Skip to content
2000
Volume 25, Issue 1
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

Globally, one of the most prevalent cancers is colorectal cancer (CRC). Chemotherapy and surgery are two common conventional CRC therapies that are frequently ineffective and have serious adverse effects. Thus, there is a need for complementary and different therapeutic approaches. The use of microbial metabolites to trigger epigenetic alterations as a way of preventing CRC is one newly emerging field of inquiry. Small chemicals called microbial metabolites, which are made by microbes and capable of altering host cell behaviour, are created. Recent research has demonstrated that these metabolites can lead to epigenetic modifications such as histone modifications, DNA methylation, and non-coding RNA regulation, which can control gene expression and affect cellular behaviour. This review highlights the current knowledge on the epigenetic modification for cancer treatment, immunomodulatory and anti-carcinogenic attributes of microbial metabolites, gut epigenetic targeting system, and the role of dietary fibre and gut microbiota in cancer treatment. It also focuses on short-chain fatty acids, especially butyrates (which are generated by microbes), and their cancer treatment perspective, challenges, and limitations, as well as state-of-the-art research on microbial metabolites-induced epigenetic changes for CRC inhibition. In conclusion, the present work highlights the potential of microbial metabolites-induced epigenetic modifications as a novel therapeutic strategy for CRC suppression and guides future research directions in this dynamic field.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575320344240625080555
2024-07-05
2024-12-26
Loading full text...

Full text loading...

References

  1. HossainM.S. KaruniawatiH. JairounA.A. UrbiZ. OoiD.J. JohnA. LimY.C. KibriaK.M.K. MohiuddinA.K.M. MingL.C. GohK.W. HadiM.A. Colorectal cancer: A review of carcinogenesis, global epidemiology, current challenges, risk factors, preventive and treatment strategies.Cancers2022147173210.3390/cancers1407173235406504
    [Google Scholar]
  2. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  3. AkimotoN. UgaiT. ZhongR. HamadaT. FujiyoshiK. GiannakisM. WuK. CaoY. NgK. OginoS. Rising incidence of early-onset colorectal cancer a call to action.Nat. Rev. Clin. Oncol.202118423024310.1038/s41571‑020‑00445‑133219329
    [Google Scholar]
  4. MarcellinaroR. SpoletiniD. GriecoM. AvellaP. CappuccioM. TroianoR. LisiG. GarbarinoG.M. CarliniM. Colorectal cancer: Current updates and future perspectives.J. Clin. Med.20231314010.3390/jcm1301004038202047
    [Google Scholar]
  5. KaminskiM.F. RobertsonD.J. SenoreC. RexD.K. Optimizing the quality of colorectal cancer screening worldwide.Gastroenterology2020158240441710.1053/j.gastro.2019.11.02631759062
    [Google Scholar]
  6. KanthP. InadomiJ.M. Screening and prevention of colorectal cancer.BMJ2021374n185510.1136/bmj.n185534526356
    [Google Scholar]
  7. LiJ. ZhangA. WuF. WangX. Alterations in the gut microbiota and their metabolites in colorectal cancer: Recent progress and prospects.Front. Oncol.20221284155210.3389/fonc.2022.84155235223525
    [Google Scholar]
  8. KumarM. NagpalR. VermaV. KumarA. KaurN. HemalathaR. GautamS.K. SinghB. Probiotic metabolites as epigenetic targets in the prevention of colon cancer.Nutr. Rev.2013711233410.1111/j.1753‑4887.2012.00542.x23282249
    [Google Scholar]
  9. GrohI.A.M. ChenC. LüskeC. CartusA.T. EsselenM. Plant polyphenols and oxidative metabolites of the herbal alkenylbenzene methyleugenol suppress histone deacetylase activity in human colon carcinoma cells.J. Nutr. Metab.2013201311010.1155/2013/82108223476753
    [Google Scholar]
  10. KumarM. HemalathaR. KumarR. NagpalR. DevrajJ.P. VermaV. BehareP. MalG. SinghB. Epigenetics, probiotic metabolites and colon cancer prevention: An overview of progress, opportunities and challenges.Med. Epigenet.201311606910.1159/000354719
    [Google Scholar]
  11. CananiR.B. Di CostanzoM. LeoneL. BedogniG. BrambillaP. CianfaraniS. NobiliV. PietrobelliA. AgostoniC. Epigenetic mechanisms elicited by nutrition in early life.Nutr. Res. Rev.201124219820510.1017/S095442241100010222008232
    [Google Scholar]
  12. LouisP. FlintH.J. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine.FEMS Microbiol. Lett.200929411810.1111/j.1574‑6968.2009.01514.x19222573
    [Google Scholar]
  13. Montalban-ArquesA. ScharlM. Intestinal microbiota and colorectal carcinoma: Implications for pathogenesis, diagnosis, and therapy.EBioMedicine20194864865510.1016/j.ebiom.2019.09.05031631043
    [Google Scholar]
  14. SinhaR. AhnJ. SampsonJ.N. ShiJ. YuG. XiongX. HayesR.B. GoedertJ.J. Fecal microbiota, fecal metabolome, and colorectal cancer interrelations.PLoS One2016113e015212610.1371/journal.pone.015212627015276
    [Google Scholar]
  15. YangY. MisraB.B. LiangL. BiD. WengW. WuW. CaiS. QinH. GoelA. LiX. MaY. Integrated microbiome and metabolome analysis reveals a novel interplay between commensal bacteria and metabolites in colorectal cancer.Theranostics20199144101411410.7150/thno.3518631281534
    [Google Scholar]
  16. KimM. VogtmannE. AhlquistD.A. DevensM.E. KisielJ.B. TaylorW.R. WhiteB.A. HaleV.L. SungJ. ChiaN. SinhaR. ChenJ. Fecal metabolomic signatures in colorectal adenoma patients are associated with gut microbiota and early events of colorectal cancer pathogenesis.MBio2020111e03186e1910.1128/mBio.03186‑1932071266
    [Google Scholar]
  17. ChenH. ZhangF. ZhangJ. ZhangX. GuoY. YaoQ. A holistic view of berberine inhibiting intestinal carcinogenesis in conventional mice based on microbiome metabolomics analysis.Front. Immunol.20201158807910.3389/fimmu.2020.58807933072135
    [Google Scholar]
  18. ChengY. HeC. WangM. MaX. MoF. YangS. HanJ. WeiX. Targeting epigenetic regulators for cancer therapy: Mechanisms and advances in clinical trials.Signal Transduct. Target. Ther.2019416210.1038/s41392‑019‑0095‑031871779
    [Google Scholar]
  19. SinghV. ShirbhateE. KoreR. MishraA. JohariyaV. VeerasamyR. TiwariA.K. RajakH. Dietary plant metabolites induced epigenetic modification as a novel strategy for the management of prostate cancer.Mini Rev. Med. Chem.202424151409142610.2174/011389557528389524020706545438385496
    [Google Scholar]
  20. EaswaranH. TsaiH.C. BaylinS.B. Cancer epigenetics: Tumor heterogeneity, plasticity of stem-like states, and drug resistance.Mol. Cell201454571672710.1016/j.molcel.2014.05.01524905005
    [Google Scholar]
  21. LuY. ChanY.T. TanH.Y. LiS. WangN. FengY. Epigenetic regulation in human cancer: The potential role of epi-drug in cancer therapy.Mol. Cancer20201917910.1186/s12943‑020‑01197‑332340605
    [Google Scholar]
  22. JonesP.A. BaylinS.B. The epigenomics of cancer.Cell2007128468369210.1016/j.cell.2007.01.02917320506
    [Google Scholar]
  23. FardiM. SolaliS. Farshdousti HaghM. Epigenetic mechanisms as a new approach in cancer treatment: An updated review.Genes Dis.20185430431110.1016/j.gendis.2018.06.00330591931
    [Google Scholar]
  24. ListerR. PelizzolaM. DowenR.H. HawkinsR.D. HonG. Tonti-FilippiniJ. NeryJ.R. LeeL. YeZ. NgoQ.M. EdsallL. Antosiewicz-BourgetJ. StewartR. RuottiV. MillarA.H. ThomsonJ.A. RenB. EckerJ.R. Human DNA methylomes at base resolution show widespread epigenomic differences.Nature2009462727131532210.1038/nature0851419829295
    [Google Scholar]
  25. BirdA.P. CpG-rich islands and the function of DNA methylation.Nature1986321606720921310.1038/321209a02423876
    [Google Scholar]
  26. RobertsonK.D. DNA methylation and human disease.Nat. Rev. Genet.20056859761010.1038/nrg165516136652
    [Google Scholar]
  27. JinB. TaoQ. PengJ. SooH.M. WuW. YingJ. FieldsC.R. DelmasA.L. LiuX. QiuJ. RobertsonK.D. DNA methyltransferase 3B (DNMT3B) mutations in ICF syndrome lead to altered epigenetic modifications and aberrant expression of genes regulating development, neurogenesis and immune function.Hum. Mol. Genet.200817569070910.1093/hmg/ddm34118029387
    [Google Scholar]
  28. PradhanS. TalbotD. ShaM. BennerJ. HornstraL. LiE. JaenischR. RobertsR.J. Baculovirus-mediated expression and characterization of the full-length murine DNA methyltransferase.Nucleic Acids Res.199725224666467310.1093/nar/25.22.46669358180
    [Google Scholar]
  29. GoyalR. ReinhardtR. JeltschA. Accuracy of DNA methylation pattern preservation by the Dnmt1 methyltransferase.Nucleic Acids Res.20063441182118810.1093/nar/gkl00216500889
    [Google Scholar]
  30. Salek FarrokhiA. MohammadlouM. AbdollahiM. EslamiM. YousefiB. Histone deacetylase modifications by probiotics in colorectal cancer.J. Gastrointest. Cancer202051375476410.1007/s12029‑019‑00338‑231808058
    [Google Scholar]
  31. RuijterA.J.M. GennipA.H. CaronH.N. KempS. KuilenburgA.B.P. Histone deacetylases (HDACs): Characterization of the classical HDAC family.Biochem. J.2003370373774910.1042/bj2002132112429021
    [Google Scholar]
  32. CedarH. BergmanY. Linking DNA methylation and histone modification: Patterns and paradigms.Nat. Rev. Genet.200910529530410.1038/nrg254019308066
    [Google Scholar]
  33. SuganumaT. WorkmanJ.L. Signals and combinatorial functions of histone modifications.Annu. Rev. Biochem.201180147349910.1146/annurev‑biochem‑061809‑17534721529160
    [Google Scholar]
  34. KouzaridesT. Chromatin modifications and their function.Cell2007128469370510.1016/j.cell.2007.02.00517320507
    [Google Scholar]
  35. CohenI. PorębaE. KamieniarzK. SchneiderR. Histone modifiers in cancer: Friends or foes?Genes Cancer20112663164710.1177/194760191141717621941619
    [Google Scholar]
  36. BannisterA.J. KouzaridesT. Regulation of chromatin by histone modifications.Cell Res.201121338139510.1038/cr.2011.2221321607
    [Google Scholar]
  37. PortelaA. EstellerM. Epigenetic modifications and human disease.Nat. Biotechnol.201028101057106810.1038/nbt.168520944598
    [Google Scholar]
  38. LiB. CareyM. WorkmanJ.L. The role of chromatin during transcription.Cell2007128470771910.1016/j.cell.2007.01.01517320508
    [Google Scholar]
  39. IzzoA. SchneiderR. Chatting histone modifications in mammals.Brief. Funct. Genomics201095-642944310.1093/bfgp/elq02421266346
    [Google Scholar]
  40. KanwalR. GuptaS. Epigenetic modifications in cancer.Clin. Genet.201281430331110.1111/j.1399‑0004.2011.01809.x22082348
    [Google Scholar]
  41. Sadakierska-ChudyA. MicroRNAs: Diverse mechanisms of action and their potential applications as cancer epi-therapeutics.Biomolecules2020109128510.3390/biom1009128532906681
    [Google Scholar]
  42. BandresE. AgirreX. RamirezN. ZarateR. Garcia-FoncillasJ. MicroRNAs as cancer players: Potential clinical and biological effects.DNA Cell Biol.200726527328210.1089/dna.2006.054417504023
    [Google Scholar]
  43. ZhuP. MartinE. MengwasserJ. SchlagP. JanssenK.P. GöttlicherM. Induction of HDAC2 expression upon loss of APC in colorectal tumorigenesis.Cancer Cell20045545546310.1016/S1535‑6108(04)00114‑X15144953
    [Google Scholar]
  44. MaoQ.D. ZhangW. ZhaoK. CaoB. YuanH. WeiL.Z. SongM.Q. LiuX.S. MicroRNA-455 suppresses the oncogenic function of HDAC2 in human colorectal cancer.Braz. J. Med. Biol. Res.2017506e610310.1590/1414‑431x2017610328538837
    [Google Scholar]
  45. LiuN. ZhaoR. MaY. WangD. YanC. ZhouD. YinF. LiZ. The development of epigenetics and related inhibitors for targeted drug design in cancer therapy.Curr. Top. Med. Chem.201918282380239410.2174/156802661866618111509262330430946
    [Google Scholar]
  46. NepaliK. LiouJ.P. Recent developments in epigenetic cancer therapeutics: Clinical advancement and emerging trends.J. Biomed. Sci.20212812710.1186/s12929‑021‑00721‑x33840388
    [Google Scholar]
  47. BarbarottaL. HurleyK. Romidepsin for the treatment of peripheral T- celllymphoma.J. Adv. Pract. Oncol.201561223610.6004/jadpro.2015.6.1.326413372
    [Google Scholar]
  48. MarksP.A. Discovery and development of SAHA as an anticancer agent.Oncogene20072691351135610.1038/sj.onc.121020417322921
    [Google Scholar]
  49. QianX. AraG. MillsE. LaRochelleW.J. LichensteinH.S. JeffersM. Activity of the histone deacetylase inhibitor belinostat (PXD101) in preclinical models of prostate cancer.Int. J. Cancer200812261400141010.1002/ijc.2324318027850
    [Google Scholar]
  50. GuanX.W. WangH.Q. BanW.W. ChangZ. ChenH.Z. JiaL. LiuF.T. Novel HDAC inhibitor chidamide synergizes with rituximab to inhibit diffuse large B-cell lymphoma tumour growth by upregulating CD20.Cell Death Dis.20201112010.1038/s41419‑019‑2210‑031907371
    [Google Scholar]
  51. LaubachJ.P. MoreauP. San-MiguelJ.F. RichardsonP.G. Panobinostat for the treatment of multiple myeloma.Clin. Cancer Res.201521214767477310.1158/1078‑0432.CCR‑15‑053026362997
    [Google Scholar]
  52. FDA approves first treatment option specifically for patients with epithelioid sarcoma, a rare soft tissue cancer.Available from: https://www.fda.gov/ (Accessed Jan 18, 2020).
  53. SmithP.M. HowittM.R. PanikovN. MichaudM. GalliniC.A. Bohlooly-YM. GlickmanJ.N. GarrettW.S. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis.Science2013341614556957310.1126/science.124116523828891
    [Google Scholar]
  54. DonohoeD.R. CollinsL.B. WaliA. BiglerR. SunW. BultmanS.J. The Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation.Mol. Cell201248461262610.1016/j.molcel.2012.08.03323063526
    [Google Scholar]
  55. SchilderinkR. VerseijdenC. SeppenJ. MuncanV. van den BrinkG.R. LambersT.T. van TolE.A. de JongeW.J. The SCFA butyrate stimulates the epithelial production of retinoic acid via inhibition of epithelial HDAC.Am. J. Physiol. Gastrointest. Liver Physiol.201631011G1138G114610.1152/ajpgi.00411.201527151945
    [Google Scholar]
  56. LouisP. HoldG.L. FlintH.J. The gut microbiota, bacterial metabolites and colorectal cancer.Nat. Rev. Microbiol.2014121066167210.1038/nrmicro334425198138
    [Google Scholar]
  57. AnshoryM. EffendiR.M.R.A. KalimH. DwiyanaR.F. SuwarsaO. NijstenT.E.C. NouwenJ.L. ThioH.B. Butyrate properties in immune-related diseases: Friend or foe?Fermentation20239320510.3390/fermentation9030205
    [Google Scholar]
  58. PlögerS. StumpffF. PennerG.B. SchulzkeJ.D. GäbelG. MartensH. ShenZ. GünzelD. AschenbachJ.R. Microbial butyrate and its role for barrier function in the gastrointestinal tract.Ann. N. Y. Acad. Sci.201212581525910.1111/j.1749‑6632.2012.06553.x22731715
    [Google Scholar]
  59. NogalA. LoucaP. ZhangX. WellsP.M. StevesC.J. SpectorT.D. FalchiM. ValdesA.M. MenniC. Circulating levels of the short-chain fatty acid acetate mediate the effect of the gut microbiome on visceral fat.Front. Microbiol.20211271135910.3389/fmicb.2021.71135934335546
    [Google Scholar]
  60. VinoloM.A.R. RodriguesH.G. NachbarR.T. CuriR. Regulation of inflammation by short chain fatty acids.Nutrients201131085887610.3390/nu310085822254083
    [Google Scholar]
  61. ChangP.V. HaoL. OffermannsS. MedzhitovR. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition.Proc. Natl. Acad. Sci.201411162247225210.1073/pnas.132226911124390544
    [Google Scholar]
  62. ReichardtN. DuncanS.H. YoungP. BelenguerA. McWilliam LeitchC. ScottK.P. FlintH.J. LouisP. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota.ISME J.2014861323133510.1038/ismej.2014.1424553467
    [Google Scholar]
  63. SchilderinkR. VerseijdenC. de JongeW.J. Dietary inhibitors of histone deacetylases in intestinal immunity and homeostasis.Front. Immunol.2013422610.3389/fimmu.2013.0022623914191
    [Google Scholar]
  64. VinoloM.A.R. RodriguesH.G. HatanakaE. HebedaC.B. FarskyS.H.P. CuriR. Short-chain fatty acids stimulate the migration of neutrophils to inflammatory sites.Clin. Sci.2009117933133810.1042/CS2008064219335337
    [Google Scholar]
  65. SongM. ChanA.T. Diet, gut microbiota, and colorectal cancer prevention: A review of potential mechanisms and promising targets for future research.Curr. Colorectal Cancer Rep.201713642943910.1007/s11888‑017‑0389‑y29333111
    [Google Scholar]
  66. EstupiñánM. HernándezI. SaituaE. BilbaoM.E. MendibilI. FerrerJ. Alonso-SáezL. Novel Vibrio spp. strains producing omega-3 fatty acids isolated from coastal seawater.Mar. Drugs20201829910.3390/md1802009932024040
    [Google Scholar]
  67. PerdanaB.A. ChaidirZ. KusnandaA.J. DharmaA. ZakariaI.J. Syafrizayanti; Bayu, A.; Putra, M.Y. Omega-3 fatty acids of microalgae as a food supplement: A review of exogenous factors for production enhancement.Algal Res.20216010254210.1016/j.algal.2021.102542
    [Google Scholar]
  68. CalderP.C. Omega-3 fatty acids and inflammatory processes: From molecules to man.Biochem. Soc. Trans.20174551105111510.1042/BST2016047428900017
    [Google Scholar]
  69. VolpatoM. HullM.A. Omega-3 polyunsaturated fatty acids as adjuvant therapy of colorectal cancer.Cancer Metastasis Rev.2018372-354555510.1007/s10555‑018‑9744‑y29971573
    [Google Scholar]
  70. HusseyB. LindleyM.R. MastanaS.S. Omega 3 fatty acids, inflammation and DNA methylation: An overview.Clin. Lipidol.2017121243210.1080/17584299.2017.1319454
    [Google Scholar]
  71. HullarM.A.J. FuB.C. Diet, the gut microbiome, and epigenetics.Cancer J.201420317017510.1097/PPO.000000000000005324855003
    [Google Scholar]
  72. KissA.K. GranicaS. StolarczykM. MelzigM.F. Epigenetic modulation of mechanisms involved in inflammation: Influence of selected polyphenolic substances on histone acetylation state.Food Chem.201213131015102010.1016/j.foodchem.2011.09.109
    [Google Scholar]
  73. González-SarríasA. Núñez-SánchezM.Á. Tomé-CarneiroJ. Tomás-BarberánF.A. García-ConesaM.T. EspínJ.C. Comprehensive characterization of the effects of ellagic acid and urolithins on colorectal cancer and key‐associated molecular hallmarks: MicroRNA cell specific induction of CDKN1A (p21) as a common mechanism involved.Mol. Nutr. Food Res.201660470171610.1002/mnfr.20150078026634414
    [Google Scholar]
  74. GayaP. PeiroténÁ. MedinaM. ÁlvarezI. LandeteJ.M. Bifidobacterium pseudocatenulatum INIA P815: The first bacterium able to produce urolithins A and B from ellagic acid.J. Funct. Foods201845959910.1016/j.jff.2018.03.040
    [Google Scholar]
  75. BhagatT.D. Von AhrensD. DawlatyM. ZouY. BaddourJ. AchrejaA. ZhaoH. YangL. PatelB. KwakC. ChoudharyG.S. Gordon-MitchellS. AluriS. BhattacharyyaS. SahuS. BhagatP. YuY. BartensteinM. GiriczO. SuzukiM. SohalD. GuptaS. GuerreroP.A. BatraS. GogginsM. SteidlU. GreallyJ. AgarwalB. PradhanK. BanerjeeD. NagrathD. MaitraA. VermaA. Lactate-mediated epigenetic reprogramming regulates formation of human pancreatic cancer-associated fibroblasts.eLife20198e5066310.7554/eLife.5066331663852
    [Google Scholar]
  76. PhilippA.B. NagelD. StieberP. LamerzR. ThalhammerI. HerbstA. KolligsF.T. Circulating cell-free methylated DNA and lactate dehydrogenase release in colorectal cancer.BMC Cancer201414124510.1186/1471‑2407‑14‑24524708595
    [Google Scholar]
  77. DaiX. LvX. ThompsonE.W. OstrikovK.K. Histone lactylation: Epigenetic mark of glycolytic switch.Trends Genet.202238212412710.1016/j.tig.2021.09.00934627643
    [Google Scholar]
  78. AbediE. HashemiS.M. Lactic acid production–Producing microorganisms and substrates sources-state of art.Heliyon2020610e0497410.1016/j.heliyon.2020.e04974
    [Google Scholar]
  79. ChenH.S. BaiM.H. ZhangT. LiG.D. LiuM. Ellagic acid induces cell cycle arrest and apoptosis through TGF-β/Smad3 signaling pathway in human breast cancer MCF-7 cells.Int. J. Oncol.20154641730173810.3892/ijo.2015.287025647396
    [Google Scholar]
  80. RubavathiA. MuruganA. VisaliK. Microbial production of ellagic acid from mango pulp processing waste.BioRxiv20202020202310.1101/2020.03.17.995597
    [Google Scholar]
  81. Aguilera-CarboA. AugurC. Prado-BarraganL.A. Favela-TorresE. AguilarC.N. Microbial production of ellagic acid and biodegradation of ellagitannins.Appl. Microbiol. Biotechnol.200878218919910.1007/s00253‑007‑1276‑218157721
    [Google Scholar]
  82. LiY. YaoJ. HanC. YangJ. ChaudhryM. WangS. LiuH. YinY. Quercetin, inflammation and immunity.Nutrients20168316710.3390/nu803016726999194
    [Google Scholar]
  83. ThapaS.B. PandeyR.P. ParkY.I. Kyung SohngJ. Biotechnological advances in resveratrol production and its chemical diversity.Molecules20192414257110.3390/molecules2414257131311182
    [Google Scholar]
  84. FarhanM. UllahM. FaisalM. FarooqiA. SabitaliyevichU. BiersackB. AhmadA. Differential methylation and acetylation as the epigenetic basis of resveratrol’s anticancer activity.Medicines2019612410.3390/medicines601002430781847
    [Google Scholar]
  85. Sharifi-RadM. Anil KumarN.V. ZuccaP. VaroniE.M. DiniL. PanzariniE. RajkovicJ. Tsouh FokouP.V. AzziniE. PelusoI. Prakash MishraA. NigamM. El RayessY. BeyrouthyM.E. PolitoL. IritiM. MartinsN. MartorellM. DoceaA.O. SetzerW.N. CalinaD. ChoW.C. Sharifi-RadJ. Lifestyle, oxidative stress and antioxidants: Back and forth in the pathophysiology of chronic diseases.Front. Physiol.20201169410.3389/fphys.2020.0069432714204
    [Google Scholar]
  86. KechagiaM. BasoulisD. KonstantopoulouS. DimitriadiD. GyftopoulouK. SkarmoutsouN. FakiriE.M. Health benefits of probiotics: A review.ISRN Nutr.201320131710.5402/2013/48165124959545
    [Google Scholar]
  87. Sharifi-RadJ. RodriguesC.F. Stojanović-RadićZ. DimitrijevićM. AleksićA. Neffe-SkocińskaK. ZielińskaD. Kołożyn-KrajewskaD. SalehiB. Milton PrabuS. SchutzF. DoceaA.O. MartinsN. CalinaD. Probiotics: versatile bioactive components in promoting human health.Medicina202056943310.3390/medicina5609043332867260
    [Google Scholar]
  88. MeiS. DengZ. ChenY. NingD. GuoY. FanX. WangR. MengY. ZhouQ. TianX. Dysbiosis: The first hit for digestive system cancer.Front. Physiol.202213104099110.3389/fphys.2022.104099136483296
    [Google Scholar]
  89. GareauM.G. ShermanP.M. WalkerW.A. Probiotics and the gut microbiota in intestinal health and disease.Nat. Rev. Gastroenterol. Hepatol.20107950351410.1038/nrgastro.2010.11720664519
    [Google Scholar]
  90. Plaza-DíazJ. Ruiz-OjedaF. Vilchez-PadialL. GilA. Evidence of the anti- inflammatory effects of probiotics and synbiotics in intestinal chronic diseases.Nutrients20179655510.3390/nu906055528555037
    [Google Scholar]
  91. MirzaeiR. AfaghiA. BabakhaniS. SohrabiM.R. Hosseini-FardS.R. BabolhavaejiK. Khani Ali AkbariS. YousefimashoufR. KarampoorS. Role of microbiota-derived short-chain fatty acids in cancer development and prevention.Biomed. Pharmacother.202113911161910.1016/j.biopha.2021.11161933906079
    [Google Scholar]
  92. YueY. WangS. ShiJ. XieQ. LiN. GuanJ. EvivieS.E. LiuF. LiB. HuoG. Effects of Lactobacillus acidophilus KLDS1. 0901 on proliferation and apoptosis of colon cancer cells.Front. Microbiol.20221278804010.3389/fmicb.2021.78804035250903
    [Google Scholar]
  93. NowakA. KuberskiS. LibudziszZ. Probiotic lactic acid bacteria detoxify N-nitrosodimethylamine.Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess.201431101678168710.1080/19440049.2014.94330425010287
    [Google Scholar]
  94. Plaza-DiazJ. Ruiz-OjedaF.J. Gil-CamposM. GilA. Mechanisms of action of probiotics.Adv. Nutr.2019101S49S6610.1093/advances/nmy06330721959
    [Google Scholar]
  95. Rodriguez-ArrastiaM. Martinez-OrtigosaA. Rueda-RuzafaL. Folch AyoraA. Ropero-PadillaC. Probiotic supplements on oncology patients’ treatment-related side effects: A systematic review of randomized controlled trials.Int. J. Environ. Res. Public Health2021188426510.3390/ijerph1808426533920572
    [Google Scholar]
  96. ShangF. JiangX. WangH. ChenS. WangX. LiuY. GuoS. LiD. YuW. ZhaoZ. WangG. The inhibitory effects of probiotics on colon cancer cells: in vitro and in vivo studies.J. Gastrointest. Oncol.20201161224123210.21037/jgo‑20‑57333456995
    [Google Scholar]
  97. KumarM. VermaV. NagpalR. KumarA. BehareP.V. SinghB. AggarwalP.K. Anticarcinogenic effect of probiotic fermented milk and chlorophyllin on aflatoxin-B 1 -induced liver carcinogenesis in rats.Br. J. Nutr.201210771006101610.1017/S000711451100395321816119
    [Google Scholar]
  98. NagpalR. KaurA. Synbiotic effect of various prebiotics on in vitro activities of probiotic lactobacilli.Ecol. Food Nutr.2011501636810.1080/03670244.2011.53916121888588
    [Google Scholar]
  99. MiglioreL. MigheliF. SpisniR. CoppedèF. Genetics, cytogenetics, and epigenetics of colorectal cancer.J. Biomed. Biotechnol.2011201111910.1155/2011/79236221490705
    [Google Scholar]
  100. SinghB. BhatT.K. SinghB. Potential therapeutic applications of some antinutritional plant secondary metabolites.J. Agric. Food Chem.200351195579559710.1021/jf021150r12952405
    [Google Scholar]
  101. SantosI.S. PonteB.M. BoonmeP. SilvaA.M. SoutoE.B. Nanoencapsulation of polyphenols for protective effect against colon–Rectal cancer.Biotechnol. Adv.201331551452310.1016/j.biotechadv.2012.08.00522940401
    [Google Scholar]
  102. Salek FarrokhiA. DarabiN. YousefiB. AskandarR.H. ShariatiM. EslamiM. Is it true that gut microbiota is considered as panacea in cancer therapy?J. Cell. Physiol.20192349149411495010.1002/jcp.2833330786013
    [Google Scholar]
  103. SongM. GarrettW.S. ChanA.T. Nutrients, foods, and colorectal cancer prevention.Gastroenterology2015148612441260.e1610.1053/j.gastro.2014.12.03525575572
    [Google Scholar]
  104. LasryA. ZingerA. Ben-NeriahY. Inflammatory networks underlying colorectal cancer.Nat. Immunol.201617323024010.1038/ni.338426882261
    [Google Scholar]
  105. ZmoraN. ZeeviD. KoremT. SegalE. ElinavE. Taking it personally: Personalized utilization of the human microbiome in health and disease.Cell Host Microbe2016191122010.1016/j.chom.2015.12.01626764593
    [Google Scholar]
  106. BultmanS.J. Interplay between diet, gut microbiota, epigenetic events, and colorectal cancer.Mol. Nutr. Food Res.2017611150090210.1002/mnfr.20150090227138454
    [Google Scholar]
  107. BurnsM.B. LynchJ. StarrT.K. KnightsD. BlekhmanR. Virulence genes are a signature of the microbiome in the colorectal tumor microenvironment.Genome Med.2015715510.1186/s13073‑015‑0177‑826170900
    [Google Scholar]
  108. MeeranS.M. AhmedA. TollefsbolT.O. Epigenetic targets of bioactive dietary components for cancer prevention and therapy.Clin. Epigenetics201013-410111610.1007/s13148‑010‑0011‑521258631
    [Google Scholar]
  109. MeijerK. VonkR.J. PriebeM.G. RoelofsenH. Cell-based screening assay for anti-inflammatory activity of bioactive compounds.Food Chem.201516615816410.1016/j.foodchem.2014.06.05325053041
    [Google Scholar]
  110. CookS.I. SellinJ.H. Review article: Short chain fatty acids in health and disease.Aliment. Pharmacol. Ther.199812649950710.1046/j.1365‑2036.1998.00337.x9678808
    [Google Scholar]
  111. TanJ. McKenzieC. PotamitisM. ThorburnA.N. MackayC.R. MaciaL. The role of short-chain fatty acids in health and disease.Adv. Immunol.20141219111910.1016/B978‑0‑12‑800100‑4.00003‑924388214
    [Google Scholar]
  112. WengC.Y. KuoT.H. ChaiL.M.X. ZouH.B. FengT.H. HuangY.J. TsaiJ.C. WuP.H. ChiuY.W. LanE.I. SheenL.Y. HsuC.C. Rapid quantification of gut microbial short-chain fatty acids by pDART-MS.Anal. Chem.20209222148921489710.1021/acs.analchem.0c0386233151059
    [Google Scholar]
  113. ChengJ. HuH. JuY. LiuJ. WangM. LiuB. ZhangY. Gut microbiota-derived short-chain fatty acids and depression: Deep insight into biological mechanisms and potential applications.Gen. Psychiatr.2024371e10137410.1136/gpsych‑2023‑10137438390241
    [Google Scholar]
  114. MirzaeiR. BouzariB. Hosseini-FardS.R. MazaheriM. AhmadyousefiY. AbdiM. JalalifarS. KarimitabarZ. TeimooriA. KeyvaniH. ZamaniF. YousefimashoufR. KarampoorS. Role of microbiota-derived short-chain fatty acids in nervous system disorders.Biomed. Pharmacother.202113911166110.1016/j.biopha.2021.11166134243604
    [Google Scholar]
  115. HeM. WeiW. ZhangY. XiangZ. PengD. KasimumaliA. RongS. Gut microbial metabolites SCFAs and chronic kidney disease.J. Transl. Med.202422117210.1186/s12967‑024‑04974‑638369469
    [Google Scholar]
  116. MaglioccaG. MoneP. Di IorioB.R. HeidlandA. MarzoccoS. Short-chain fatty acids in chronic kidney disease: Focus on inflammation and oxidative stress regulation.Int. J. Mol. Sci.20222310535410.3390/ijms2310535435628164
    [Google Scholar]
  117. ZhangZ. ZhangH. ChenT. ShiL. WangD. TangD. Regulatory role of short-chain fatty acids in inflammatory bowel disease.Cell Commun. Signal.20222016410.1186/s12964‑022‑00869‑535546404
    [Google Scholar]
  118. LiuW. LuoX. TangJ. MoQ. ZhongH. ZhangH. FengF. A bridge for short-chain fatty acids to affect inflammatory bowel disease, type 1 diabetes, and non-alcoholic fatty liver disease positively: By changing gut barrier.Eur. J. Nutr.20216052317233010.1007/s00394‑020‑02431‑w33180143
    [Google Scholar]
  119. BaldiS. MenicattiM. NanniniG. NiccolaiE. RussoE. RicciF. PallecchiM. RomanoF. PedoneM. PoliG. RenziD. TaddeiA. CalabròA.S. StingoF.C. BartolucciG. AmedeiA. Free fatty acids signature in human intestinal disorders: Significant association between butyric acid and celiac disease.Nutrients202113374210.3390/nu1303074233652681
    [Google Scholar]
  120. Berni CananiR. Di CostanzoM. LeoneL. The epigenetic effects of butyrate: Potential therapeutic implications for clinical practice.Clin. Epigenetics201241410.1186/1868‑7083‑4‑422414323
    [Google Scholar]
  121. StitzleinL.M. AdamsJ.T. StitzleinE.N. DudleyR.W. ChandraJ. Current and future therapeutic strategies for high-grade gliomas leveraging the interplay between epigenetic regulators and kinase signaling networks.J. Exp. Clin. Cancer Res.20244311210.1186/s13046‑023‑02923‑738183103
    [Google Scholar]
  122. LiG. TianY. ZhuW.G. The roles of histone deacetylases and their inhibitors in cancer therapy.Front. Cell Dev. Biol.2020857694610.3389/fcell.2020.57694633117804
    [Google Scholar]
  123. FeitelsonM.A. ArzumanyanA. MedhatA. SpectorI. Short-chain fatty acids in cancer pathogenesis.Cancer Metastasis Rev.202342367769810.1007/s10555‑023‑10117‑y37432606
    [Google Scholar]
  124. BhatM.I. KapilaR. Dietary metabolites derived from gut microbiota: critical modulators of epigenetic changes in mammals.Nutr. Rev.201775537438910.1093/nutrit/nux00128444216
    [Google Scholar]
  125. CananiR.B. CostanzoM.D. LeoneL. PedataM. MeliR. CalignanoA. Potential beneficial effects of butyrate in intestinal and extraintestinal diseases.World J. Gastroenterol.201117121519152810.3748/wjg.v17.i12.151921472114
    [Google Scholar]
  126. WaldeckerM. KautenburgerT. DaumannH. BuschC. SchrenkD. Inhibition of histone-deacetylase activity by short-chain fatty acids and some polyphenol metabolites formed in the colon.J. Nutr. Biochem.200819958759310.1016/j.jnutbio.2007.08.00218061431
    [Google Scholar]
  127. TianY. XuQ. SunL. YeY. JiG. Short-chain fatty acids administration is protective in colitis-associated colorectal cancer development.J. Nutr. Biochem.20185710310910.1016/j.jnutbio.2018.03.00729694938
    [Google Scholar]
  128. LimS. ChangD.H. AhnS. KimB.C. Whole genome sequencing of Faecalibaculum rodentium ALO17, isolated from C57BL/6J laboratory mouse feces.Gut Pathog.201681310.1186/s13099‑016‑0087‑326877770
    [Google Scholar]
  129. LeeC. LeeS. YooW. Metabolic interaction between host and the gut microbiota during high-fat diet-induced colorectal cancer.J. Microbiol.202462315316510.1007/s12275‑024‑00123‑238625645
    [Google Scholar]
  130. LiJ. ZhangA. WuF. WangX. Alterations in the gut microbiota and their metabolites in colorectal cancer: recent progress and future prospects.Front. Oncol.20221284155210.3389/fonc.2022.84155235223525
    [Google Scholar]
  131. ZagatoE. PozziC. BertocchiA. SchioppaT. SaccheriF. GugliettaS. FossoB. MelocchiL. NizzoliG. TroisiJ. MarzanoM. OrestaB. SpadoniI. AtarashiK. CarloniS. ArioliS. FornasaG. AsnicarF. SegataN. GuglielmettiS. HondaK. PesoleG. VermiW. PennaG. RescignoM. Endogenous murine microbiota member Faecalibaculum rodentium and its human homologue protect from intestinal tumour growth.Nat. Microbiol.20205351152410.1038/s41564‑019‑0649‑531988379
    [Google Scholar]
  132. ChenD. JinD. HuangS. WuJ. XuM. LiuT. DongW. LiuX. WangS. ZhongW. LiuY. JiangR. PiaoM. WangB. CaoH. Clostridium butyricum, a butyrate-producing probiotic, inhibits intestinal tumor development through modulating Wnt signaling and gut microbiota.Cancer Lett.202046945646710.1016/j.canlet.2019.11.01931734354
    [Google Scholar]
  133. ZengH. HamlinS.K. SafratowichB.D. ChengW.H. JohnsonL.K. Superior inhibitory efficacy of butyrate over propionate and acetate against human colon cancer cell proliferation via cell cycle arrest and apoptosis: Linking dietary fiber to cancer prevention.Nutr. Res.202083637210.1016/j.nutres.2020.08.00933017771
    [Google Scholar]
  134. Parada VenegasD. De la FuenteM.K. LandskronG. GonzálezM.J. QueraR. DijkstraG. HarmsenH.J.M. FaberK.N. HermosoM.A. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases.Front. Immunol.20191027710.3389/fimmu.2019.0027730915065
    [Google Scholar]
  135. MishraS.P. KarunakarP. TaraphderS. YadavH. Free fatty acid receptors 2 and 3 as microbial metabolite sensors to shape host health: pharmacophysiological view.Biomedicines20208615410.3390/biomedicines806015432521775
    [Google Scholar]
  136. WangG. YuY. WangY.Z. WangJ.J. GuanR. SunY. ShiF. GaoJ. FuX.L. Role of SCFAs in gut microbiome and glycolysis for colorectal cancer therapy.J. Cell. Physiol.201923410170231704910.1002/jcp.2843630888065
    [Google Scholar]
  137. GuilloteauP. MartinL. EeckhautV. DucatelleR. ZabielskiR. Van ImmerseelF. From the gut to the peripheral tissues: the multiple effects of butyrate.Nutr. Res. Rev.201023236638410.1017/S095442241000024720937167
    [Google Scholar]
  138. ChenJ. VitettaL. The role of butyrate in attenuating pathobiont-induced hyperinflammation.Immune Netw.2020202e1510.4110/in.2020.20.e1532395367
    [Google Scholar]
  139. MokhtariZ. GibsonD.L. HekmatdoostA. Nonalcoholic fatty liver disease, the gut microbiome, and diet.Adv. Nutr.20178224025210.3945/an.116.01315128298269
    [Google Scholar]
  140. GopalakrishnanV. SpencerC.N. NeziL. ReubenA. AndrewsM.C. KarpinetsT.V. PrietoP.A. VicenteD. HoffmanK. WeiS.C. CogdillA.P. ZhaoL. HudgensC.W. HutchinsonD.S. ManzoT. Petaccia de MacedoM. CotechiniT. KumarT. ChenW.S. ReddyS.M. Szczepaniak SloaneR. Galloway-PenaJ. JiangH. ChenP.L. ShpallE.J. RezvaniK. AlousiA.M. ChemalyR.F. ShelburneS. VenceL.M. OkhuysenP.C. JensenV.B. SwennesA.G. McAllisterF. Marcelo Riquelme SanchezE. ZhangY. Le ChatelierE. ZitvogelL. PonsN. Austin-BrenemanJ.L. HayduL.E. BurtonE.M. GardnerJ.M. SirmansE. HuJ. LazarA.J. TsujikawaT. DiabA. TawbiH. GlitzaI.C. HwuW.J. PatelS.P. WoodmanS.E. AmariaR.N. DaviesM.A. GershenwaldJ.E. HwuP. LeeJ.E. ZhangJ. CoussensL.M. CooperZ.A. FutrealP.A. DanielC.R. AjamiN.J. PetrosinoJ.F. TetzlaffM.T. SharmaP. AllisonJ.P. JenqR.R. WargoJ.A. Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients.Science201835963719710310.1126/science.aan423629097493
    [Google Scholar]
  141. MatsonV. FesslerJ. BaoR. ChongsuwatT. ZhaY. AlegreM.L. LukeJ.J. GajewskiT.F. The commensal microbiome is associated with anti–PD-1 efficacy in metastatic melanoma patients.Science2018359637110410810.1126/science.aao329029302014
    [Google Scholar]
  142. ZitvogelL. MaY. RaoultD. KroemerG. GajewskiT.F. The microbiome in cancer immunotherapy: Diagnostic tools and therapeutic strategies.Science201835963821366137010.1126/science.aar691829567708
    [Google Scholar]
  143. WollowskiI. RechkemmerG. Pool-ZobelB.L. Protective role of probiotics and prebiotics in colon cancer.Am. J. Clin. Nutr.2001732Suppl.451s455s10.1093/ajcn/73.2.451s11157356
    [Google Scholar]
  144. KielaP.R. KuscuogluN. MiduraA.J. Midura-KielaM.T. LarmonierC.B. LipkoM. GhishanF.K. Molecular mechanism of rat NHE3 gene promoter regulation by sodium butyrate.Am. J. Physiol. Cell Physiol.20072931C64C7410.1152/ajpcell.00277.200617344314
    [Google Scholar]
  145. AcharyaM.R. SparreboomA. VenitzJ. FiggW.D. Rational development of histone deacetylase inhibitors as anticancer agents: A review.Mol. Pharmacol.200568491793210.1124/mol.105.01416715955865
    [Google Scholar]
  146. DavieJ.R. Inhibition of histone deacetylase activity by butyrate.J. Nutr.20031337Suppl.2485S2493S10.1093/jn/133.7.2485S12840228
    [Google Scholar]
  147. SaikaliJ. PicardC. FreitasM. HoltP. Fermented milks, probiotic cultures, and colon cancer.Nutr. Cancer2004491142410.1207/s15327914nc4901_315456631
    [Google Scholar]
  148. LanA. Lagadic-GossmannD. LemaireC. BrennerC. JanG. Acidic extracellular pH shifts colorectal cancer cell death from apoptosis to necrosis upon exposure to propionate and acetate, major end-products of the human probiotic propionibacteria.Apoptosis200712357359110.1007/s10495‑006‑0010‑317195096
    [Google Scholar]
  149. PerrinP. PierreF. PatryY. ChampM. BerreurM. PradalG. BornetF. MeflahK. MenanteauJ. Only fibres promoting a stable butyrate producing colonic ecosystem decrease the rate of aberrant crypt foci in rats.Gut2001481536110.1136/gut.48.1.5311115823
    [Google Scholar]
  150. MaierS. DaroquiM.C. SchererS. RoepckeS. VelcichA. ShenoyS.M. SingerR.H. AugenlichtL.H. Butyrate and vitamin D3 induce transcriptional attenuation at the cyclin D1 locus in colonic carcinoma cells.J. Cell. Physiol.2009218363864210.1002/jcp.21642
    [Google Scholar]
  151. ScharlauD. BorowickiA. HabermannN. HofmannT. KlenowS. MieneC. MunjalU. SteinK. GleiM. Mechanisms of primary cancer prevention by butyrate and other products formed during gut flora-mediated fermentation of dietary fibre.Mutat. Res. Rev. Mutat. Res.20096821395310.1016/j.mrrev.2009.04.00119383551
    [Google Scholar]
  152. YuD.C.W. WabyJ.S. ChirakkalH. StatonC.A. CorfeB.M. Butyrate suppresses expression of neuropilin I in colorectal cell lines through inhibition of Sp1 transactivation.Mol. Cancer20109127610.1186/1476‑4598‑9‑27620950431
    [Google Scholar]
  153. ThangarajuM. CresciG.A. LiuK. AnanthS. GnanaprakasamJ.P. BrowningD.D. MellingerJ.D. SmithS.B. DigbyG.J. LambertN.A. PrasadP.D. GanapathyV. GPR109A is a G-protein-coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon.Cancer Res.20096972826283210.1158/0008‑5472.CAN‑08‑446619276343
    [Google Scholar]
  154. AstburyS.M. CorfeB.M. Uptake and metabolism of the short-chain fatty acid butyrate, a critical review of the literature.Curr. Drug Metab.201213681582110.2174/13892001280084042822571479
    [Google Scholar]
  155. WangZ. GaoJ. KanH. HuangY. TangF. LiW. YangF. Resnet for histopathologic cancer detection, the deeper, the better?J. Data Sci. Intell. Syst.202310.47852/bonviewJDSIS3202744
    [Google Scholar]
  156. DanaeeP. GhaeiniR. HendrixD.A. A deep learning approach for cancer detection and relevant gene identification.Pac. Symp. Biocomput.20172221922910.1142/9789813207813_002227896977
    [Google Scholar]
  157. WangZ. LuH. WuY. RenS. DiatyD. FuY. ZouY. ZhangL. WangZ. WangF. LiS. HuoX. YuW. XuJ. YeZ. Predicting recurrence in osteosarcoma via a quantitative histological image classifier derived from tumour nuclear morphological features.CAAI Trans. Intell. Technol.20238383684810.1049/cit2.12175
    [Google Scholar]
  158. HuZ. TangJ. WangZ. ZhangK. ZhangL. SunQ. Deep learning for image-based cancer detection and diagnosis: A survey.Pattern Recognit.20188313414910.1016/j.patcog.2018.05.014
    [Google Scholar]
  159. KumarV.T.R.P. ArulselviM. SastryK.B.S. Comparative assessment of colon cancer classification using diverse deep learning approaches. J. Data.Sci. Intell. Syst.20231212813510.47852/bonviewJDSIS32021193
    [Google Scholar]
  160. NoorM.N. NazirM. AshrafI. AlmujallyN.A. AslamM. Fizzah JilaniS. GastroNet: A robust attention‐based deep learning and cosine similarity feature selection framework for gastrointestinal disease classification from endoscopic images.CAAI Trans. Intell. Technol.20232023cit2.1223110.1049/cit2.12231
    [Google Scholar]
  161. ChintalapudiN. DhulipallaV.R. BattineniG. RuccoC. AmentaF. Voice biomarkers for Parkinson’s disease prediction using machine learning models with improved feature reduction techniques. J. Data.Sci. Intell. Syst.202312929810.47852/bonviewJDSIS3202831
    [Google Scholar]
  162. FatimaM. KhanM.A. ShaheenS. AlmujallyN.A. WangS.H. B2C3NetF2: Breast cancer classification using an end‐to‐end deep learning feature fusion and satin bowerbird optimization controlled Newton Raphson feature selection.CAAI Trans. Intell. Technol.2023841374139010.1049/cit2.12219
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575320344240625080555
Loading
/content/journals/mrmc/10.2174/0113895575320344240625080555
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test