Skip to content
2000
Volume 25, Issue 1
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

Pyridazinones are classical molecules that occupy an important place in heterocyclic chemistry, and since their discovery, they have been widely developed. The introduction of new functional groups into pyridazinone structures has enabled the synthesis of a large diversity of compounds. The pharmacological and agrochemical importance of pyridazinone derivatives has aroused the interest of chemists and directed their research toward the synthesis of new compounds with the aim of improving their biological effectiveness. In this review, we have compiled and discussed the different synthetic routes, reactivity, and pharmacological and agrochemical applications of the pyridazinone ring.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575287746240528072330
2024-06-07
2024-12-26
Loading full text...

Full text loading...

References

  1. AbubshaitS. An efficient synthesis and reactions of novel indolylpyridazinone derivatives with expected biological activity.Molecules2007121254210.3390/12010025 17693951
    [Google Scholar]
  2. BoukharsaY. MeddahB. TiendrebeogoR.Y. IbrahimiA. TaoufikJ. CherrahY. BenomarA. FaouziM.E.A. AnsarM. Synthesis and antidepressant activity of 5-(benzo[b]furan-2-ylmethyl)-6-methylpyridazin-3(2H)-one derivatives.Med. Chem. Res.201625349450010.1007/s00044‑015‑1490‑x
    [Google Scholar]
  3. ThoerA. DenisG. DelmasM. GasetA. The Reimer-Tiemann reaction in slightly hydrated solid-liquid medium: A new method for the synthesis of formyl and diformyl phenols.Synth. Commun.19881816-172095210110.1080/00397918808068278
    [Google Scholar]
  4. HirotaT. FujitaH. SasakiK. NambaT. A novel synthesis of benzofuran and related compounds. III. The vilsmeier reaction of phenoxyacetaldehyde diethyl acetals.J. Heterocycl. Chem.19862361715171610.1002/jhet.5570230622
    [Google Scholar]
  5. BenmoussaA. Synthesis and antimicrobial properties of some pyridazin-3-thiones derivatives.Int. J. Pharm. Tech. Res.20124415911594
    [Google Scholar]
  6. SelvakumarP. ThennarasuS. MandalA.B. Synthesis of novel pyridopyridazin-3 (2H)-one derivatives and evaluation of their cytotoxic activity against MCF-7 cells.ISRN Med. Chem.20142017
    [Google Scholar]
  7. MurtyM.S.R. RaoB.R. RamK.R. YadavJ.S. AntonyJ. AntoR.J. Synthesis and preliminary evaluation activity studies of novel 4-(aryl/heteroaryl-2-ylmethyl)-6-phenyl-2-[3-(4-substituted-piperazine-1-yl)propyl]pyridazin-3(2H)-one derivatives as anticancer agents.Med. Chem. Res.201221103161316910.1007/s00044‑011‑9851‑6
    [Google Scholar]
  8. Al-TelT.H. Design and synthesis of novel tetrahydro-2H-Pyrano[3,2-c]Pyridazin-3(6H)-one derivatives as potential anticancer agents.Eur. J. Med. Chem.201045125724573110.1016/j.ejmech.2010.09.029 20884086
    [Google Scholar]
  9. Al-ZaydiK.M. BorikR.M. MekheimerR.A. ElnagdiM.H. Green chemistry: A facile synthesis of polyfunctionally substituted thieno[3,4-c]pyridinones and thieno[3,4-d]pyridazinones under neat reaction conditions.Ultrason. Sonochem.201017590991510.1016/j.ultsonch.2009.12.008 20064736
    [Google Scholar]
  10. GaoQ. ZhuY. LianM. LiuM. YuanJ. YinG. WuA. Unexpected C-C bond cleavage: A route to 3,6-diarylpyridazines and 6-arylpyridazin-3-ones from 1,3-dicarbonyl compounds and methyl ketones.J. Org. Chem.201277219865987010.1021/jo301751e 23061884
    [Google Scholar]
  11. KozaG. KeskinS. ÖzerM.S. CengizB. ŞahinE. BalciM. Facile synthesis of novel 7-aminofuro- and 7-aminothieno[2,3-d]pyridazin-4(5H)-one and 4-aminophthalazin-1(2H)-ones.Tetrahedron201369139540910.1016/j.tet.2012.10.010
    [Google Scholar]
  12. TrécourtF. TurckA. PléN. ParisA. QuéguinerG. A new route to 5,6‐diarylpyridazin‐3‐ones by metalation and cross‐coupling of pyridazines.J. Heterocycl. Chem.19953231057106210.1002/jhet.5570320364
    [Google Scholar]
  13. KappeT. Synthesis and chemistry of pyridazines functionalized in position 3 and 5 with heteroatoms.J. Heterocycl. Chem.19983551111112210.1002/jhet.5570350510
    [Google Scholar]
  14. JohnstonK.A. AllcockR.W. JiangZ. CollierI.D. BlakliH. RosairG.M. BaileyP.D. MorganK.M. KohnoY. AdamsD.R. Concise routes to pyrazolo[1,5-a]pyridin-3-yl pyridazin-3-ones.Org. Biomol. Chem.20086117518610.1039/B713638B 18075664
    [Google Scholar]
  15. HelmM.D. PlantA. HarrityJ.P.A. A novel approach to functionalised pyridazinone arrays.Org. Biomol. Chem.20064234278428010.1039/b613223e 17102871
    [Google Scholar]
  16. FerrignoF. BrancaD. KinzelO. LilliniS. Llauger BufiL. MonteagudoE. MuragliaE. RowleyM. Schultz-FademrechtC. ToniattiC. TorrisiC. JonesP. Development of substituted 6-[4-fluoro-3-(piperazin-1-ylcarbonyl)benzyl]-4,5-dimethylpyridazin-3(2H)-ones as potent poly(ADP–ribose) polymerase-1 (PARP-1) inhibitors active in BRCA deficient cells.Bioorg. Med. Chem. Lett.20102031100110510.1016/j.bmcl.2009.11.087 20022747
    [Google Scholar]
  17. AbouzidK. Abdel HakeemM. KhalilO. MakladY. Pyridazinone derivatives: Design, synthesis, and in vitro vasorelaxant activity.Bioorg. Med. Chem.200816138238910.1016/j.bmc.2007.09.031 17905589
    [Google Scholar]
  18. SiddiquiA.A. MishraR. ShaharyarM. HusainA. RashidM. PalP. Triazole incorporated pyridazinones as a new class of antihypertensive agents: Design, synthesis and in vivo screening.Bioorg. Med. Chem. Lett.20112131023102610.1016/j.bmcl.2010.12.028 21211966
    [Google Scholar]
  19. RathishI.G. JavedK. AhmadS. BanoS. AlamM.S. AkhterM. PillaiK.K. OvaisS. SamimM. Synthesis and evaluation of anticancer activity of some novel 6-aryl-2-(p-sulfamylphenyl)-pyridazin-3(2H)-ones.Eur. J. Med. Chem.20124930430910.1016/j.ejmech.2012.01.026 22305543
    [Google Scholar]
  20. ZareL. MahmoodiN.O. YahyazadehA. NikpassandM. Ultrasound-promoted regio and chemoselective synthesis of pyridazinones and phthalazinones catalyzed by ionic liquid [bmim]Br/AlCl3.Ultrason. Sonochem.201219474074410.1016/j.ultsonch.2011.11.008 22306425
    [Google Scholar]
  21. ZareL. MahmoodiN.O. YahyazadehA. MamaghaniM. TabatabaeianK. An efficient chemo- and regioselective three-component synthesis of pyridazinones and phthalazinones using activated KSF.Chin. Chem. Lett.201021553854110.1016/j.cclet.2009.11.032
    [Google Scholar]
  22. BaraldiP.G. BigoniA. CacciariB. CaldariC. ManfrediniS. SpallutoG. Nitrile Oxide [3 + 2] cycloaddition: Application to the synthesis of 6-substituted 3(2 H)-pyridazinones and 6-substituted 4,5-dihydro-4-hydroxy-3(2 H)-pyridazinones.Synthesis19941994111158116210.1055/s‑1994‑25663
    [Google Scholar]
  23. TaoufikJ. CouqueletJ.D. CouqueletJ.M. CarpyA. Stereospecific synthesis of new 5‐substituted 6‐methyl‐4,5‐dihydro‐2 H ‐pyridazin‐3‐ones. X‐ray assignment study.J. Heterocycl. Chem.198421230531010.1002/jhet.5570210207
    [Google Scholar]
  24. IbrahimH. BehbehaniH. Synthesis of a new class of Pyridazin-3-one and 2-amino-5-arylazopyridine derivatives and their utility in the synthesis of fused azines.Molecules20141922637265410.3390/molecules19022637 24566327
    [Google Scholar]
  25. AlexK. TillackA. SchwarzN. BellerM. First synthesis of 4,5-dihydro-3(2H)-pyridazinones via Zn-mediated hydrohydrazination.Tetrahedron Lett.200849314607460910.1016/j.tetlet.2008.05.084
    [Google Scholar]
  26. StepakovA.V. KinzhalovM.A. BoitsovV.M. StepakovaL.V. StarovaG.L. VyazminS.Y. GrinenkoE.V. A new approach to the synthesis of 4-(N-aryl)carbamoylmethyl-4,5-dihydropyridazin-3(2H)-ones.Tetrahedron Lett.201152243146314910.1016/j.tetlet.2011.04.038
    [Google Scholar]
  27. MahmoodiN.O. SafariN. SharifzadehB. One-pot synthesis of novel 2-(Thiazol-2-yl)-4,5-dihydropyridazin-3(2 H)-one derivatives catalyzed by activated KSF.Synth. Commun.201444224525010.1080/00397911.2013.801077
    [Google Scholar]
  28. SolimanM. El-SakkaS. Synthesis of some new 4, 5-dihydro-6-(4-methoxy-3-methylphenyl)-3 (2 H)-pyridazinone derivatives.J. Korean Chem. Soc.2011552230234
    [Google Scholar]
  29. ZhouG. TingP.C. AslanianR. CaoJ. KimD.W. KuangR. LeeJ.F. SchwerdtJ. WuH. Jason HerrR. ZychA.J. YangJ. LamS. WainhausS. BlackT.A. McNicholasP.M. XuY. WalkerS.S. SAR studies of pyridazinone derivatives as novel glucan synthase inhibitors.Bioorg. Med. Chem. Lett.201121102890289310.1016/j.bmcl.2011.03.083 21489787
    [Google Scholar]
  30. BrañaM.F. CachoM. GarcíaM.L. MayoralE.P. LópezB. de Pascual-TeresaB. RamosA. AceroN. LlinaresF. Muñoz-MingarroD. LozachO. MeijerL. Pyrazolo[3,4-c]pyridazines as novel and selective inhibitors of cyclin-dependent kinases.J. Med. Chem.200548226843685410.1021/jm058013g 16250643
    [Google Scholar]
  31. GiovannoniM.P. CicianiG. CilibrizziA. CrocettiL. DanieleS. Di Cesare MannelliL. GhelardiniC. GiacomelliC. GuerriniG. MartiniC. TrincavelliM.L. VergelliC. Further studies on pyrazolo[1′,5′:1,6]pyrimido[4,5-d]pyridazin-4(3H)-ones as potent and selective human A1 adenosine receptor antagonists.Eur. J. Med. Chem.201589324110.1016/j.ejmech.2014.10.020 25462223
    [Google Scholar]
  32. VergelliC. GiovannoniM.P. PierettiS. GiannuarioA.D. PiazV.D. BiaginiP. BiancalaniC. GrazianoA. CesariN. 4-Amino-5-vinyl-3(2H)-pyridazinones and analogues as potent antinociceptive agents: Synthesis, SARs, and preliminary studies on the mechanism of action.Bioorg. Med. Chem.200715165563557510.1016/j.bmc.2007.05.035 17548197
    [Google Scholar]
  33. SaddikR. AbrigachF. BenchatN. El KadiriS. HammoutiB. TouzaniR. Catecholase activity investigation for pyridazinone- and thiopyridazinone-based ligands.Res. Chem. Intermed.20123881987199810.1007/s11164‑012‑0520‑2
    [Google Scholar]
  34. BoukharsaY. Synthesis, α-glucosidase and β-galactosidase inhibitory potentials and molecular docking of some novel benzofuran-pyridazine derivatives.Polycycl. Aromat. Compd.2022112
    [Google Scholar]
  35. SonogashiraK. TohdaY. HagiharaN. A convenient synthesis of acetylenes: Catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines.Tetrahedron Lett.197516504467447010.1016/S0040‑4039(00)91094‑3
    [Google Scholar]
  36. CoelhoA. SoteloE. RaviñaE. Pyridazine derivatives. Part 33: Sonogashira approaches in the synthesis of 5-substituted-6-phenyl-3(2H)-pyridazinones.Tetrahedron200359142477248410.1016/S0040‑4020(03)00263‑1
    [Google Scholar]
  37. NegishiE. KingA.O. OkukadoN. Selective carbon-carbon bond formation via transition metal catalysis. 3. A highly selective synthesis of unsymmetrical biaryls and diarylmethanes by the nickel- or palladium-catalyzed reaction of aryl- and benzylzinc derivatives with aryl halides.J. Org. Chem.197742101821182310.1021/jo00430a041
    [Google Scholar]
  38. VerhelstT. LiuZ. MaesJ. MaesB.U.W. Synthesis of (hetero)arylated pyridazin-3(2H)-ones via Negishi reaction involving zincated pyridazin-3(2H)-ones.J. Org. Chem.201176239648965910.1021/jo201587j 22017314
    [Google Scholar]
  39. MiyauraN. SuzukiA. Palladium-catalyzed cross-coupling reactions of organoboron compounds.Chem. Rev.19959572457248310.1021/cr00039a007
    [Google Scholar]
  40. MiyauraN. YamadaK. SuginomeH. SuzukiA. Novel and convenient method for the stereo- and regiospecific synthesis of conjugated alkadienes and alkenynes via the palladium-catalyzed cross-coupling reaction of 1-alkenylboranes with bromoalkenes and bromoalkynes.J. Am. Chem. Soc.1985107497298010.1021/ja00290a037
    [Google Scholar]
  41. KothaS. LahiriK. KashinathD. Recent applications of the Suzuki–Miyaura cross-coupling reaction in organic synthesis.Tetrahedron200258489633969510.1016/S0040‑4020(02)01188‑2
    [Google Scholar]
  42. RiedlZ. MaesB.U.W. MonsieursK. LemièreG.L.F. MátyusP. HajósG. Synthesis of new pyridazino[4,5-c]isoquinolinones by Suzuki cross-coupling reaction.Tetrahedron200258285645565010.1016/S0040‑4020(02)00531‑8
    [Google Scholar]
  43. TapolcsányiP. MaesB.U.W. MonsieursK. LemièreG.L.F. RiedlZ. HajósG. Van den DriesscheB. DommisseR.A. MátyusP. Synthesis of the dibenzo[f,h]phthalazine and dibenzo[f,h]cinnoline skeleton via a ‘Suzuki–Pd-catalyzed intramolecular arylation’ and a ‘Suzuki–Pschorr’ approach.Tetrahedron200359315919592610.1016/S0040‑4020(03)00953‑0
    [Google Scholar]
  44. QianW. WinternheimerD. AmegadzieA. AllenJ. One-pot synthesis of [1,2,3]triazole-fused pyrazinopyridazindione tricycles by a ‘click and activate’ approach.Tetrahedron Lett.201253327127410.1016/j.tetlet.2011.11.030
    [Google Scholar]
  45. FrolovE.B. LaknerF.J. KhvatA.V. IvachtchenkoA.V. An efficient synthesis of novel 1,3-oxazolo[4,5- d]pyridazinones.Tetrahedron Lett.200445244693469610.1016/j.tetlet.2004.04.093
    [Google Scholar]
  46. WangW. LiangL. XuF. HuangW. NiuY. SunQ. XuP. Ruthenium‐catalyzed switchable N–H/C–H alkenylation of 6‐phenyl(dihydro)pyridazinones with alkynes.Eur. J. Org. Chem.20142014316863686710.1002/ejoc.201402986
    [Google Scholar]
  47. NagleP. PawarY. SonawaneA. BhosaleS. MoreD. Docking simulation, synthesis and biological evaluation of novel pyridazinone containing thymol as potential antimicrobial agents.Med. Chem. Res.201423291892610.1007/s00044‑013‑0685‑2
    [Google Scholar]
  48. TaoM. AimoneL.D. GrunerJ.A. MathiasenJ.R. HuangZ. LyonsJ. RaddatzR. HudkinsR.L. Synthesis and structure–activity relationship of 5-pyridazin-3-one phenoxypiperidines as potent, selective histamine H3 receptor inverse agonists.Bioorg. Med. Chem. Lett.20122221073107710.1016/j.bmcl.2011.11.118 22197136
    [Google Scholar]
  49. SharmaB. VermaA. SharmaU.K. PrajapatiS. Efficient synthesis, anticonvulsant and muscle relaxant activities of new 2-((5-amino-1,3,4-thiadiazol-2-yl)methyl)-6-phenyl-4,5-dihydropyridazin-3(2H)-one derivatives.Med. Chem. Res.201423114615710.1007/s00044‑013‑0618‑0
    [Google Scholar]
  50. SaeedM.M. KhalilN.A. AhmedE.M. EissaK.I. Synthesis and anti-inflammatory activity of novel pyridazine and pyridazinone derivatives as non-ulcerogenic agents.Arch. Pharm. Res.201235122077209210.1007/s12272‑012‑1205‑5 23263802
    [Google Scholar]
  51. PauA. MurinedduG. AsproniB. MurruzzuC. GrellaG. PinnaG. CurzuM. MarchesiI. BagellaL. Synthesis and cytotoxicity of novel hexahydrothienocycloheptapyridazinone derivatives.Molecules20091493494350810.3390/molecules14093494 19783939
    [Google Scholar]
  52. SiddiquiA.A. MishraR. ShaharyarM. Synthesis, characterization and antihypertensive activity of pyridazinone derivatives.Eur. J. Med. Chem.20104562283229010.1016/j.ejmech.2010.02.003 20189270
    [Google Scholar]
  53. El-HashashM. Synthesis of novel series of phthalazine derivatives with antibacterial and antifungal evaluation.J. Chem. Eng. Process Technol.2014519528
    [Google Scholar]
  54. Ünsal-TanO. ÖzdenK. RaukA. BalkanA. Synthesis and cyclooxygenase inhibitory activities of some N-acylhydrazone derivatives of isoxazolo[4,5-d]pyridazin-4(5H)-ones.Eur. J. Med. Chem.20104562345235210.1016/j.ejmech.2010.02.012 20207453
    [Google Scholar]
  55. GökçeM. UtkuS. KüpeliE. Synthesis and analgesic and anti-inflammatory activities 6-substituted-3(2H)-pyridazinone-2-acetyl-2-(p-substituted/nonsubstituted benzal)hydrazone derivatives.Eur. J. Med. Chem.20094493760376410.1016/j.ejmech.2009.04.048 19535179
    [Google Scholar]
  56. OverendW.G. WigginsL.F. 56. The conversion of sucrose into pyridazine derivatives. Part I. 3-Sulphanilamido-6-methylpyridazine.J. Chem. Soc.194723924410.1039/jr9470000239 20238654
    [Google Scholar]
  57. OverendW.G. WigginsL.F. 105. The conversion of sucrose into pyridazine derivatives. Part II. 4-Amino-2-phenyl-6-methyl-3-pyridazone, 4-amino-2-(p-nitrophenyl)-6-methyl-3-pyridazone, and their sulphanilamido-derivatives.J. Chem. Soc.194754955410.1039/jr9470000549 20249761
    [Google Scholar]
  58. DorschD. SchadtO. StieberF. MeyringM. GrädlerU. BladtF. Friese-HamimM. KnühlC. PehlU. BlaukatA. Identification and optimization of pyridazinones as potent and selective c-Met kinase inhibitors.Bioorg. Med. Chem. Lett.20152571597160210.1016/j.bmcl.2015.02.002 25736998
    [Google Scholar]
  59. ZhouS. LiaoH. HeC. DouY. JiangM. RenL. ZhaoY. GongP. Design, synthesis and structure–activity relationships of novel 4-phenoxyquinoline derivatives containing pyridazinone moiety as potential antitumor agents.Eur. J. Med. Chem.20148358159310.1016/j.ejmech.2014.06.068 24996144
    [Google Scholar]
  60. AhmadS. RathishI.G. BanoS. AlamM.S. JavedK. Synthesis and biological evaluation of some novel 6-aryl-2-(p-sulfamylphenyl)-4,5-dihydropyridazin-3(2H)-ones as anti-cancer, antimicrobial, and anti-inflammatory agents.J. Enzyme Inhib. Med. Chem.201025226627110.3109/14756360903155781 20038271
    [Google Scholar]
  61. LattmannE. AyukoW.O. KinchinatonD. LangleyC.A. SinghH. KarimiL. TisdaleM.J. Synthesis and evaluation of 5-arylated 2(5 H)-furanones and 2-arylated pyridazin-3(2 H)-ones as anti-cancer agents.J. Pharm. Pharmacol.20105591259126510.1211/0022357021756 14604469
    [Google Scholar]
  62. CsókásD. ZupkóI. KárolyiB.I. DrahosL. HolczbauerT. PallóA. CzuglerM. CsámpaiA. Synthesis, spectroscopy, X-ray analysis and in vitro antiproliferative effect of ferrocenylmethylene-hydrazinylpyridazin-3(2H)-ones and related ferroceno[d]pyridazin-1(2H)-ones.J. Organomet. Chem.201374313013810.1016/j.jorganchem.2013.06.040
    [Google Scholar]
  63. TiryakiD. SukurogluM. DogruerD.S. AkkolE. OzgenS. SahinM.F. Synthesis of some new 2,6-disubstituted-3(2H)-pyridazinone derivatives and investigation of their analgesic, anti-inflammatory and antimicrobial activities.Med. Chem. Res.20132262553256010.1007/s00044‑012‑0253‑1
    [Google Scholar]
  64. IbrahimH.M. BehbehaniH. ElnagdiM.H. Approaches towards the synthesis of a novel class of 2-amino-5-arylazonicotinate, pyridazinone and pyrido[2,3-d]pyrimidine derivatives as potent antimicrobial agents.Chem. Cent. J.20137112310.1186/1752‑153X‑7‑123 23867062
    [Google Scholar]
  65. AsifM. SinghA. LakshmayyaL. In-vivo anticonvulsant and in-vitro antimycobacterial activities of 6-aryl pyridazine-3(2H)-one derivatives.Am. J. Pharmacol. Sci.2014211610.12691/ajps‑2‑1‑1
    [Google Scholar]
  66. HusainA. AhmadA. BhandariA. RamV. Synthesis and antitubercular activity of pyridazinone derivatives.J. Chil. Chem. Soc.201156377878010.4067/S0717‑97072011000300013
    [Google Scholar]
  67. BoukharsaY. LakhliliW. El harti, J.; Meddah, B.; Tiendrebeogo, R.Y.; Taoufik, J.; El Abbes Faouzi, M.; Ibrahimi, A.; Ansar, M. Synthesis, anti-inflammatory evaluation in vivo and docking studies of some new 5-(benzo[b]furan-2-ylmethyl)-6-methyl-pyridazin- 3(2H) -one derivatives.J. Mol. Struct.2018115311912710.1016/j.molstruc.2017.09.092
    [Google Scholar]
  68. ÖzadalıK. ÖzkanlıF. JainS. RaoP.P.N. Velázquez-MartínezC.A. Synthesis and biological evaluation of isoxazolo[4,5-d]pyridazin-4-(5H)-one analogues as potent anti-inflammatory agents.Bioorg. Med. Chem.20122092912292210.1016/j.bmc.2012.03.021 22475926
    [Google Scholar]
  69. BashirR. YaseenS. OvaisS. AhmadS. HamidH. AlamM.S. SamimM. JavedK. Synthesis and biological evaluation of some novel sulfamoylphenyl-pyridazinone as anti-inflammatory agents (Part-II).J. Enzyme Inhib. Med. Chem.2012271929610.3109/14756366.2011.577036 21612377
    [Google Scholar]
  70. AbouzidK. BekhitS.A. Novel anti-inflammatory agents based on pyridazinone scaffold; Design, synthesis and in vivo activity.Bioorg. Med. Chem.200816105547555610.1016/j.bmc.2008.04.007 18430576
    [Google Scholar]
  71. AsifM. Synthesis and analgesic activity of 6-(M-nitrophenyl)-4-sustituted benzylidene 4,5-dihydropyridazin-3(2h)-one derivatives.Indones. J. Pharm.201223254258
    [Google Scholar]
  72. DogruerD.S. Fethi SahinM. ünlü, S.; Ito, S. Studies on some 3(2H)-pyridazinone derivatives with antinociceptive activity.Arch. Pharm. (Weinheim)20003334798610.1002/(SICI)1521‑4184(20004)333:4<79::AID‑ARDP79>3.0.CO;2‑S 10816899
    [Google Scholar]
  73. GokçeM. DogruerD. SahinM.F. Synthesis and antinociceptive activity of 6-substituted-3-pyridazinone derivatives.Farmaco200156323323710.1016/S0014‑827X(01)01037‑0 11409332
    [Google Scholar]
  74. NathanP.J. BoardleyR. ScottN. BergesA. MaruffP. SivananthanT. UptonN. LowyM.T. NestorP.J. LaiR. The safety, tolerability, pharmacokinetics and cognitive effects of GSK239512, a selective histamine H3 receptor antagonist in patients with mild to moderate Alzheimer’s disease: A preliminary investigation.Curr. Alzheimer Res.201310324025110.2174/1567205011310030003 23521503
    [Google Scholar]
  75. F Egan, M.; Zhao, X.; Gottwald, R.; Harper-Mozley, L.; Zhang, Y.; Snavely, D.; Lines, C.; Michelson, D. Randomized crossover study of the histamine H3 inverse agonist MK-0249 for the treatment of cognitive impairment in patients with schizophrenia.Schizophr. Res.20131461-322423010.1016/j.schres.2013.02.030 23523692
    [Google Scholar]
  76. HudkinsR.L. Discovery and characterization of 6-{4-[3-(R)-2-Methylpyrrolidin-1-yl)propoxy]phenyl}-2H-pyridazin-3-one (CEP-26401, Irdabisant): A potent, selective histamine H3 receptor inverse agonist.J. Med. Chem.201154134781479210.1021/jm200401v 21634396
    [Google Scholar]
  77. RaddatzR. HudkinsR.L. MathiasenJ.R. GrunerJ.A. FloodD.G. AimoneL.D. LeS. SchaffhauserH. DuzicE. GasiorM. Bozyczko-CoyneD. MarinoM.J. AtorM.A. BaconE.R. MallamoJ.P. WilliamsM. CEP-26401 (irdabisant), a potent and selective histamine H3 receptor antagonist/inverse agonist with cognition-enhancing and wake-promoting activities.J. Pharmacol. Exp. Ther.2012340112413310.1124/jpet.111.186585 22001260
    [Google Scholar]
  78. HudkinsR.L. JosefK.A. BecknellN.C. AimoneL.D. LyonsJ.A. MathiasenJ.R. GrunerJ.A. RaddatzR. Discovery of (1R,6S)-5-[4-(1-cyclobutyl-piperidin-4-yloxy)-phenyl]-3,4-diaza-bicyclo[4.1.0]hept-4-en-2-one (R,S-4a): Histamine H3 receptor inverse agonist demonstrating potent cognitive enhancing and wake promoting activity.Bioorg. Med. Chem. Lett.20142451303130610.1016/j.bmcl.2014.01.061 24513042
    [Google Scholar]
  79. BecknellN.C. LyonsJ.A. AimoneL.D. HuangZ. GrunerJ.A. RaddatzR. HudkinsR.L. Synthesis and evaluation of 4- and 5-pyridazin-3-one phenoxypropylamine analogues as histamine-3 receptor antagonists.Bioorg. Med. Chem.201220123880388610.1016/j.bmc.2012.04.028 22578490
    [Google Scholar]
  80. JosefK.A. AimoneL.D. LyonsJ. RaddatzR. HudkinsR.L. Synthesis of constrained benzocinnolinone analogues of CEP-26401 (irdabisant) as potent, selective histamine H3 receptor inverse agonists.Bioorg. Med. Chem. Lett.201222124198420210.1016/j.bmcl.2012.04.001 22617490
    [Google Scholar]
  81. BaconE.R. Pyridazinone Derivatives.Google Patents2010
    [Google Scholar]
  82. DanduR. GrunerJ.A. MathiasenJ.R. AimoneL.D. HostetlerG. BenfieldC. BendeskyR.J. MarcyV.R. RaddatzR. HudkinsR.L. Synthesis and evaluation of pyridazinone–phenethylamine derivatives as selective and orally bioavailable histamine H3 receptor antagonists with robust wake-promoting activity.Bioorg. Med. Chem. Lett.201121216362636510.1016/j.bmcl.2011.08.104 21944855
    [Google Scholar]
  83. LugnierC. Cyclic nucleotide phosphodiesterase (PDE) superfamily: A new target for the development of specific therapeutic agents.Pharmacol. Ther.2006109336639810.1016/j.pharmthera.2005.07.003 16102838
    [Google Scholar]
  84. BrunnéeT. EngelstätterR. SteinijansV.W. KunkelG. Bronchodilatory effect of inhaled zardaverine, a phosphodiesterase III and IV inhibitor, in patients with asthma.Eur. Respir. J.19925898298510.1183/09031936.93.05080982 1426207
    [Google Scholar]
  85. LawrenzM.E. SalterE.A. WierzbickiA. ThompsonW.J. Molecular modeling study of binding to the catalytic site of PDE4 enzymes by a novel class of inhibitors.Int. J. Quantum Chem.2005105441041510.1002/qua.20716
    [Google Scholar]
  86. Van der MeyM. BommeléK.M. BossH. HatzelmannA. Van SlingerlandM. SterkG.J. TimmermanH. Synthesis and structure-activity relationships of cis-tetrahydrophthalazinone/pyridazinone hybrids: A novel series of potent dual PDE3/PDE4 inhibitory agents.J. Med. Chem.200346102008201610.1021/jm030776l 12723963
    [Google Scholar]
  87. AllcockR.W. BlakliH. JiangZ. JohnstonK.A. MorganK.M. RosairG.M. IwaseK. KohnoY. AdamsD.R. Phosphodiesterase inhibitors. Part 1: Synthesis and structure–activity relationships of pyrazolopyridine–pyridazinone PDE inhibitors developed from ibudilast.Bioorg. Med. Chem. Lett.201121113307331210.1016/j.bmcl.2011.04.021 21530250
    [Google Scholar]
  88. OchiaiK. AndoN. IwaseK. KishiT. FukuchiK. OhinataA. ZushiH. YasueT. AdamsD.R. KohnoY. Phosphodiesterase inhibitors. Part 2: Design, synthesis, and structure–activity relationships of dual PDE3/4-inhibitory pyrazolo[1,5-a]pyridines with anti-inflammatory and bronchodilatory activity.Bioorg. Med. Chem. Lett.201121185451545610.1016/j.bmcl.2011.06.118 21764304
    [Google Scholar]
  89. OchiaiK. TakitaS. EirakuT. KojimaA. IwaseK. KishiT. FukuchiK. YasueT. AdamsD.R. AllcockR.W. JiangZ. KohnoY. Phosphodiesterase inhibitors. Part 3: Design, synthesis and structure–activity relationships of dual PDE3/4-inhibitory fused bicyclic heteroaromatic-dihydropyridazinones with anti-inflammatory and bronchodilatory activity.Bioorg. Med. Chem.20122051644165810.1016/j.bmc.2012.01.033 22336247
    [Google Scholar]
  90. OchiaiK. TakitaS. KojimaA. EirakuT. AndoN. IwaseK. KishiT. OhinataA. YagetaY. YasueT. AdamsD.R. KohnoY. Phosphodiesterase inhibitors. Part 4: Design, synthesis and structure-activity relationships of dual PDE3/4-inhibitory fused bicyclic heteroaromatic-4,4-dimethylpyrazolones.Bioorg. Med. Chem. Lett.201222185833583810.1016/j.bmcl.2012.07.088 22884989
    [Google Scholar]
  91. OchiaiK. TakitaS. KojimaA. EirakuT. IwaseK. KishiT. OhinataA. YagetaY. YasueT. AdamsD.R. KohnoY. Phosphodiesterase inhibitors. Part 5: Hybrid PDE3/4 inhibitors as dual bronchorelaxant/anti-inflammatory agents for inhaled administration.Bioorg. Med. Chem. Lett.201323137538110.1016/j.bmcl.2012.08.121 23200255
    [Google Scholar]
  92. ChenJ. ZhangL. GuoH. WangS. WangL. MaL. LuX. Activity prediction of hepatitis C virus NS5B polymerase inhibitors of pyridazinone derivatives.Chemom. Intell. Lab. Syst.201413410010910.1016/j.chemolab.2014.03.015
    [Google Scholar]
  93. EllisD.A. BlazelJ.K. WebberS.E. TranC.V. DragovichP.S. SunZ. RuebsamF. McGuireH.M. XiangA.X. ZhaoJ. LiL.S. ZhouY. HanQ. KissingerC.R. ShowalterR.E. LardyM. ShahA.M. TsanM. PatelR. LeBrunL.A. KamranR. BartkowskiD.M. NolanT.G. NorrisD.A. SergeevaM.V. KirkovskyL. 4-(1,1-Dioxo-1,4-dihydro-1λ6-benzo[1,4]thiazin-3-yl)-5-hydroxy-2H-pyridazin-3-ones as potent inhibitors of HCV NS5B polymerase.Bioorg. Med. Chem. Lett.200818164628463210.1016/j.bmcl.2008.07.014 18662878
    [Google Scholar]
  94. CostasT. Costas-LagoM.C. VilaN. BesadaP. CanoE. TeránC. New platelet aggregation inhibitors based on pyridazinone moiety.Eur. J. Med. Chem.20159411312210.1016/j.ejmech.2015.02.061 25757094
    [Google Scholar]
  95. CostasT. BesadaP. PirasA. AcevedoL. YañezM. OralloF. LagunaR. TeránC. New pyridazinone derivatives with vasorelaxant and platelet antiaggregatory activities.Bioorg. Med. Chem. Lett.201020226624662710.1016/j.bmcl.2010.09.031 20880705
    [Google Scholar]
  96. CignarellaG. BarloccoD. VillaS. CurzuM.M. PinnaG.A. LavezzoA. BestettiA. Tricyclic 3-(2H)-pyridazinone derivatives. Synthesis and evaluation of their antisecretory and antiulcer activity.Eur. J. Med. Chem.199227881982310.1016/0223‑5234(92)90116‑I
    [Google Scholar]
  97. LivermoreD.G.H. BethellR.C. CammackN. HancockA.P. HannM.M. GreenD.V.S. LamontR.B. NobleS.A. OrrD.C. PayneJ.J. Synthesis and anti-HIV-1 activity of a series of imidazo[1,5-b]pyridazines.J. Med. Chem.199336243784379410.1021/jm00076a005 7504733
    [Google Scholar]
  98. WangT. DongY. WangL.C. XiangB.R. ChenZ. QuL.B. Design, synthesis and structure-activity relationship studies of 6-phenyl-4,5-dihydro-3(2H)-pyridazinone derivatives as cardiotonic agents.Arzneimittelforschung20085811569573 19137907
    [Google Scholar]
  99. RobertsonD.W. KrushinskiJ.H. UtterbackB.G. KauffmanR.F. Synthesis of a tritium-labeled indolidan analog and its use as a radioligand for phosphodiesterase-inhibitor cardiotonic binding sites.J. Med. Chem.19893271476148010.1021/jm00127a014 2738882
    [Google Scholar]
  100. El MarrakchiS. Synthesis and antioxidant properties of some 5-benzyl-6-methylpyridazin-3 (2H)-ones derivatives.J. Chem. Pharm. Res.20146117074
    [Google Scholar]
  101. YamalıC. Synthesis of some 3(2H)-pyridazinone and 1(2H)-phthalazinone derivatives incorporating aminothiazole moiety and investigation of their antioxidant, acetylcholinesterase, and butyrylcholinesterase inhibitory activities.Med. Chem. Res.201418
    [Google Scholar]
  102. HirataK. NC-129—a new acaricide.Brighton Crop Prot. Conf.-Pests Dis1988
    [Google Scholar]
  103. HirataK. Development of a new acaricide, pyridaben. J. Pestic. Sci.-pestic. Sci. Soci. Japan-japane.Edit.199520177177
    [Google Scholar]
  104. HollingworthR.M. AhammadsahibK.I. GadelhakG. McLaughlinJ.L. New inhibitors of Complex I of the mitochondrial electron transport chain with activity as pesticides.Biochem. Soc. Trans.199422123023310.1042/bst0220230 8206238
    [Google Scholar]
  105. MiyakeT. HaruyamaH. MitsuiT. SakuraiA. Effects of a new juvenile hormone mimic, NC-170, on metamorphosis and diapause of the small brown planthopper, Laodelphax striatellus.J. Pestic. Sci.1992171758210.1584/jpestics.17.75
    [Google Scholar]
  106. CaoS. QianX. SongG. ChaiB. JiangZ. Synthesis and antifeedant activity of new oxadiazolyl 3(2H)-pyridazinones.J. Agric. Food Chem.200351115215510.1021/jf0208029 12502400
    [Google Scholar]
  107. BeanG.A. SouthallA. Effect of pyridazinone herbicides on growth and aflatoxin release by Aspergillus flavus and Aspergillus parasiticus.Appl. Environ. Microbiol.198346250350510.1128/aem.46.2.503‑505.1983 6414373
    [Google Scholar]
  108. SmithD.T. MeggittW.F. Movement and distribution of pyrazon in soil.Weed Sci.197018225525910.1017/S0043174500079698
    [Google Scholar]
  109. JametP. PiedalluM. HascoetM. Migration and degradation of aldicarb in various types of soil.Comparative Studies of Food and Environmental Contamination1974
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575287746240528072330
Loading
/content/journals/mrmc/10.2174/0113895575287746240528072330
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test