- Home
- A-Z Publications
- Mini Reviews in Medicinal Chemistry
- Previous Issues
- Volume 25, Issue 1, 2025
Mini Reviews in Medicinal Chemistry - Volume 25, Issue 1, 2025
Volume 25, Issue 1, 2025
-
-
An Overview of Pyridazinone Analogs: Chemical and Pharmacological Potential
Authors: Youness Boukharsa, Khalid Karrouchi, Houda Attjioui and M'Hammed AnsarPyridazinones are classical molecules that occupy an important place in heterocyclic chemistry, and since their discovery, they have been widely developed. The introduction of new functional groups into pyridazinone structures has enabled the synthesis of a large diversity of compounds. The pharmacological and agrochemical importance of pyridazinone derivatives has aroused the interest of chemists and directed their research toward the synthesis of new compounds with the aim of improving their biological effectiveness. In this review, we have compiled and discussed the different synthetic routes, reactivity, and pharmacological and agrochemical applications of the pyridazinone ring.
-
-
-
Nimbolide: A Potential Phytochemical Agent in Multimodal Pancreatic Cancer Therapies
Authors: Mukesh Jogi, Hitakshi Asnani, Sohini Singh and Pramod KumarA significant contributor to cancer-related death, pancreatic cancer (PC) has a terrible prognosis in general that has not altered over many years. Currently, it is extremely difficult to prevent disease or discover it early enough to initiate treatment. PC is a challenging malignancy to treat, and several major impediments significantly impact the effectiveness of its treatment. These obstacles primarily include chemoresistance, drug toxicity, and limited drug bioavailability. Phytochemicals can be used as an alternative to chemotherapeutic drugs, or they can augment the anticancer properties of the chemotherapeutic agents. Nimbolide (NL) is a prominent limonoid compound found in Azadirachta indica, and has garnered substantial attention as a phytochemical with anticancer potential. It has powerful antiproliferative effects on a variety of cancer cell lines and is effective as a chemotherapeutic in preclinical studies. The primary modes of action of NL include suppression of metastasis and angiogenesis, activation of apoptosis, anti-proliferation, and control of enzymes that metabolize carcinogens. Despite numerous pharmacodynamic (PD) investigations, NL is still in the early stages of the drug development process because no comprehensive pharmacokinetic studies or long-term toxicity studies. Preclinical and toxicological assessments should be conducted to establish an appropriate dosage range, ensuring the safety of NL for its application in initial human clinical trials. This review endeavors to provide a comprehensive summary of the current developmental stage of NL along with nanoparticles as a principal candidate for therapeutic purposes in PC.
-
-
-
Recent Progress of Glutathione Peroxidase 4 Inhibitors in Cancer Therapy
Authors: Shangde Liu and Jian WangFerroptosis is a novel type of programmed cell death that relies on the build-up of intracellular iron and leads to an increase in toxic lipid peroxides. Glutathione Peroxidase 4 (GPX4) is a crucial regulator of ferroptosis that uses glutathione as a cofactor to detoxify cellular lipid peroxidation. Targeting GPX4 in cancer could be a promising strategy to induce ferroptosis and kill drug-resistant cancers effectively. Currently, research on GPX4 inhibitors is of increasing interest in the field of anti-tumor agents. Many reviews have summarized the regulation and ferroptosis induction of GPX4 in human cancer and disease. However, insufficient attention has been paid to GPX4 inhibitors. This article outlines the molecular structures and development prospects of GPX4 inhibitors as novel anticancer agents.
-
-
-
Pharmaceutical Studies on Piperazine-based Compounds Targeting Serotonin Receptors and Serotonin Reuptake Transporters
Authors: Cem Yamali, Merve Nenni, Mehtap Tugrak Sakarya and Hasan Alper KaplanDepression is a debilitating mental illness that has a significant impact on an individual's psychological, social, and physical life. Multiple factors, such as genetic factors and abnormalities in neurotransmitter levels, contribute to the development of depression. Monoamine oxidase inhibitors, tricyclic antidepressants, selective serotonin reuptake inhibitors (SSRIs), serotonin-noradrenaline reuptake inhibitors, and atypical and new-generation antidepressants are well-known drug classes. SSRIs are the commonly prescribed antidepressant medications in the clinic. Genetic variations impacting serotonergic activity in people can influence susceptibility to diseases and response to antidepressant therapy. Gene polymorphisms related to 5-hydroxytryptamine (5-HT) signaling and subtypes of 5-HT receptors may play a role in the development of depression and the response to antidepressants. SSRIs binding to 5-HT reuptake transporters help relieve depression symptoms. Research has been conducted to identify a biomarker for detecting depressive disorders to identify new treatment targets and maybe offer novel therapy approaches. The pharmacological potentials of the piperazine-based compounds led researchers to design new piperazine derivatives and to examine their pharmacological activities. Structure-activity relationships indicated that the first aspect is the flexibility in the molecules, where a linker of typically a 2-4 carbon chain joins two aromatic sides, one of which is attached to a piperazine/phenylpiperazine/benzyl piperazine moiety. Newly investigated compounds having a piperazine core show a superior antidepressant effect compared to SSRIs in vitro/in vivo.
-
-
-
Microbial Metabolites-induced Epigenetic Modifications for Inhibition of Colorectal Cancer: Current Status and Future Perspectives
Globally, one of the most prevalent cancers is colorectal cancer (CRC). Chemotherapy and surgery are two common conventional CRC therapies that are frequently ineffective and have serious adverse effects. Thus, there is a need for complementary and different therapeutic approaches. The use of microbial metabolites to trigger epigenetic alterations as a way of preventing CRC is one newly emerging field of inquiry. Small chemicals called microbial metabolites, which are made by microbes and capable of altering host cell behaviour, are created. Recent research has demonstrated that these metabolites can lead to epigenetic modifications such as histone modifications, DNA methylation, and non-coding RNA regulation, which can control gene expression and affect cellular behaviour. This review highlights the current knowledge on the epigenetic modification for cancer treatment, immunomodulatory and anti-carcinogenic attributes of microbial metabolites, gut epigenetic targeting system, and the role of dietary fibre and gut microbiota in cancer treatment. It also focuses on short-chain fatty acids, especially butyrates (which are generated by microbes), and their cancer treatment perspective, challenges, and limitations, as well as state-of-the-art research on microbial metabolites-induced epigenetic changes for CRC inhibition. In conclusion, the present work highlights the potential of microbial metabolites-induced epigenetic modifications as a novel therapeutic strategy for CRC suppression and guides future research directions in this dynamic field.
-
Volumes & issues
-
Volume 25 (2025)
-
Volume 24 (2024)
-
Volume 23 (2023)
-
Volume 22 (2022)
-
Volume 21 (2021)
-
Volume 20 (2020)
-
Volume 19 (2019)
-
Volume 18 (2018)
-
Volume 17 (2017)
-
Volume 16 (2016)
-
Volume 15 (2015)
-
Volume 14 (2014)
-
Volume 13 (2013)
-
Volume 12 (2012)
-
Volume 11 (2011)
-
Volume 10 (2010)
-
Volume 9 (2009)
-
Volume 8 (2008)
-
Volume 7 (2007)
-
Volume 6 (2006)
-
Volume 5 (2005)
-
Volume 4 (2004)
-
Volume 3 (2003)
-
Volume 2 (2002)
-
Volume 1 (2001)