Skip to content
2000
Volume 25, Issue 1
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

A significant contributor to cancer-related death, pancreatic cancer (PC) has a terrible prognosis in general that has not altered over many years. Currently, it is extremely difficult to prevent disease or discover it early enough to initiate treatment. PC is a challenging malignancy to treat, and several major impediments significantly impact the effectiveness of its treatment. These obstacles primarily include chemoresistance, drug toxicity, and limited drug bioavailability. Phytochemicals can be used as an alternative to chemotherapeutic drugs, or they can augment the anticancer properties of the chemotherapeutic agents. Nimbolide (NL) is a prominent limonoid compound found in , and has garnered substantial attention as a phytochemical with anticancer potential. It has powerful antiproliferative effects on a variety of cancer cell lines and is effective as a chemotherapeutic in preclinical studies. The primary modes of action of NL include suppression of metastasis and angiogenesis, activation of apoptosis, anti-proliferation, and control of enzymes that metabolize carcinogens. Despite numerous pharmacodynamic (PD) investigations, NL is still in the early stages of the drug development process because no comprehensive pharmacokinetic studies or long-term toxicity studies. Preclinical and toxicological assessments should be conducted to establish an appropriate dosage range, ensuring the safety of NL for its application in initial human clinical trials. This review endeavors to provide a comprehensive summary of the current developmental stage of NL along with nanoparticles as a principal candidate for therapeutic purposes in PC.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575293138240527061556
2024-06-13
2024-12-26
Loading full text...

Full text loading...

References

  1. SiegelR.L. MillerK.D. WagleN.S. JemalA. Cancer statistics, 2023.CA Cancer J. Clin.2023731174810.3322/caac.2176336633525
    [Google Scholar]
  2. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  3. ZhangL. SanagapalliS. StoitaA. Challenges in diagnosis of pancreatic cancer.World J. Gastroenterol.201824192047206010.3748/wjg.v24.i19.204729785074
    [Google Scholar]
  4. CaoJ. YangJ. RamachandranV. ArumugamT. DengD. LiZ. XuL. LogsdonC.D. TM4SF1 promotes gemcitabine resistance of pancreatic cancer In Vitro and In vivo.PLoS One20151012e014496910.1371/journal.pone.014496926709920
    [Google Scholar]
  5. ZhangL. LiJ. ZongL. ChenX. ChenK. JiangZ. NanL. LiX. LiW. ShanT. MaQ. MaZ. Reactive oxygen species and targeted therapy for pancreatic cancer.Oxid. Med. Cell. Longev.201620161910.1155/2016/161678126881012
    [Google Scholar]
  6. YaoL. GuJ. MaoY. ZhangX. WangX. JinC. FuD. LiJ. Dynamic quantitative detection of ABC transporter family promoter methylation by MS HRM for predicting MDR in pancreatic cancer.Oncol. Lett.20181545602561010.3892/ol.2018.804129552197
    [Google Scholar]
  7. HaoF. KumarS. YadavN. ChandraD. Neem components as potential agents for cancer prevention and treatment.Biochim. Biophys. Acta20141846124725725016141
    [Google Scholar]
  8. NaginiS. NivethaR. PalrasuM. MishraR. Nimbolide, a neem limonoid, is a promising candidate for the anticancer drug arsenal.J. Med. Chem.20216473560357710.1021/acs.jmedchem.0c0223933739088
    [Google Scholar]
  9. GuptaS.C. PrasadS. SethumadhavanD.R. NairM.S. MoY.Y. AggarwalB.B. Nimbolide, a limonoid triterpene, inhibits growth of human colorectal cancer xenografts by suppressing the proinflammatory microenvironment.Clin. Cancer Res.201319164465447610.1158/1078‑0432.CCR‑13‑008023766363
    [Google Scholar]
  10. SubramaniR. GonzalezE. ArumugamA. NandyS. GonzalezV. MedelJ. CamachoF. OrtegaA. BonkoungouS. NarayanM. DwivediA. LakshmanaswamyR. Nimbolide inhibits pancreatic cancer growth and metastasis through ROS-mediated apoptosis and inhibition of epithelial-to-mesenchymal transition.Sci. Rep.2016611981910.1038/srep1981926804739
    [Google Scholar]
  11. WangL. PhanD.D.K. ZhangJ. OngP.S. ThuyaW.L. SooR. WongA.L.A. YongW.P. LeeS.C. HoP.C.L. SethiG. GohB.C. Anticancer properties of nimbolide and pharmacokinetic considerations to accelerate its development.Oncotarget2016728447904480210.18632/oncotarget.831627027349
    [Google Scholar]
  12. BairaS.M. KhuranaA. SomagoniJ. SrinivasR. GoduguC. TalluriM.V.N.K. First report on the pharmacokinetic profile of nimbolide, a novel anticancer agent in oral and intravenous administrated rats by LC/MS method.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2018109219119810.1016/j.jchromb.2018.06.00229908468
    [Google Scholar]
  13. MaY. YuS. NiS. ZhangB. KungA.C.F. GaoJ. LuA. ZhangG. Targeting strategies for enhancing paclitaxel specificity in chemotherapy.Front. Cell Dev. Biol.2021962691010.3389/fcell.2021.62691033855017
    [Google Scholar]
  14. ConniotJ. SilvaJ.M. FernandesJ.G. SilvaL.C. GasparR. BrocchiniS. FlorindoH.F. BarataT.S. Cancer immunotherapy: Nanodelivery approaches for immune cell targeting and tracking.Front Chem.2014210510.3389/fchem.2014.0010525505783
    [Google Scholar]
  15. LammersT. KiesslingF. HenninkW.E. StormG. Nanotheranostics and image-guided drug delivery: Current concepts and future directions.Mol. Pharm.2010761899191210.1021/mp100228v20822168
    [Google Scholar]
  16. KumarM.N.V.R. MuzzarelliR.A.A. MuzzarelliC. SashiwaH. DombA.J. Chitosan chemistry and pharmaceutical perspectives.Chem. Rev.2004104126017608410.1021/cr030441b15584695
    [Google Scholar]
  17. LiangN. SunS. GongX. LiQ. YanP. CuiF. Polymeric micelles based on modified glycol chitosan for paclitaxel delivery: Preparation, characterization and evaluation.Int. J. Mol. Sci.2018196155010.3390/ijms1906155029882845
    [Google Scholar]
  18. MouryaV.K. InamdarN.N. Chitosan-modifications and applications: Opportunities galore.React. Funct. Polym.20086861013105110.1016/j.reactfunctpolym.2008.03.002
    [Google Scholar]
  19. SubramanianA. RauA.V. KaligotlaH. Surface modification of chitosan for selective surface–protein interaction.Carbohydr. Polym.200666332133210.1016/j.carbpol.2006.03.022
    [Google Scholar]
  20. JiJ. ZuoP. WangY.L. Enhanced antiproliferative effect of carboplatin in cervical cancer cells utilizing folate-grafted polymeric nanoparticles.Nanoscale Res. Lett.201510145310.1186/s11671‑015‑1162‑226608536
    [Google Scholar]
  21. McGuiganA. KellyP. TurkingtonR.C. JonesC. ColemanH.G. McCainR.S. Pancreatic cancer: A review of clinical diagnosis, epidemiology, treatment and outcomes.World J. Gastroenterol.201824434846486110.3748/wjg.v24.i43.484630487695
    [Google Scholar]
  22. KleeffJ. KorcM. ApteM. La VecchiaC. JohnsonC.D. BiankinA.V. NealeR.E. TemperoM. TuvesonD.A. HrubanR.H. NeoptolemosJ.P. Pancreatic cancer.Nat. Rev. Dis. Primers2016211602210.1038/nrdp.2016.2227158978
    [Google Scholar]
  23. ThomasD. RadhakrishnanP. Tumor-stromal crosstalk in pancreatic cancer and tissue fibrosis.Mol. Cancer20191811410.1186/s12943‑018‑0927‑530665410
    [Google Scholar]
  24. HoseinA.N. BrekkenR.A. MaitraA. Pancreatic cancer stroma: An update on therapeutic targeting strategies.Nat. Rev. Gastroenterol. Hepatol.202017848750510.1038/s41575‑020‑0300‑132393771
    [Google Scholar]
  25. HanX. LiY. XuY. ZhaoX. ZhangY. YangX. WangY. ZhaoR. AndersonG.J. ZhaoY. NieG. Reversal of pancreatic desmoplasia by re-educating stellate cells with a tumour microenvironment-activated nanosystem.Nat. Commun.201891339010.1038/s41467‑018‑05906‑x30139933
    [Google Scholar]
  26. IncioJ. SubojP. ChinS.M. Vardam-KaurT. LiuH. HatoT. BabykuttyS. ChenI. DeshpandeV. JainR.K. FukumuraD. Metformin reduces desmoplasia in pancreatic cancer by reprogramming stellate cells and tumor-associated macrophages.PLoS One20151012e014139210.1371/journal.pone.014139226641266
    [Google Scholar]
  27. ShoreS. RaratyM.G.T. GhanehP. NeoptolemosJ.P. Chemotherapy for pancreatic cancer.Aliment. Pharmacol. Ther.20031811-121049106910.1111/j.1365‑2036.2003.01781.x14653825
    [Google Scholar]
  28. WangW. WangQ. WangL. LiX. LiuD. Enhanced antitumor effect via combination of triptolide with 5-fluorouracil in pancreatic cancer.Transl. Cancer Res.20187114215010.21037/tcr.2018.01.17
    [Google Scholar]
  29. PaulS. ChatterjeeS. SinhaS. DashS.R. PradhanR. DasB. GoutamK. KunduC.N. Veliparib (ABT-888), a PARP inhibitor potentiates the cytotoxic activity of 5-fluorouracil by inhibiting MMR pathway through deregulation of MSH6 in colorectal cancer stem cells.Expert Opin. Ther. Targets20232710999101510.1080/14728222.2023.226657237787493
    [Google Scholar]
  30. SarvepalliD. RashidM.U. RahmanA.U. UllahW. HussainI. HasanB. JehanzebS. KhanA.K. JainA.G. KhetpalN. AhmadS. Gemcitabine: A review of chemoresistance in pancreatic cancer.Crit. Rev. Oncog.201924219921210.1615/CritRevOncog.201903164131679214
    [Google Scholar]
  31. LockhartA.C. RothenbergM.L. BerlinJ.D. Treatment for pancreatic cancer: Current therapy and continued progress.Gastroenterology200512861642165410.1053/j.gastro.2005.03.03915887156
    [Google Scholar]
  32. ChenC. ZhaoS. ZhaoX. CaoL. KarnadA. KumarA.P. FreemanJ.W. Gemcitabine resistance of pancreatic cancer cells is mediated by IGF1R dependent upregulation of CD44 expression and isoform switching.Cell Death Dis.202213868210.1038/s41419‑022‑05103‑135931675
    [Google Scholar]
  33. ChioreanE.G. CovelerA. Pancreatic cancer: Optimizing treatment options, new, and emerging targeted therapies.Drug Des. Devel. Ther.201593529354510.2147/DDDT.S6032826185420
    [Google Scholar]
  34. Von HoffD.D. ErvinT. ArenaF.P. ChioreanE.G. InfanteJ. MooreM. SeayT. TjulandinS.A. MaW.W. SalehM.N. HarrisM. ReniM. DowdenS. LaheruD. BaharyN. RamanathanR.K. TaberneroJ. HidalgoM. GoldsteinD. Van CutsemE. WeiX. IglesiasJ. RenschlerM.F. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine.N. Engl. J. Med.2013369181691170310.1056/NEJMoa130436924131140
    [Google Scholar]
  35. Di CostanzoF. Di CostanzoF. AntonuzzoL. MazzaE. GiommoniE. Optimizing first-line chemotherapy in metastatic pancreatic cancer: Efficacy of FOLFIRINOX versus nab-paclitaxel plus gemcitabine.Cancers202315241610.3390/cancers1502041636672366
    [Google Scholar]
  36. ErmongkonchaiT. KhorR. MuralidharanV. TebbuttN. LimK. KutaibaN. NgS.P. Stereotactic radiotherapy and the potential role of magnetic resonance-guided adaptive techniques for pancreatic cancer.World J. Gastroenterol.202228774575410.3748/wjg.v28.i7.74535317275
    [Google Scholar]
  37. PadrónL.J. MaurerD.M. O’HaraM.H. O’ReillyE.M. WolffR.A. WainbergZ.A. KoA.H. FisherG. RahmaO. LymanJ.P. CabanskiC.R. YuJ.X. PfeifferS.M. SpasicM. XuJ. GherardiniP.F. KarakunnelJ. MickR. AlanioC. ByrneK.T. HollmannT.J. MooreJ.S. JonesD.D. TognettiM. ChenR.O. YangX. SalvadorL. WherryE.J. DuganU. O’Donnell-TormeyJ. ButterfieldL.H. Hubbard-LuceyV.M. IbrahimR. FairchildJ. BucktroutS. LaValleeT.M. VonderheideR.H. Sotigalimab and/or nivolumab with chemotherapy in first-line metastatic pancreatic cancer: Clinical and immunologic analyses from the randomized phase 2 PRINCE trial.Nat. Med.20222861167117710.1038/s41591‑022‑01829‑935662283
    [Google Scholar]
  38. GalluzziL. VacchelliE. PedroJ-M.B-S. BuquéA. SenovillaL. BaraccoE.E. BloyN. CastoldiF. AbastadoJ.P. AgostinisP. ApteR.N. ArandaF. AyyoubM. BeckhoveP. BlayJ.Y. BracciL. CaignardA. CastelliC. CavalloF. CelisE. CerundoloV. ClaytonA. ColomboM.P. CoussensL. DhodapkarM.V. EggermontA.M. FearonD.T. FridmanW.H. FučíkováJ. GabrilovichD.I. GalonJ. GargA. GhiringhelliF. GiacconeG. GilboaE. GnjaticS. HoosA. HosmalinA. JägerD. KalinskiP. KärreK. KeppO. KiesslingR. KirkwoodJ.M. KleinE. KnuthA. LewisC.E. LiblauR. LotzeM.T. LugliE. MachJ.P. MatteiF. MavilioD. MeleroI. MeliefC.J. MittendorfE.A. MorettaL. OdunsiA. OkadaH. PaluckaA.K. PeterM.E. PientaK.J. PorgadorA. PrendergastG.C. RabinovichG.A. RestifoN.P. RizviN. Sautès-FridmanC. SchreiberH. SeligerB. ShikuH. Silva-SantosB. SmythM.J. SpeiserD.E. SpisekR. SrivastavaP.K. TalmadgeJ.E. TartourE. Van Der BurgS.H. Van Den EyndeB.J. VileR. WagnerH. WeberJ.S. WhitesideT.L. WolchokJ.D. ZitvogelL. ZouW. KroemerG. Classification of current anticancer immunotherapies.Oncotarget2014524124721250810.18632/oncotarget.299825537519
    [Google Scholar]
  39. WainbergZ.A. HochsterH.S. KimE.J. GeorgeB. KaylanA. ChioreanE.G. WaterhouseD.M. GuiterrezM. ParikhA. JainR. CarrizosaD.R. SolimanH.H. LilaT. ReissD.J. PierceD.W. BhoreR. BanerjeeS. LyonsL. LouisC.U. OngT.J. O’DwyerP.J. Open-label, Phase I study of nivolumab combined with nab -paclitaxel plus gemcitabine in advanced pancreatic cancer.Clin. Cancer Res.202026184814482210.1158/1078‑0432.CCR‑20‑009932554514
    [Google Scholar]
  40. YeY. ZhengS. Successful immunotherapy for pancreatic cancer in a patient with TSC2 and SMAD4 mutations: A case report.Front. Immunol.20211278540010.3389/fimmu.2021.78540034880877
    [Google Scholar]
  41. IwaiY. IshidaM. TanakaY. OkazakiT. HonjoT. MinatoN. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade.Proc. Natl. Acad. Sci.20029919122931229710.1073/pnas.19246109912218188
    [Google Scholar]
  42. YangB. RenH. YuG. Case Report: Squamous cell carcinoma of pancreas with high PD-L1 expression: A rare presentation.Front. Oncol.20211168039810.3389/fonc.2021.68039834277425
    [Google Scholar]
  43. SunamiY. KleeffJ. Immunotherapy of pancreatic cancer.Prog. Mol. Biol. Transl. Sci.201916418921610.1016/bs.pmbts.2019.03.00631383405
    [Google Scholar]
  44. ZhaoL. NiuC. ShiX. XuD. LiM. CuiJ. LiW. XuJ. JinH. Dendritic cells loaded with the lysate of tumor cells infected with newcastle disease virus trigger potent anti tumor immunity by promoting the secretion of IFN γ and IL 2 from T cells.Oncol. Lett.20181611180118810.3892/ol.2018.878530061941
    [Google Scholar]
  45. BooyS. HoflandL. van EijckC. Potentials of interferon therapy in the treatment of pancreatic cancer.J. Interferon Cytokine Res.201535532733910.1089/jir.2014.015725551196
    [Google Scholar]
  46. HegdeS. KrisnawanV.E. HerzogB.H. ZuoC. BredenM.A. KnolhoffB.L. HoggG.D. TangJ.P. BaerJ.M. MpoyC. LeeK.B. AlexanderK.A. RogersB.E. MurphyK.M. HawkinsW.G. FieldsR.C. DeSelmC.J. SchwarzJ.K. DeNardoD.G. Dendritic cell paucity leads to dysfunctional immune surveillance in pancreatic cancer.Cancer Cell2020373289307.e910.1016/j.ccell.2020.02.00832183949
    [Google Scholar]
  47. LongZ.J. WangJ.D. XuJ.Q. LeiX.X. LiuQ. cGAS/STING cross-talks with cell cycle and potentiates cancer immunotherapy.Mol. Ther.20223031006101710.1016/j.ymthe.2022.01.04435121107
    [Google Scholar]
  48. LiP. ZhenY. KimC. LiuZ. HaoJ. DengH. DengH. ZhouM. WangX.D. QinT. YuY. Nimbolide targets RNF114 to induce the trapping of PARP1 and synthetic lethality in BRCA -mutated cancer.Sci. Adv.2023943eadg775210.1126/sciadv.adg775237878693
    [Google Scholar]
  49. HsuF.C. RobertsN.J. ChildsE. PorterN. RabeK.G. BorgidaA. UkaegbuC. GogginsM.G. HrubanR.H. ZogopoulosG. SyngalS. GallingerS. PetersenG.M. KleinA.P. Risk of pancreatic cancer among individuals with pathogenic variants in the ATM gene.JAMA Oncol.20217111664166810.1001/jamaoncol.2021.370134529012
    [Google Scholar]
  50. HuangX. ZhangG. TangT.Y. GaoX. LiangT.B. Personalized pancreatic cancer therapy: From the perspective of mRNA vaccine.Mil. Med. Res.2022915310.1186/s40779‑022‑00416‑w36224645
    [Google Scholar]
  51. RojasL.A. SethnaZ. SoaresK.C. OlceseC. PangN. PattersonE. LihmJ. CegliaN. GuaspP. ChuA. YuR. ChandraA.K. WatersT. RuanJ. AmisakiM. ZebboudjA. OdgerelZ. PayneG. DerhovanessianE. MüllerF. RheeI. YadavM. DobrinA. SadelainM. ŁukszaM. CohenN. TangL. BasturkO. GönenM. KatzS. DoR.K. EpsteinA.S. MomtazP. ParkW. SugarmanR. VargheseA.M. WonE. DesaiA. WeiA.C. D’AngelicaM.I. KinghamT.P. MellmanI. MerghoubT. WolchokJ.D. SahinU. TüreciÖ. GreenbaumB.D. JarnaginW.R. DrebinJ. O’ReillyE.M. BalachandranV.P. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer.Nature2023618796314415010.1038/s41586‑023‑06063‑y37165196
    [Google Scholar]
  52. BockornyB. GrossmanJ.E. HidalgoM. Facts and hopes in immunotherapy of pancreatic cancer.Clin. Cancer Res.202228214606461710.1158/1078‑0432.CCR‑21‑345235775964
    [Google Scholar]
  53. MorrisonA.H. ByrneK.T. VonderheideR.H. Immunotherapy and prevention of pancreatic cancer.Trends Cancer20184641842810.1016/j.trecan.2018.04.00129860986
    [Google Scholar]
  54. OrrS. HuangL. MoserJ. StroopinskyD. GandarillaO. DeCiccoC. LiegelJ. TacettinC. EphraimA. CheloniG. TorresD. KufeD. RosenblattJ. HidalgoM. MuthuswamyS.K. AviganD. Personalized tumor vaccine for pancreatic cancer.Cancer Immunol. Immunother.202372230131310.1007/s00262‑022‑03237‑x35834008
    [Google Scholar]
  55. Hajiaghapour AsrM. DayaniF. Saedi SegherlooF. KamediA. NeillA.O. MacLoughlinR. DoroudianM. Lipid nanoparticles as promising carriers for mRNA vaccines for viral lung infections.Pharmaceutics2023154112710.3390/pharmaceutics1504112737111613
    [Google Scholar]
  56. LiuL. KshirsagarP.G. GautamS.K. GulatiM. WafaE.I. ChristiansenJ.C. WhiteB.M. MallapragadaS.K. WannemuehlerM.J. KumarS. SolheimJ.C. BatraS.K. SalemA.K. NarasimhanB. JainM. Nanocarriers for pancreatic cancer imaging, treatments, and immunotherapies.Theranostics20221231030106010.7150/thno.6480535154473
    [Google Scholar]
  57. PatraA. SatpathyS. HussainM.D. Nanodelivery and anticancer effect of a limonoid, nimbolide, in breast and pancreatic cancer cells.Int. J. Nanomedicine2019148095810410.2147/IJN.S20854031632020
    [Google Scholar]
  58. SinghD. MohapatraP. KumarS. BeheraS. DixitA. SahooS.K. Nimbolide-encapsulated PLGA nanoparticles induces mesenchymal-to-epithelial transition by dual inhibition of AKT and mTOR in pancreatic cancer stem cells.Toxicol. In Vitro20227910529310.1016/j.tiv.2021.10529334883246
    [Google Scholar]
  59. KumarS. InigoJ.R. KumarR. ChaudharyA.K. O’MalleyJ. BalachandarS. WangJ. AttwoodK. YadavN. HochwaldS. WangX. ChandraD. Nimbolide reduces CD44 positive cell population and induces mitochondrial apoptosis in pancreatic cancer cells.Cancer Lett.2018413829310.1016/j.canlet.2017.10.02929107110
    [Google Scholar]
  60. JaiswaraP.K. GuptaV.K. SonkerP. RawatS.G. TiwariR.K. PathakC. KumarS. KumarA. Nimbolide induces cell death in T lymphoma cells: Implication of altered apoptosis and glucose metabolism.Environ. Toxicol.202136462864110.1002/tox.2306733274819
    [Google Scholar]
  61. Mehmetoglu-GurbuzT. LakshmanaswamyR. PerezK. SandovalM. JimenezC.A. RochaJ. GoldfarbR.M. PerryC. BencomoA. NeelaN. BarraganJ.A. SanchezR. SwainR.M. SubramaniR. Nimbolide inhibits SOD2 to control pancreatic ductal adenocarcinoma growth and metastasis.Antioxidants20231210179110.3390/antiox1210179137891871
    [Google Scholar]
  62. ArumugamA. SubramaniR. LakshmanaswamyR. Involvement of actin cytoskeletal modifications in the inhibition of triple-negative breast cancer growth and metastasis by nimbolide.Mol. Ther. Oncolytics20212059660610.1016/j.omto.2021.02.01433768141
    [Google Scholar]
  63. ElumalaiP. GunadhariniD.N. SenthilkumarK. BanudeviS. ArunkumarR. BensonC.S. SharmilaG. ArunakaranJ. Induction of apoptosis in human breast cancer cells by nimbolide through extrinsic and intrinsic pathway.Toxicol. Lett.2012215213114210.1016/j.toxlet.2012.10.00823089555
    [Google Scholar]
  64. ChienS.Y. HsuC.H. LinC.C. ChuangY.C. LoY.S. HsiY.T. HsiehM.J. ChenM.K. Nimbolide induces apoptosis in human nasopharyngeal cancer cells.Environ. Toxicol.20173282085209210.1002/tox.2242328383207
    [Google Scholar]
  65. SophiaJ. KowshikJ. DwivediA. BhutiaS.K. ManavathiB. MishraR. NaginiS. Nimbolide, a neem limonoid inhibits cytoprotective autophagy to activate apoptosis via modulation of the PI3K/Akt/GSK-3β signalling pathway in oral cancer.Cell Death Dis.2018911108710.1038/s41419‑018‑1126‑430352996
    [Google Scholar]
  66. NivethaR. ArvindhS. BabaA.B. GadeD.R. GopalG. KC. ReddyK.P. ReddyG.B. NaginiS. Nimbolide, a neem limonoid, inhibits angiogenesis in breast cancer by abrogating aldose reductase mediated IGF-1/PI3K/Akt signalling.Anticancer. Agents Med. Chem.202222142619263610.2174/187152062266622020411515135125086
    [Google Scholar]
  67. Raja SinghP. ArunkumarR. SivakamasundariV. SharmilaG. ElumalaiP. SuganthapriyaE. Brindha MercyA. SenthilkumarK. ArunakaranJ. Anti‐proliferative and apoptosis inducing effect of nimbolide by altering molecules involved in apoptosis and IGF signalling via PI3K/Akt in prostate cancer (PC‐3) cell line.Cell Biochem. Funct.201432321722810.1002/cbf.299323963693
    [Google Scholar]
  68. ChittaK. PaulusA. CaulfieldT.R. AkhtarS. BlakeM-K.K. AilawadhiS. KnightJ. HeckmanM.G. PinkertonA. Chanan-KhanA. Nimbolide targets BCL2 and induces apoptosis in preclinical models of Waldenströms macroglobulinemia.Blood Cancer J.2014411e26010.1038/bcj.2014.7425382610
    [Google Scholar]
  69. HsuehK.C. LinC.L. TungJ.N. YangS.F. HsiehY.H. Nimbolide induced apoptosis by activating ERK‐mediated inhibition of c‐IAP1 expression in human hepatocellular carcinoma cells.Environ. Toxicol.201833991392210.1002/tox.2257629962003
    [Google Scholar]
  70. MahmoudN. DawoodM. HuangQ. NgJ.P.L. RenF. WongV.K.W. EfferthT. Nimbolide inhibits 2D and 3D prostate cancer cells migration, affects microtubules and angiogenesis and suppresses B-RAF/p.ERK-mediated in vivo tumor growth.Phytomedicine20229415382610.1016/j.phymed.2021.15382634775358
    [Google Scholar]
  71. HsiehY.H. LeeC.H. ChenH.Y. HsiehS.C. LinC.L. TsaiJ.P. Induction of cell cycle arrest, DNA damage, and apoptosis by nimbolide in human renal cell carcinoma cells.Tumour Biol.201536107539754710.1007/s13277‑015‑3477‑025916210
    [Google Scholar]
  72. AlamM. MishraR. Bcl-xL expression and regulation in the progression, recurrence, and cisplatin resistance of oral cancer.Life Sci.202128011970510.1016/j.lfs.2021.11970534111459
    [Google Scholar]
  73. QiuZ. AndrijauskaiteK. MorrisJ. WargovichM.J. Disruption of epigenetic silencing in human colon cancer cells lines utilizing a novel supercritical CO 2 extract of neem leaf (Azadirachta indica).Anticancer Res.201939105473548110.21873/anticanres.1374031570441
    [Google Scholar]
  74. JaiswaraP.K. KumarA. Nimbolide retards T cell lymphoma progression by altering apoptosis, glucose metabolism, PH regulation, and ROS homeostasis.Environ. Toxicol.20223761445145710.1002/tox.2349735199915
    [Google Scholar]
  75. ZhangJ. JungY.Y. MohanC.D. DeivasigamaniA. ChinnathambiA. AlharbiS.A. RangappaK.S. HuiK.M. SethiG. AhnK.S. Nimbolide enhances the antitumor effect of docetaxel via abrogation of the NF-κB signaling pathway in prostate cancer preclinical models.Biochim. Biophys. Acta Mol. Cell Res.202218691211934410.1016/j.bbamcr.2022.11934436007677
    [Google Scholar]
  76. KashifM. HwangY. KimW.J. KimG. In-vitro morphological assessment of apoptosis induced by nimbolide; a limonoid from Azadirachta Indica (Neem Tree).Iran. J. Pharm. Res.201918284685931531067
    [Google Scholar]
  77. Raja SinghP. Sugantha PriyaE. BalakrishnanS. ArunkumarR. SharmilaG. RajalakshmiM. ArunakaranJ. Inhibition of cell survival and proliferation by nimbolide in human androgen-independent prostate cancer (PC-3) cells: Involvement of the PI3K/Akt pathway.Mol. Cell. Biochem.20174271-2697910.1007/s11010‑016‑2898‑428025797
    [Google Scholar]
  78. LiY. CuiJ. LiC. DengC. DengG. ZhangH. AnF. Biomaterial-assisted photoimmunotherapy for synergistic suppression of cancer progression.Chin. Chem. Lett.202334910818010.1016/j.cclet.2023.108180
    [Google Scholar]
  79. BoseA. BaralR. Natural killer cell mediated cytotoxicity of tumor cells initiated by neem leaf preparation is associated with CD40–CD40L–mediated endogenous production of interleukin-12.Hum. Immunol.2007681082383110.1016/j.humimm.2007.08.00217961770
    [Google Scholar]
  80. Noubissi NzeteuG.A. GibbsB.F. KotnikN. TrojaA. BockhornM. MeyerN.H. Nanoparticle-based immunotherapy of pancreatic cancer.Front. Mol. Biosci.2022994889810.3389/fmolb.2022.94889836106025
    [Google Scholar]
  81. RobatelS. SchenkM. Current limitations and novel perspectives in pancreatic cancer treatment.Cancers202214498510.3390/cancers1404098535205732
    [Google Scholar]
  82. BrownT.J. ReissK.A. PARP inhibitors in pancreatic cancer.Cancer J.202127646547510.1097/PPO.000000000000055434904809
    [Google Scholar]
  83. Nanocarriers as an emerging platform for cancer therapy | Nature Nanotechnology.Available from: https://www.nature.com/articles/nnano.2007.387 [cited 2024 Mar 22].
  84. Nimbolide-based nanomedicine inhibits breast cancer stem-like cells by epigenetic reprogramming of DNMTs-SFRP1-Wnt/β- catenin signaling axis - PubMed.Available from: https://pubmed.ncbi.nlm.nih.gov/37771911/ [cited 2024 Mar 22].
  85. ConroyT. DesseigneF. YchouM. BouchéO. GuimbaudR. BécouarnY. AdenisA. RaoulJ.L. Gourgou-BourgadeS. de la FouchardièreC. BennounaJ. BachetJ.B. Khemissa-AkouzF. Péré-VergéD. DelbaldoC. AssenatE. ChauffertB. MichelP. Montoto-GrillotC. DucreuxM. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer.N. Engl. J. Med.2011364191817182510.1056/NEJMoa101192321561347
    [Google Scholar]
  86. Wang-GillamA. LiC.P. BodokyG. DeanA. ShanY.S. JamesonG. MacarullaT. LeeK.H. CunninghamD. BlancJ.F. HubnerR.A. ChiuC.F. SchwartsmannG. SivekeJ.T. BraitehF. MoyoV. BelangerB. DhindsaN. BayeverE. Von HoffD.D. ChenL.T. AdooC. AndersonT. AsselahJ. AzambujaA. BamptonC. BarriosC.H. Bekaii-SaabT. BohuslavM. ChangD. ChenJ-S. ChenY-C. ChoiH.J. ChungI.J. ChungV. CsosziT. CubilloA. DeMarcoL. de WitM. DragovichT. EdenfieldW. FeinL.E. FrankeF. FuchsM. Gonzales-CruzV. GozzaA. FernandoR.H. IaffaioliR. JakesovaJ. KahanZ. KarimiM. KimJ.S. KorbenfeldE. LangI. LeeF-C. LeeK-D. LiptonL. MaW.W. MangelL. MenaR. PalmerD. PantS. ParkJ.O. PiacentiniP. PelzerU. PlazasJ.G. PrasadC. RauK-M. RaoulJ-L. RichardsD. RossP. SchlittlerL. SmakalM. StahalovaV. SternbergC. SeufferleinT. TebbuttN. VinholesJ.J. WadlowR. WenczlM. WongM. Nanoliposomal irinotecan with fluorouracil and folinic acid in metastatic pancreatic cancer after previous gemcitabine-based therapy (NAPOLI-1): A global, randomised, open-label, phase 3 trial.Lancet20163871001854555710.1016/S0140‑6736(15)00986‑126615328
    [Google Scholar]
  87. HalbrookC.J. LyssiotisC.A. Pasca di MaglianoM. MaitraA. Pancreatic cancer: Advances and challenges.Cell202318681729175410.1016/j.cell.2023.02.01437059070
    [Google Scholar]
  88. GrootV.P. RezaeeN. WuW. CameronJ.L. FishmanE.K. HrubanR.H. WeissM.J. ZhengL. WolfgangC.L. HeJ. Patterns, timing, and predictors of recurrence following pancreatectomy for pancreatic ductal adenocarcinoma.Ann. Surg.2018267593694510.1097/SLA.000000000000223428338509
    [Google Scholar]
  89. MansourH.M. SohnM. Al-GhananeemA. DeLucaP.P. Materials for pharmaceutical dosage forms: Molecular pharmaceutics and controlled release drug delivery aspects.Int. J. Mol. Sci.20101193298332210.3390/ijms1109329820957095
    [Google Scholar]
  90. NairL.S. LaurencinC.T. Biodegradable polymers as biomaterials.Prog. Polym. Sci.2007328-976279810.1016/j.progpolymsci.2007.05.017
    [Google Scholar]
  91. LarsonN. RayA. MaluginA. PikeD.B. GhandehariH. HPMA copolymer-aminohexylgeldanamycin conjugates targeting cell surface expressed GRP78 in prostate cancer.Pharm. Res.201027122683269310.1007/s11095‑010‑0267‑720845065
    [Google Scholar]
  92. LarsonN. GhandehariH. Polymeric conjugates for drug delivery.Chem. Mater.201224584085310.1021/cm203156922707853
    [Google Scholar]
  93. KostkaL. EtrychT. High-molecular-weight HPMA-based polymer drug carriers for delivery to tumor.Physiol. Res.201665Suppl. 2S179S19010.33549/physiolres.93342027762584
    [Google Scholar]
  94. SukJS XuQ KimN HanesJ EnsignLM PEGylation as a strategy for improving nanoparticle-based drug and gene delivery.Adv. Drug. Deliv. Rev.201699PtA285110.1016/j.addr.2015.09.012
    [Google Scholar]
  95. BoberZ. Bartusik-AebisherD. AebisherD. Application of dendrimers in anticancer diagnostics and therapy.Molecules20222710323710.3390/molecules2710323735630713
    [Google Scholar]
  96. WangJ. LiB. QiuL. QiaoX. YangH. Dendrimer-based drug delivery systems: History, challenges, and latest developments.J. Biol. Eng.20221611810.1186/s13036‑022‑00298‑535879774
    [Google Scholar]
  97. YalçınS. ErkanM. ÜnsoyG. ParsianM. KleeffJ. GündüzU. Effect of gemcitabine and retinoic acid loaded PAMAM dendrimer-coated magnetic nanoparticles on pancreatic cancer and stellate cell lines.Biomed. Pharmacother.201468673774310.1016/j.biopha.2014.07.00325108345
    [Google Scholar]
  98. BronichT.K. KeiferP.A. ShlyakhtenkoL.S. KabanovA.V. Polymer micelle with cross-linked ionic core.J. Am. Chem. Soc.2005127238236823710.1021/ja043042m15941228
    [Google Scholar]
  99. NukolovaN.V. OberoiH.S. CohenS.M. KabanovA.V. BronichT.K. Folate-decorated nanogels for targeted therapy of ovarian cancer.Biomaterials201132235417542610.1016/j.biomaterials.2011.04.00621536326
    [Google Scholar]
  100. SoniK.S. ThomasD. CaffreyT. MehlaK. LeiF. O’ConnellK.A. SagarS. LeleS.M. HollingsworthM.A. RadhakrishnanP. BronichT.K. A polymeric nanogel-based treatment regimen for enhanced efficacy and sequential administration of synergistic drug combination in pancreatic cancer.J. Pharmacol. Exp. Ther.2019370389490110.1124/jpet.118.25537230683666
    [Google Scholar]
  101. BaklaushevV.P. NukolovaN.N. KhalanskyA.S. GurinaO.I. YusubalievaG.M. GrinenkoN.P. GubskiyI.L. MelnikovP.A. KardashovaK.S. KabanovA.V. ChekhoninV.P. Treatment of glioma by cisplatin-loaded nanogels conjugated with monoclonal antibodies against Cx43 and BSAT1.Drug Deliv.201522327628510.3109/10717544.2013.87646024437962
    [Google Scholar]
  102. DhingraA. SharmaD. KumarA. SinghS. KumarP. Microbiome and development of ovarian cancer.Endocr. Metab. Immune Disord. Drug Targets202222111073109010.2174/187153032266622050903484735532247
    [Google Scholar]
  103. AhlawatS. KumarP. MohanH. GoyalS. SharmaK.K. Inflammatory bowel disease: Tri-directional relationship between microbiota, immune system and intestinal epithelium.Crit. Rev. Microbiol.202147225427310.1080/1040841X.2021.187663133576711
    [Google Scholar]
  104. PouraliG. KazemiD. ChadeganipourA.S. ArastonejadM. KashaniS.N. PouraliR. MaftoohM. AkbarzadeH. FiujiH. HassanianS.M. Ghayour-MobarhanM. FernsG.A. KhazaeiM. AvanA. Microbiome as a biomarker and therapeutic target in pancreatic cancer.BMC Microbiol.20242411610.1186/s12866‑023‑03166‑438183010
    [Google Scholar]
  105. Nimbolide attenuates gut dysbiosis and prevents bacterial translocation by improving intestinal barrier integrity and ameliorating inflammation in hepatocellular carcinoma - PubMed.Available from: https://pubmed.ncbi.nlm.nih.gov/35229912/ [cited 2024 Mar 22].
  106. Pancreatic Cancer, Gut Microbiota, and Therapeutic Efficacy : PMC.Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7086274/ [cited 2024 Mar 22].
  107. BijlaM. SainiS.K. PathakA.K. BharadwajK.P. SukhavasiK. PatilA. SainiD. YadavR. SinghS. LeeuwenburghC. KumarP. Microbiome interactions with different risk factors in development of myocardial infarction.Exp. Gerontol.202418911240910.1016/j.exger.2024.11240938522483
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575293138240527061556
Loading
/content/journals/mrmc/10.2174/0113895575293138240527061556
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test