) is efficacious in cynomolgus macaques infected with marburg virus.J. Infect. Dis.2020222111894190110.1093/infdis/jiaa29032479636
    [Google Scholar]
  21. CrossRW BornholdtZA PrasadAN Combination therapy protects macaques against advanced Marburg virus disease.Nature Communications20211210.1038/s41467‑021‑22132‑0
    [Google Scholar]
  22. LiberatiA. AltmanD.G. TetzlaffJ. MulrowC. GøtzscheP.C. IoannidisJ.P.A. ClarkeM. DevereauxP.J. KleijnenJ. MoherD. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration.PLoS Med.200967e100010010.1371/journal.pmed.100010019621070
    [Google Scholar]
  23. PageM.J. McKenzieJ.E. BossuytP.M. BoutronI. HoffmannT.C. MulrowC.D. ShamseerL. TetzlaffJ.M. AklE.A. BrennanS.E. ChouR. GlanvilleJ. GrimshawJ.M. HróbjartssonA. LaluM.M. LiT. LoderE.W. Mayo-WilsonE. McDonaldS. McGuinnessL.A. StewartL.A. ThomasJ. TriccoA.C. WelchV.A. WhitingP. MoherD. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews.BMJ2021372n7110.1136/bmj.n7133782057
    [Google Scholar]
  24. SantoroMG CarafoliE Remdesivir: From ebola to COVID-19.Biochem Biophys Res Commun202153814515010.1016/j.bbrc.2020.11.043
    [Google Scholar]
  25. ImamM.S. AbdelazimA.H. RamzyS. BatubaraA.S. GamalM. AbdelhafizS. ZeidA.M. Adjusted green spectrophotometric determination of favipiravir and remdesivir in pharmaceutical form and spiked human plasma sample using different chemometric supported models.BMC Chem.20231718910.1186/s13065‑023‑01001‑537501208
    [Google Scholar]
  26. BatubaraA.S. AbdelazimA.H. AlmrasyA.A. GamalM. RamzyS. Quantitative analysis of two COVID-19 antiviral agents, favipiravir and remdesivir, in spiked human plasma using spectrophotometric methods; greenness evaluation.BMC Chem.20231715810.1186/s13065‑023‑00967‑637328879
    [Google Scholar]
  27. CocciaM. Sources, diffusion and prediction in COVID-19 pandemic: lessons learned to face next health emergency.AIMS Public Health202310114516810.3934/publichealth.202301237063362
    [Google Scholar]
  28. BansalV Mortality benefit of remdesivir in COVID-19: A systematic review and meta-analysis.Front Med2021760642910.3389/fmed.2020.606429
    [Google Scholar]
  29. SiemieniukR.A.C. BartoszkoJ.J. ZeraatkarD. KumE. QasimA. Díaz MartinezJ.P. IzcovichA. RochwergB. LamontagneF. HanM.A. AgarwalA. AgoritsasT. AzabM. BravoG. ChuD.K. CoubanR. CusanoE. DevjiT. EscamillaZ. ForoutanF. GaoY. GeL. GhadimiM. Heels-AnsdellD. HonarmandK. HouL. IbrahimS. KhamisA. LamB. MansillaC. LoebM. MiroshnychenkoA. MarcucciM. McLeodS.L. MotaghiS. MurthyS. MustafaR.A. Pardo-HernandezH. RadaG. RizwanY. SaadatP. SwitzerC. ThabaneL. TomlinsonG. VandvikP.O. VernooijR.W.M. Viteri-GarcíaA. WangY. YaoL. ZhaoY. GuyattG.H. Brignardello-PetersenR. Drug treatments for covid-19: Living systematic review and network meta-analysis.BMJ202037030m298010.1136/bmj.m298032732190
    [Google Scholar]
  30. World health organization. therapeutics and COVID-19: Living guideline, 6 July 2021 (Report). World health organization.Available from : https://www.google.com/search?client=firefox-b-d&q=World+health+organization.+therapeutics+and+COVID-19%3A+Living+guideline%2C+6+July+2021+%28Report%29.+World+health+organization 2021
  31. LamontagneF AgoritsasT MacdonaldH A living WHO guideline on drugs for covid-19.BMJ202037010.1136/bmj.m3379
    [Google Scholar]
  32. MehtaN Mazer-AmirshahiM AlkindiN Pharmacotherapy in COVID-19; A narrative review for emergency providers.The American Journal of Emergency Medicine20203871488149310.1016/j.ajem.2020.04.035
    [Google Scholar]
  33. LahmerT. ErberJ. SchmidR.M. SchneiderJ. SpinnerC.D. LuppaP. SörgelF. KinzigM. RaschS. SARS-CoV-2 viral load dynamics in immunocompromised critically ill patients on remdesivir treatment.Multidiscip. Respir. Med.20221782510.4081/mrm.2022.82535646346
    [Google Scholar]
  34. BeigelJ.H. TomashekK.M. DoddL.E. MehtaA.K. ZingmanB.S. KalilA.C. HohmannE. ChuH.Y. LuetkemeyerA. KlineS. Lopez de CastillaD. FinbergR.W. DierbergK. TapsonV. HsiehL. PattersonT.F. ParedesR. SweeneyD.A. ShortW.R. TouloumiG. LyeD.C. OhmagariN. OhM. Ruiz-PalaciosG.M. BenfieldT. FätkenheuerG. KortepeterM.G. AtmarR.L. CreechC.B. LundgrenJ. BabikerA.G. PettS. NeatonJ.D. BurgessT.H. BonnettT. GreenM. MakowskiM. OsinusiA. NayakS. LaneH.C. ACTT-1 Study Group Members Remdesivir for the treatment of Covid-19 — final report.N. Engl. J. Med.2020383191813182610.1056/NEJMoa200776432445440
    [Google Scholar]
  35. World health organization (2021). Therapeutics and COVID-19: Living guideline, 6 July 2021 (Report). World health organization.Available from : https://www.google.com/search?client=firefox-b-d&q=World+health+organization+%282021%29.+Therapeutics+and+COVID-19%3A+Living+guideline%2C+6+July+2021+%28Report%29.+World+health+organization 2021
  36. AnsemsK GrundeisF DahmsK MikolajewskaA ThiemeV PiechottaV MetzendorfMI StegemannM BenstoemC FichtnerF Remdesivir for the treatment of COVID-19. Cochrane Database Syst Rev.20218801496210.1002/14651858.CD014962
    [Google Scholar]
  37. GautretP. LagierJ.C. ParolaP. HoangV.T. MeddebL. MailheM. DoudierB. CourjonJ. GiordanengoV. VieiraV.E. Tissot DupontH. HonoréS. ColsonP. ChabrièreE. La ScolaB. RolainJ.M. BrouquiP. RaoultD. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial.Int. J. Antimicrob. Agents202056110594910.1016/j.ijantimicag.2020.10594932205204
    [Google Scholar]
  38. RosaR.B. DantasW.M. do NascimentoJ.C.F. da SilvaM.V. de OliveiraR.N. PenaL.J. In vitro and in vivo models for studying SARS-CoV-2, the etiological agent responsible for COVID-19 pandemic.Viruses202113337910.3390/v1303037933673614
    [Google Scholar]
  39. ChoyK.T. WongA.Y.L. KaewpreedeeP. SiaS.F. ChenD. HuiK.P.Y. ChuD.K.W. ChanM.C.W. CheungP.P.H. HuangX. PeirisM. YenH.L. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro.Antiviral Res.202017810478610.1016/j.antiviral.2020.10478632251767
    [Google Scholar]
  40. WangW. XuY. GaoR. LuR. HanK. WuG. TanW. Detection of SARS-CoV-2 in Different Types of Clinical Specimens.JAMA2020323181843184410.1001/jama.2020.378632159775
    [Google Scholar]
  41. YeW. YaoM. DongY. YeC. WangD. LiuH. MaH. ZhangH. QiL. YangY. WangY. ZhangL. ChengL. LvX. XuZ. LeiY. ZhangF. Remdesivir (GS-5734) Impedes Enterovirus Replication Through Viral RNA Synthesis Inhibition.Front. Microbiol.202011110510.3389/fmicb.2020.0110532595613
    [Google Scholar]
  42. MalinJ.J. SuárezI. PriesnerV. FätkenheuerG. RybnikerJ. Remdesivir against COVID-19 and other viral diseases.Clin. Microbiol. Rev.2020341e00162-2010.1128/CMR.00162‑2033055231
    [Google Scholar]
  43. RammohanA ZyryanovGV Minireview. Remdesivir, A prominent nucleotide/nucleoside antiviral drug.Polycyclic Aromatic Compounds2022
    [Google Scholar]
  44. PiscoyaA. Ng-SuengL.F. Parra del RiegoA. Cerna-ViacavaR. PasupuletiV. RomanY.M. ThotaP. WhiteC.M. HernandezA.V. Efficacy and harms of remdesivir for the treatment of COVID-19: A systematic review and meta-analysis.PLoS One20201512e024370510.1371/journal.pone.024370533301514
    [Google Scholar]
  45. VegivintiCTR Remdesivir therapy in patients with COVID-19: A systematic review and meta-analysis of randomized controlled trials.Ann Med Surg 202162434810.1016/j.amsu.2020.12.051
    [Google Scholar]
  46. FDA emergency use authorization for.Available from: https://www.fda.gov/media/137564/download (Accessed May 5, 2020).
  47. Tasavon GholamhoseiniM. Yazdi-FeyzabadiV. GoudarziR. MehrolhassaniM.H. Safety and efficacy of remdesivir for the treatment of covid-19: A systematic review and meta-analysis.J. Pharm. Pharm. Sci.20212423724510.18433/jpps3187034048669
    [Google Scholar]
  48. SinghA.K. SinghA. SinghR. MisraA. Remdesivir in COVID-19: A critical review of pharmacology, pre-clinical and clinical studies.Diabetes Metab. Syndr.202014464164810.1016/j.dsx.2020.05.01832428865
    [Google Scholar]
  49. GreinJ. OhmagariN. ShinD. DiazG. AspergesE. CastagnaA. FeldtT. GreenG. GreenM.L. LescureF.X. NicastriE. OdaR. YoK. Quiros-RoldanE. StudemeisterA. RedinskiJ. AhmedS. BernettJ. ChelliahD. ChenD. ChiharaS. CohenS.H. CunninghamJ. D’Arminio MonforteA. IsmailS. KatoH. LapadulaG. L’HerE. MaenoT. MajumderS. MassariM. Mora-RilloM. MutohY. NguyenD. VerweijE. ZoufalyA. OsinusiA.O. DeZureA. ZhaoY. ZhongL. ChokkalingamA. ElboudwarejE. TelepL. TimbsL. HenneI. SellersS. CaoH. TanS.K. WinterbourneL. DesaiP. MeraR. GaggarA. MyersR.P. BrainardD.M. ChildsR. FlaniganT. Compassionate use of remdesivir for patients with severe Covid-19.N. Engl. J. Med.2020382242327233610.1056/NEJMoa200701632275812
    [Google Scholar]
  50. LaiChih-Cheng Clinical efficacy and safety of remdesivir in patients with COVID-19: a systematic review and network meta-analysis of randomized controlled trials.J Antimicrob Chemother20207681962196810.1093/jac/dkab093
    [Google Scholar]
  51. QomaraW.F. PrimanissaD.N. AmaliaS.H. PurwadiF.V. ZakiyahN. Effectiveness of remdesivir, lopinavir/ritonavir, and favipiravir for COVID-19 treatment: A systematic review.Int. J. Gen. Med.2021148557857110.2147/IJGM.S33245834849001
    [Google Scholar]
  52. Al-ArdhiF.M. NovotnyL. AlhunayanA. Al-TannakN.F. Comparison of remdesivir and favipiravir - the anti-Covid-19 agents mimicking purine RNA constituents.Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub.20221661122010.5507/bp.2021.06334782799
    [Google Scholar]
  53. UzunovaK. FilipovaE. PavlovaV. VekovT. Insights into antiviral mechanisms of remdesivir, lopinavir/ritonavir and chloroquine/hydroxychloroquine affecting the new SARS-CoV-2.Biomed. Pharmacother.202013111066810.1016/j.biopha.2020.11066832861965
    [Google Scholar]
  54. BabalolaB.A. AkinsuyiO.S. FolajimiE.O. OlujimiF. OtunbaA.A. ChikereB. AdewumagunI.A. AdetobiT.E. Exploring the future of SARS-CoV-2 treatment after the first two years of the pandemic: A comparative study of alternative therapeutics.Biomed. Pharmacother.202316511509910.1016/j.biopha.2023.11509937406505
    [Google Scholar]
  55. NemyatykhO.D. MaistrenkoM.A. DemchenkoD.D. NarkevichI.A. OkovityiS.V. TimchenkoV.N. Principles of rational COVID-19 therapy in pediatrics.J. Clin. Med.20231214473110.3390/jcm1214473137510846
    [Google Scholar]
  56. Therapeutic Management of Nonhospitalized Children with COVID-19Available from : https://www.google.com/search?client=firefox-b-d&q=Therapeutic+Management+of+Nonhospitalized+Children+with+COVID-19 (accessed on 18 January 2023)
  57. Therapeutic Management of Hospitalized Children with COVID-19Available from : https://www.google.com/search?client=firefox-b-d&q=Therapeutic+Management+of+Nonhospitalized+Children+with+COVID-19 (accessed on 18 January 2023)
  58. British paediatric allergy, immunity and infection group covid-19—guidance for management of children admitted to hospital and for treatment of non-hospitalised children at risk of severe disease.Available from : https://www.google.com/search?client=firefox-b-d&q=British+Paediatric+Allergy%2C+Immunity+and+Infection+Group+COVID-19%E2%80%94Guidance+for+Management+of+Children+Admitted+to+Hospital+and+for+Treatment+of+Non-Hospitalised+Children+at+Risk+of+Severe+Disease (accessed on 18 May 2022).
  59. OsmanovI.M. AlekseevaE.I. MazankovaL.N. In: Clinical protocol for the treatment of children with a new coronavirus infection (COVID-19) who are hospitalized in medical organizations of the state healthcare system of MOSCOW.Hripun A.IMoscow, Russia2021
    [Google Scholar]
  60. Order of the ministry of health of the republic of belarus dated june 24, 2022 No. 858 “On Approval of (Temporary) recommendations on the specifics of providing medical care to patients under the age of 18 with COVID-19 infection.Available from : https://www.google.com/search?client=firefox-b-d&q=Order+of+the+ministry+of+health+of+the+republic+of+belarus+dated+june+24%2C+2022+No.+858+%E2%80%9COn+Approval+of+%28Temporary%29+recommendations+on+the+specifics+of+providing+medical+care+to+patients+under+the+age+of+18+with+COVID-19+infection (accessed on 4 January 2023) 2022
  61. AkinosoglouK. RigopoulosE.A. SchinasG. KaiafaG. PolyzouE. TsoupraS. TzouvelekisA. GogosC. SavopoulosC. Remdesivir use in the real-world setting: An overview of available evidence.Viruses2023155116710.3390/v1505116737243253
    [Google Scholar]
  62. National Institutes of Health COVID-19 Treatment GuidelinesAvailable from: https://www.covid19treatmentguidelines.nih.gov/ (accessed on 15 January 2023).
  63. AkinosoglouK. SchinasG. RigopoulosE.A. PolyzouE. TzouvelekisA. AdonakisG. GogosC. COVID-19 pharmacotherapy in pregnancy: A literature review of current therapeutic choices.Viruses202315378710.3390/v1503078736992497
    [Google Scholar]
  64. McCarthyM.W. Treatment of severe COVID-19: An evolving paradigm.Expert Opin. Pharmacother.202223171887189110.1080/14656566.2022.214004136271630
    [Google Scholar]
  65. JoY. JamiesonL. EdokaI. LongL. Cost-effectiveness of remdesivir and dexamethasone for COVID-19 treatment in South Africa.medRxiv20202020.09.24.2020019610.1101/2020.09.24.20200196
    [Google Scholar]
  66. OksuzE. MalhanS. GonenM.S. KutlubayZ. KeskindemirciY. JarrettJ. SahinT. OzcagliG. BilgicA. BibilikM.O. TabakF. Cost-effectiveness analysis of remdesivir treatment in covid-19 patients requiring low-flow oxygen therapy: Payer perspective in turkey.Adv. Ther.20213894935494810.1007/s12325‑021‑01874‑934379304
    [Google Scholar]
  67. ConglyS.E. VarugheseR.A. BrownC.E. ClementF.M. SaxingerL. Treatment of moderate to severe respiratory COVID-19: A cost-utility analysis.Sci. Rep.20211111778710.1038/s41598‑021‑97259‑734493774
    [Google Scholar]
  68. CartaA. ConversanoC. Cost utility analysis of Remdesivir and Dexamethasone treatment for hospitalised COVID-19 patients: A hypothetical study.BMC Health Serv. Res.202121198610.1186/s12913‑021‑06998‑w34537034
    [Google Scholar]
  69. JiangY. CaiD. ChenD. JiangS. SiL. WuJ. Economic evaluation of remdesivir for the treatment of severe COVID‐19 patients in China under different scenarios.Br. J. Clin. Pharmacol.202187114386439610.1111/bcp.1486033855727
    [Google Scholar]
  70. WangY. ZhangD. DuG. DuR. ZhaoJ. JinY. FuS. GaoL. ChengZ. LuQ. HuY. LuoG. WangK. LuY. LiH. WangS. RuanS. YangC. MeiC. WangY. DingD. WuF. TangX. YeX. YeY. LiuB. YangJ. YinW. WangA. FanG. ZhouF. LiuZ. GuX. XuJ. ShangL. ZhangY. CaoL. GuoT. WanY. QinH. JiangY. JakiT. HaydenF.G. HorbyP.W. CaoB. WangC. Remdesivir in adults with severe COVID-19: A randomised, double-blind, placebo-controlled, multicentre trial.Lancet2020395102361569157810.1016/S0140‑6736(20)31022‑932423584
    [Google Scholar]
  71. WuM.L. LiuF.L. SunJ. LiX. QinJ.R. YanQ.H. JinX. ChenX.W. ZhengY.T. ZhaoJ.C. WangJ.H. Combinational benefit of antihistamines and remdesivir for reducing SARS-CoV-2 replication and alleviating inflammation-induced lung injury in mice.Zool. Res.202243345746810.24272/j.issn.2095‑8137.2021.46935503561
    [Google Scholar]
  72. LiR LiclicanA XuY Key metabolic enzymes involved in remdesivir activation in human lung cells.Antimicrob Agents Chemother 2021659e006022110.1128/AAC.00602‑21
    [Google Scholar]
  73. DeanEA BrownRA CasausKP Viral clearance with neutrophil recovery in a patients with active OVID-19 infection and refractory acute myeloid leukemia who underwent successful reinduction with cytarabine/idarubicin.Case Reports in Oncology2022152705712
    [Google Scholar]
  74. KumarV. SuryanA. SinghJ. KumarS. KambojP. DeepA. New viral infection COVID-19: Current status, challenges and possible treatments.Lett. Drug Des. Discov.202118763564910.2174/1570180818999201224120233
    [Google Scholar]
  75. JungwirthJ HäringC KönigS D,L-Lysine-Acetylsalicylate + Glycine (LASAG) Reduces SARS-CoV-2 replication and shows an additive effect with remdesivir.Int J Mol Sci.20222313688010.3390/ijms23136880
    [Google Scholar]
  76. FischerM. MüllerP. ScheidtH.A. LuckM. Drug–membrane interactions: Effects of virus-specific RNA-Dependent RNA polymerase inhibitors remdesivir and favipiravir on the structure of lipid bilayers.Biochemistry202261131392140310.1021/acs.biochem.2c0004235731976
    [Google Scholar]
  77. WangY. LiP. RajpootS. SaqibU. YuP. LiY. LiY. MaZ. BaigM.S. PanQ. Comparative assessment of favipiravir and remdesivir against human coronavirus NL63 in molecular docking and cell culture models.Sci. Rep.20211112346510.1038/s41598‑021‑02972‑y34873274
    [Google Scholar]
  78. JinYH MinJS JeonS Lycorine, a non-nucleoside RNA dependent RNA polymerase inhibitor, as potential treatment for emerging coronavirus infections.Phytomedicine20218610.1016/j.phymed.2020.153440
    [Google Scholar]
  79. VangeelL ChiuW JongheSD Remdesivir, molnupiravir and nirmatrelvir remain active against SARS-CoV-2 Omicron and other variants of concern.Antiviral Research202218
    [Google Scholar]
  80. GrundmannA. WuC.H. HardwickM. Fewer COVID-19 neurological complications with dexamethasone and remdesivir.Ann. Neurol.2022[http:// doi: doi.org/10.1002/ana.26536].36261315
    [Google Scholar]
  81. StegmannKM DickmannsA GerberS The folate antagonist methotrexate diminishes replication of the coronavirus SARS-CoV-2 and enhances the antiviral efficacy of remdesivir in cell culture models.Virus Res202130219846910.1016/j.virusres.2021.198469
    [Google Scholar]
  82. JangY. ShinJ.S. LeeM.K. JungE. AnT. KimU.I. KimK. KimM. Comparison of antiviral activity of gemcitabine with 2′-fluoro-2′-deoxycytidine and combination therapy with remdesivir against SARS-CoV-2.Int. J. Mol. Sci.2021224158110.3390/ijms2204158133557278
    [Google Scholar]
  83. SorianoV de-MendozaC EdagwaB TreviñoA BarreiroP Fernandez-MonteroJV GendelmanHE Oral antivirals for the prevention and treatment of SARS-CoV-2 infection.AIDS Rev2022241414910.24875/AIDSRev.22000001
    [Google Scholar]
  84. Karim AliK Tanweer AzherT Remdesivir for the treatment of patients in hospital with COVID-19 in Canada: a randomized controlled trial.CMAJ2022194724225110.1503/cmaj.211698
    [Google Scholar]
  85. WangX. LuoJ. WenZ. ShuaiL. WangC. ZhongG. HeX. CaoH. LiuR. GeJ. HuaR. SunZ. WangX. WangJ. BuZ. Diltiazem inhibits SARS-CoV-2 cell attachment and internalization and decreases the viral infection in mouse lung.PLoS Pathog.2022182e101034310.1371/journal.ppat.101034335176124
    [Google Scholar]
  86. GriffinG. HewisonM. HopkinJ. KennyR. QuintonR. RhodesJ. SubramanianS. ThickettD. Vitamin D and COVID-19: Evidence and recommendations for supplementation.R. Soc. Open Sci.202071220191210.1098/rsos.20191233489300
    [Google Scholar]
  87. BouillonR. Quesada-GomezJ.M. VitaminD. Endocrine system and COVID-19.JBMR Plus2021512e1057610.1002/jbm4.1057634950831
    [Google Scholar]
  88. FeghaliK. PapamarkakisK. ClarkJ. MalhotraN. StoddartL. OsakweI. Vitamin D toxicity managed with peritoneal dialysis.Case Rep. Endocrinol.202120211610.1155/2021/991206834258083
    [Google Scholar]
  89. McPhersonSW KeunenJE BirdAC Investigate oral zinc as a prophylactic treatment for those at risk for COVID-19.Am J Ophthalmol202021656
    [Google Scholar]
  90. GubitosaJ.C. KakarP. GerulaC. NossaH. FinkelD. WongK. KhatriM. AliH. Marked sinus bradycardia associated with remdesivir in COVID-19.JACC. Case Rep.20202142260226410.1016/j.jaccas.2020.08.02533163977
    [Google Scholar]
  91. AbdelmajidA. OsmanW. MusaH. ElhidayH. MunirW. Al MaslamaniM.A. ElmekatyE.Z. Remdesivir therapy causing bradycardia in COVID-19 patients: Two case reports.IDCases202126e0125410.1016/j.idcr.2021.e0125434401329
    [Google Scholar]
  92. BarkasF. StylaC.P. BechlioulisA. MilionisH. LiberopoulosE. Sinus bradycardia associated with remdesivir treatment in COVID-19: A case report and literature review.J. Cardiovasc. Dev. Dis.2021821810.3390/jcdd802001833673216
    [Google Scholar]
  93. Sanchez-CodezM.I. Rodriguez-GonzalezM. Gutierrez-RosaI. Severe sinus bradycardia associated with Remdesivir in a child with severe SARS-CoV-2 infection.Eur. J. Pediatr.20211805162710.1007/s00431‑021‑03940‑433483798
    [Google Scholar]
  94. JainS. BalaM. SachdevaH.C. TalwarV. GanapathyU. A retrospective evaluation of combination therapy of methylprednisolone and remdesivir for severe covid-19 patients.J. Clin. Diagn. Res.20211571410.7860/JCDR/2021/48622.15124
    [Google Scholar]
  95. BrownL.A.K. MoranE. GoodmanA. BaxendaleH. BerminghamW. BucklandM. AbdulKhaliqI. JarvisH. HunterM. KaranamS. PatelA. JenkinsM. RobbinsA. KhanS. SimpsonT. JollesS. UnderwoodJ. SavicS. RichterA. ShieldsA. BrownM. LoweD.M. Treatment of chronic or relapsing COVID-19 in immunodeficiency.J. Allergy Clin. Immunol.20221492557561.e110.1016/j.jaci.2021.10.03134780850
    [Google Scholar]
  96. WuZ. HanZ. LiuB. ShenN. Remdesivir in treating hospitalized patients with COVID-19: A renewed review of clinical trials.Front. Pharmacol.20221397189010.3389/fphar.2022.97189036160434
    [Google Scholar]
  97. PetrakisV. RaptiV. AkinosoglouK. BonelisC. AthanasiouK. DimakopoulouV. SyrigosN.K. SpernovasilisN. TrypsianisG. MarangosM. GogosC. PapazoglouD. PanagopoulosP. PoulakouG. Greek remdesivir cohort (GREC) Study: Effectiveness of antiviral drug remdesivir in hospitalized patients with COVID-19 pneumonia.Microorganisms20221010194910.3390/microorganisms1010194936296225
    [Google Scholar]
  98. BechmanK. YatesM. MannK. NagraD. SmithL.J. RutherfordA.I. PatelA. PeriselnerisJ. WalderD. DobsonR.J.B. KraljevicZ. TeoJ.H.T. BernalW. BarkerR. GallowayJ.B. NortonS. Inpatient COVID-19 mortality has reduced over time: Results from an observational cohort.PLoS One2022171e026114210.1371/journal.pone.026114235025917
    [Google Scholar]
  99. AtallahN.J. WarrenH.M. RobertsM.B. ElshabouryR.H. BidellM.R. GandhiR.G. AdamsickM. IbrahimM.K. SoodR. Bou Zein EddineS. Cobler-LichterM.J. AlexanderN.J. TimmerK.D. AtallahC.J. ViensA.L. PanossianV.S. SchererA.K. ProctorT. SmarttS. LetourneauA.R. ParasM.L. JohannesS. WiemerJ. MansourM.K. Baseline procalcitonin as a predictor of bacterial infection and clinical outcomes in COVID-19: A case-control study.PLoS One2022171e026234210.1371/journal.pone.026234235025929
    [Google Scholar]
  100. WhittingtonMD PearsonSD RindDM CampbellJD The cost-effectiveness of remdesivir for hospitalized patients with COVID-19.Value Health202225574475010.1016/j.jval.2021.11.1378
    [Google Scholar]
  101. JeckJ JakobsF KronA A cost of illness study of COVID-19 patients and retrospective modelling of potential cost savings when administering remdesivir during the pandemic "first wave" in a German tertiary care hospital.Infection202250119120110.1007/s15010‑021‑01685‑8
    [Google Scholar]
/content/journals/nemj/10.2174/0102506882271767240102091440
Loading
/content/journals/nemj/10.2174/0102506882271767240102091440
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher's website along with the published article.


  • Article Type:
    Review Article
Keyword(s): COVID-19; Harm effects; Hepatitis C; Pharmacotherapy; Remdesivir; Side effects
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test