Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2666-7797
  • E-ISSN: 2666-7800

Abstract

In the past decades, nanocarriers have attracted attention as topical delivery systems for many compounds employed in the cosmetic field. This interest is justified by their ability to provide protection against degradation of liable molecules, the possibility to originate a local depot and prolong drug release, and the ability to overcome the barrier function of the skin and co-encapsulation of compounds of varying physicochemical characteristics. The properties of nanocarriers vary with their composition and structure, which, in turn, influence the outcomes of topical treatment. In this review, we focused on three types of nanocarriers (namely, lipid and surfactant-based vesicles, nanoemulsions, and lipid nanoparticles) and discussed their main characteristics, influence on cutaneous transport, stability, and pharmacological effects employed in the cosmetic field. We also provided examples of commercially available products that utilize the nanocarriers discussed as well as patents relevant to this field.

Loading

Article metrics loading...

/content/journals/cosci/10.2174/2666779701666220208091859
2022-04-01
2024-11-26
Loading full text...

Full text loading...

References

  1. WilburR.L. The difference between topical and transdermal medications.Gensco Pharma2017Available from: https://gensco-pharma.com/difference-topical-transdermal-medications/
    [Google Scholar]
  2. MillikanL.E. Cosmetology, cosmetics, cosmeceuticals: Definitions and regulations.Clin. Dermatol.200119437137410.1016/S0738‑081X(01)00195‑X 11535376
    [Google Scholar]
  3. F.D.A.Cosmeceutical2020Available from: https://www.fda.gov/cosmetics/cosmetics-labeling-claims/cosmeceutical
    [Google Scholar]
  4. SotiropoulouG. ZingkouE. PampalakisG. Redirecting drug repositioning to discover innovative cosmeceuticals.Exp. Dermatol.202130562864410.1111/exd.14299 33544970
    [Google Scholar]
  5. BissettD.L. Common cosmeceuticals.Clin. Dermatol.200927543544510.1016/j.clindermatol.2009.05.006 19695474
    [Google Scholar]
  6. ZhangP. Use of small RNA as antiaging cosmeceuticals.J. Cosmet. Sci.2013646455468
    [Google Scholar]
  7. PardeikeJ. HommossA. MüllerR.H. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products.Int. J. Pharm.20093661-217018410.1016/j.ijpharm.2008.10.003 18992314
    [Google Scholar]
  8. ThomasS. VieiraC.S. HassM.A. LopesL.B. Stability, cutaneous delivery, and antioxidant potential of a lipoic acid and α-tocopherol codrug incorporated in microemulsions.J. Pharm. Sci.201410382530253810.1002/jps.24053 24961388
    [Google Scholar]
  9. AblaM.J. BangaA.K. Formulation of tocopherol nanocarriers and in vitro delivery into human skin.Int. J. Cosmet. Sci.201436323924610.1111/ics.12119 24697812
    [Google Scholar]
  10. TeeranachaideekulV. MorakulB. BoonmeP. PornputtapitakW. JunyaprasertV. Effect of lipid and oil compositions on physico-chemical properties and photoprotection of octyl methoxycinnamate-loaded Nanostructured Lipid Carriers (NLC).J. Oleo Sci.202069121627163910.5650/jos.ess20093 33268665
    [Google Scholar]
  11. OkonogiS. RiangjanapateeP. Physicochemical characterization of lycopene-loaded nanostructured lipid carrier formulations for topical administration.Int. J. Pharm.2015478272673510.1016/j.ijpharm.2014.12.002 25479097
    [Google Scholar]
  12. CarboneC. CaddeoC. GrimaudoM.A. MannoD.E. SerraA. MusumeciT. Ferulic acid-NLC with Lavandula essential oil: A possi-ble strategy for wound-healing?Nanomaterials (Basel)2020105E89810.3390/nano10050898 32397093
    [Google Scholar]
  13. ChenJ. WeiN. Lopez-GarciaM. AmbroseD. LeeJ. AnnelinC. PetersonT. Development and evaluation of resveratrol, Vitamin E, and epigallocatechin gallate loaded lipid nanoparticles for skin care applications.Eur. J. Pharm. Biopharm.201711728629110.1016/j.ejpb.2017.04.008 28411056
    [Google Scholar]
  14. MüllerR.H. RadtkeM. WissingS.A. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermato-logical preparations.Adv. Drug Deliv. Rev.200254Suppl. 1S131S15510.1016/S0169‑409X(02)00118‑7 12460720
    [Google Scholar]
  15. SoutoE.B. MüllerR.H. Cosmetic features and applications of lipid nanoparticles (SLN, NLC).Int. J. Cosmet. Sci.200830315716510.1111/j.1468‑2494.2008.00433.x 18452432
    [Google Scholar]
  16. GarcêsA. AmaralM.H. SousaLobo J.M. Silva, A.C. Formulations based on solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for cutaneous use: A review.Eur. J. Pharm. Sci.201811215916710.1016/j.ejps.2017.11.023 29183800
    [Google Scholar]
  17. MüllerR.H. ShegokarR. KeckC.M. 20 years of lipid nanoparticles (SLN and NLC): present state of development and industrial appli-cations.Curr. Drug Discov. Technol.20118320722710.2174/157016311796799062 21291409
    [Google Scholar]
  18. PugliaC. BoninaF. Lipid nanoparticles as novel delivery systems for cosmetics and dermal pharmaceuticals.Expert Opin. Drug Deliv.20129442944110.1517/17425247.2012.666967 22394125
    [Google Scholar]
  19. TichotaD.M. SilvaA.C. LoboS. J.M.; Amaral, M.H. Design, characterization, and clinical evaluation of argan oil nanostructured lipid carriers to improve skin hydration.Int. J. Nanomedicine2014938553864 25143733
    [Google Scholar]
  20. LooCh. BasriM. IsmailR. LauH. TejoB. KanthimathiM. HassanH. ChooY. Effect of compositions in nanostructured lipid carriers (NLC) on skin hydration and occlusion.Int. J. Nanomedicine201381322 23293516
    [Google Scholar]
  21. DesaiP. PatlollaR.R. SinghM. Interaction of nanoparticles and cell-penetrating peptides with skin for transdermal drug delivery.Mol. Membr. Biol.201027724725910.3109/09687688.2010.522203 21028936
    [Google Scholar]
  22. WissingS.A. MüllerR.H. A novel sunscreen system based on tocopherol acetate incorporated into solid lipid nanoparticles.Int. J. Cosmet. Sci.200123423324310.1046/j.1467‑2494.2001.00087.x 18498463
    [Google Scholar]
  23. GhateV.M. KodothA.K. RajaS. VishalakshiB. LewisS.A. Development of MART for the rapid production of nanostructured lipid carriers loaded with all-trans retinoic acid for dermal delivery.AAPS PharmSciTech201920416210.1208/s12249‑019‑1307‑1 30989451
    [Google Scholar]
  24. SoutoE.B. WissingS.A. BarbosaC.M. MüllerR.H. Development of a controlled release formulation based on SLN and NLC for topi-cal clotrimazole delivery.Int. J. Pharm.20042781717710.1016/j.ijpharm.2004.02.032 15158950
    [Google Scholar]
  25. MarettiE. LeoE. RustichelliC. TruzziE. SiligardiC. IannuccelliV. In vivo β-carotene skin permeation modulated by Nanostruc-tured Lipid Carriers.Int. J. Pharm.202159712032210.1016/j.ijpharm.2021.120322 33549810
    [Google Scholar]
  26. Espinosa-OlivaresM.A. Delgado-BuenrostroN.L. ChirinoY.I. Trejo-MárquezM.A. Pascual-BustamanteS. Ganem-RonderoA. Nanostructured lipid carriers loaded with curcuminoids: Physicochemical characterization, in vitro release, ex vivo skin penetration, stabil-ity and antioxidant activity.Eur. J. Pharm. Sci.202015510553310.1016/j.ejps.2020.105533 32871214
    [Google Scholar]
  27. PassosJ.S. MartinoL.C. DartoraV.F.C. AraujoG.L.B. IshidaK. LopesL.B. Development, skin targeting and antifungal efficacy of topical lipid nanoparticles containing itraconazole.Eur. J. Pharm. Sci.202014910529610.1016/j.ejps.2020.105296 32151706
    [Google Scholar]
  28. FanF. LiumG. HuangY. LiY. XiaQ. Development of a nanostructured lipid carrier formulation for increasing photo-stability and water solubility of Phenylethyl Resorcinol.Applied Surface Science2014288193200
    [Google Scholar]
  29. YangC. YanH. JiangX. XuH. TsaoR. ZhangL. Preparation of 9Z-β-Carotene and 9Z-β-Carotene high-loaded nanostructured lipid carriers: Characterization and storage stability.J. Agric. Food Chem.20206847138441385310.1021/acs.jafc.0c02342 33164495
    [Google Scholar]
  30. DurandL. HabranN. HenschelV. AmighiK. Encapsulation of ethylhexyl methoxycinnamate, a light-sensitive UV filter, in lipid na-noparticles.J. Microencapsul.201027871472510.3109/02652048.2010.513455 21034364
    [Google Scholar]
  31. KamelR. MostafaD.M. Rutin nanostructured lipid cosmeceutical preparation with sun protective potential.J. Photochem. Photobiol. B2015153596610.1016/j.jphotobiol.2015.09.002 26398812
    [Google Scholar]
  32. DobrevaM. StefanovS. AndonovaV. Natural lipids as structural components of solid lipid nanoparticles and nanostructured lipid carriers for topical delivery.Curr. Pharm. Des.202026364524453510.2174/1381612826666200514221649 32410552
    [Google Scholar]
  33. EirasF. AmaralM.H. SilvaR. MartinsE. LoboJ.M.S. SilvaA.C. Characterization and biocompatibility evaluation of cutaneous formulations containing lipid nanoparticles.Int. J. Pharm.20175191-237338010.1016/j.ijpharm.2017.01.045 28131849
    [Google Scholar]
  34. KrambeckK. SantosD. Otero-EspinarF. SousaLobo J.M. Amaral, M.H. Lipid nanocarriers containing Passiflora edulis seeds oil intended for skin application.Colloids Surf. B Biointerfaces202019311105710.1016/j.colsurfb.2020.111057 32388391
    [Google Scholar]
  35. AndreaniT. Dias-FerreiraJ. FangueiroJ.F. SouzaA.L.R. KiillC.P. GremiãoM.P.D. GarcíaM.L. SilvaA.M. SoutoE.B. Formu-lating octyl methoxycinnamate in hybrid lipid-silica nanoparticles: An innovative approach for UV skin protection.Heliyon202065e0383110.1016/j.heliyon.2020.e03831 32395645
    [Google Scholar]
  36. PardeikeJ. SchwabeK. MüllerR.H. Influence of nanostructured lipid carriers (NLC) on the physical properties of the Cutanova Nanorepair Q10 cream and the in vivo skin hydration effect.Int. J. Pharm.20103961-216617310.1016/j.ijpharm.2010.06.007 20541000
    [Google Scholar]
  37. do PradoA.H. AraújoV.H.S. EloyJ.O. Fonseca-SantosB. Pereira-da-SilvaM.A. PeccininiR.G. ChorilliM. Synthesis and charac-terization of nanostructured lipid nanocarriers for enhanced sun protection factor of octyl p-methoxycinnamate.AAPS PharmSciTech202021412510.1208/s12249‑019‑1547‑0 32350635
    [Google Scholar]
  38. Nikolić S.; Keck, C.M.; Anselmi, C.; Müller, R.H. Skin photoprotection improvement: Synergistic interaction between lipid nanoparticles and organic UV filters.Int. J. Pharm.20114141-227628410.1016/j.ijpharm.2011.05.010 21600969
    [Google Scholar]
  39. MedeirosT.S. MoreiraL.M.C.C. OliveiraT.M.T. MeloD.F. AzevedoE.P. GadelhaA.E.G. FookM.V.L. Oshiro-JúniorJ.A. DamascenoB.P.G.L. Bemotrizinol-loaded carnauba wax-based nanostructured lipid carriers for sunscreen: Optimization, characterization, and in vitro evaluation.AAPS PharmSciTech202021828810.1208/s12249‑020‑01821‑x 33073311
    [Google Scholar]
  40. Villalobos-HernándezJ.R. Müller-GoymannC.C. In vitro erythemal UV-A protection factors of inorganic sunscreens distributed in aqueous media using carnauba wax-decyl oleate nanoparticles.Eur. J. Pharm. Biopharm.200765112212510.1016/j.ejpb.2006.07.013 16971098
    [Google Scholar]
  41. PugliaC. DamianiE. OffertaA. RizzaL. TirendiG.G. TaricoM.S. CurreriS. BoninaF. PerrottaR.E. Evaluation of nanostruc-tured lipid carriers (NLC) and nanoemulsions as carriers for UV-filters: Characterization, in vitro penetration and photostability studies.Eur. J. Pharm. Sci.20145121121710.1016/j.ejps.2013.09.023 24157543
    [Google Scholar]
  42. LuciaM. Lipid-based nanoparticles as carriers for dermal delivery of antioxidants.Curr. Drug Metab.201718546948010.2174/1389200218666170222152038 28228079
    [Google Scholar]
  43. SouzaI.D.L. SaezV. CamposV.E.B. NascimentoM.R. MansurC.R.E. Multiple response optimization of beeswax-based nanostruc-tured lipid carriers for the controlled release of vitamin E.J. Nanosci. Nanotechnol.2020201314110.1166/jnn.2020.16875 31383137
    [Google Scholar]
  44. VazS. SilvaR. AmaralM.H. MartinsE. SousaLobo J.M. Silva, A.C. Evaluation of the biocompatibility and skin hydration potential of vitamin E-loaded lipid nanosystems formulations: In vitro and human in vivo studies.Colloids Surf. B Biointerfaces201917924224910.1016/j.colsurfb.2019.03.036 30974262
    [Google Scholar]
  45. Chen-yuG. Chun-fenY. Qi-luL. QiT. Yan-weiX. Wei-naL. Guang-xiZ. Development of a quercetin-loaded nanostructured lipid carrier formulation for topical delivery.Int. J. Pharm.20124301-229229810.1016/j.ijpharm.2012.03.042 22486962
    [Google Scholar]
  46. BoseS. Michniak-KohnB. Preparation and characterization of lipid based nanosystems for topical delivery of quercetin.Eur. J. Pharm. Sci.201348344245210.1016/j.ejps.2012.12.005 23246734
    [Google Scholar]
  47. TeeranachaideekulV. SoutoE.B. JunyaprasertV.B. MüllerR.H. Cetyl palmitate-based NLC for topical delivery of Coenzyme Q(10) - development, physicochemical characterization and in vitro release studies.Eur. J. Pharm. Biopharm.200767114114810.1016/j.ejpb.2007.01.015 17346953
    [Google Scholar]
  48. JunyaprasertV.B. TeeranachaideekulV. SoutoE.B. BoonmeP. MüllerR.H. Q10-loaded NLC versus nanoemulsions: Stability, rhe-ology and in vitro skin permeation.Int. J. Pharm.20093771-220721410.1016/j.ijpharm.2009.05.020 19465098
    [Google Scholar]
  49. MartinsS. SarmentoB. FerreiraD.C. SoutoE.B. Lipid-based colloidal carriers for peptide and protein delivery-liposomes versus lipid nanoparticles.Int. J. Nanomedicine200724595607 18203427
    [Google Scholar]
  50. CarboneC. LeonardiA. CupriS. PuglisiG. PignatelloR. Pharmaceutical and biomedical applications of lipid-based nanocarriers.Pharm. Pat. Anal.20143219921510.4155/ppa.13.79 24588596
    [Google Scholar]
  51. SuterF. SchmidD. WandreyF. ZülliF. Heptapeptide-loaded solid lipid nanoparticles for cosmetic anti-aging applications.Eur. J. Pharm. Biopharm.201610830430910.1016/j.ejpb.2016.06.014 27343822
    [Google Scholar]
  52. PatlollaR.R. DesaiP.R. BelayK. SinghM.S. Translocation of cell penetrating peptide engrafted nanoparticles across skin layers.Biomaterials201031215598560710.1016/j.biomaterials.2010.03.010 20413152
    [Google Scholar]
  53. KapoorB. GuptaR. GulatiM. SinghS.K. KhursheedR. GuptaM. The why, where, who, how, and what of the vesicular delivery systems.Adv. Colloid Interface Sci.201927110198510.1016/j.cis.2019.07.006 31351415
    [Google Scholar]
  54. ApolinárioA.C. HauschkeL. NunesJ.R. LopesL.B. Lipid nanovesicles for biomedical applications: ‘What is in a name’?Prog. Lipid Res.20218210109610.1016/j.plipres.2021.101096 33831455
    [Google Scholar]
  55. MezeiM. GulasekharamV. Liposomes--a selective drug delivery system for the topical route of administration. Lotion dosage form.Life Sci.198026181473147710.1016/0024‑3205(80)90268‑4 6893068
    [Google Scholar]
  56. ChoiM.J. MaibachH.I. Elastic vesicles as topical/transdermal drug delivery systems.Int. J. Cosmet. Sci.200527421122110.1111/j.1467‑2494.2005.00264.x 18492190
    [Google Scholar]
  57. LohaniA. VermaA. Vesicles: Potential nano carriers for the delivery of skin cosmetics.J. Cosmet. Laser Ther.201719848549310.1080/14764172.2017.1358451 28753057
    [Google Scholar]
  58. SongC.K. BalakrishnanP. ShimC.K. ChungS.J. ChongS. KimD.D. A novel vesicular carrier, transethosome, for enhanced skin delivery of voriconazole: Characterization and in vitro/in vivo evaluation.Colloids Surf. B Biointerfaces20129229930410.1016/j.colsurfb.2011.12.004 22205066
    [Google Scholar]
  59. BabaieS. BakhshayeshA.R.D. HaJ.W. HamishehkarH. KimK.H. Invasome: A novel nanocarrier for transdermal drug delivery.Nanomaterials (Basel)202010234110.3390/nano10020341 32079276
    [Google Scholar]
  60. Handjani-VilaR.M. RibierA. RondotB. VanlerberghieG. Dispersions of lamellar phases of non-ionic lipids in cosmetic products.Int. J. Cosmet. Sci.19791530331410.1111/j.1467‑2494.1979.tb00224.x 19467076
    [Google Scholar]
  61. RehmanK. ZulfakarM.H. Recent advances in gel technologies for topical and transdermal drug delivery.Drug Dev. Ind. Pharm.201440443344010.3109/03639045.2013.828219 23937582
    [Google Scholar]
  62. RobertsM.S. MohammedY. PastoreM.N. NamjoshiS. YousefS. AlinaghiA. HaridassI.N. AbdE. Leite-SilvaV.R. BensonH. GriceJ.E. Topical and cutaneous delivery using nanosystems.J. Control. Release20172478610510.1016/j.jconrel.2016.12.022 28024914
    [Google Scholar]
  63. ZebA. Potential of nanoparticulate carriers for improved drug delivery via skin.J. Pharm. Investig.201949548551710.1007/s40005‑018‑00418‑8
    [Google Scholar]
  64. LauerA.C. LiebL.M. RamachandranC. FlynnG.L. WeinerN.D. Transfollicular drug delivery.Pharm. Res.199512217918610.1023/A:1016250422596 7784330
    [Google Scholar]
  65. Dragicevic-CuricN. ScheglmannD. AlbrechtV. FahrA. Temoporfin-loaded invasomes: Development, characterization and in vitro skin penetration studies.J. Control. Release20081271596910.1016/j.jconrel.2007.12.013 18281119
    [Google Scholar]
  66. ZellmerS. PfeilW. LaschJ. Interaction of phosphatidylcholine liposomes with the human stratum corneum.Biochim. Biophys. Acta19951237217618210.1016/0005‑2736(95)00100‑H 7632711
    [Google Scholar]
  67. CevcG. BlumeG. Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force.Biochim. Biophys. Acta19921104122623210.1016/0005‑2736(92)90154‑E 1550849
    [Google Scholar]
  68. TouitouE. DayanN. BergelsonL. GodinB. EliazM. Ethosomes - novel vesicular carriers for enhanced delivery: Characterization and skin penetration properties.J. Control. Release200065340341810.1016/S0168‑3659(99)00222‑9 10699298
    [Google Scholar]
  69. ElsayedM.M.A. AbdallahO.Y. NaggarV.F. KhalafallahN.M. Lipid vesicles for skin delivery of drugs: Reviewing three decades of research.Int. J. Pharm.20073321-211610.1016/j.ijpharm.2006.12.005 17222523
    [Google Scholar]
  70. Honeywell-NguyenP.L. BouwstraJ.A. Vesicles as a tool for transdermal and dermal delivery.Drug Discov. Today. Technol.200521677410.1016/j.ddtec.2005.05.003 24981757
    [Google Scholar]
  71. El MaghrabyG.M.M. WilliamsA.C. BarryB.W. Interactions of surfactants (edge activators) and skin penetration enhancers with lipo-somes.Int. J. Pharm.20042761-214316110.1016/j.ijpharm.2004.02.024 15113622
    [Google Scholar]
  72. FranzèS. MusazziU.M. MinghettiP. CilurzoF. Drug-in-micelles-in-liposomes (DiMiL) systems as a novel approach to prevent drug leakage from deformable liposomes.Eur. J. Pharm. Sci.2019130273510.1016/j.ejps.2019.01.013 30654112
    [Google Scholar]
  73. ApolinárioA.C. Towards nanoformulations for skin delivery of poorly soluble API: What does indeed matter?J. Drug Deliv. Sci. Technol.20206010204510.1016/j.jddst.2020.102045
    [Google Scholar]
  74. GeusensB. Flexible nanosomes (SECosomes) enable efficient siRNA delivery in cultured primary skin cells and in the viable epidermis of ex vivo human skin.Adv. Funct. Mater.201020234077409010.1002/adfm.201000484
    [Google Scholar]
  75. SchreierH. BouwstraJ. Liposomes and niosomes as topical drug carriers: Dermal and transdermal drug delivery.J. Control. Release199430111510.1016/0168‑3659(94)90039‑6
    [Google Scholar]
  76. ZapadkaK.L. BecherF.J. Gomes Dos SantosA.L. JacksonS.E. Factors affecting the physical stability (aggregation) of peptide thera-peutics.Interface Focus2017762017003010.1098/rsfs.2017.0030 29147559
    [Google Scholar]
  77. YaoJ-F. YangH. ZhaoY.Z. XueM. Metabolism of peptide drugs and strategies to improve their metabolic stability.Curr. Drug Metab.2018191189290110.2174/1389200219666180628171531 29956618
    [Google Scholar]
  78. BravoV. RoseroS. RicordiC. PastoriR.L. Instability of miRNA and cDNAs derivatives in RNA preparations.Biochem. Biophys. Res. Commun.200735341052105510.1016/j.bbrc.2006.12.135 17204243
    [Google Scholar]
  79. KhanJ.A. KainthanR.K. GanguliM. KizhakkedathuJ.N. SinghY. MaitiS. Water soluble nanoparticles from PEG-based cationic hyperbranched polymer and RNA that protect RNA from enzymatic degradation.Biomacromolecules2006751386138810.1021/bm050999o 16677017
    [Google Scholar]
  80. Van TranV. MoonJ-Y. LeeY-C. Liposomes for delivery of antioxidants in cosmeceuticals: Challenges and development strategies.J. Control. Release201930011414010.1016/j.jconrel.2019.03.003 30853528
    [Google Scholar]
  81. SerranoG. AlmudéverP. SerranoJ.M. MilaraJ. TorrensA. ExpósitoI. CortijoJ. Phosphatidylcholine liposomes as carriers to improve topical ascorbic acid treatment of skin disorders.Clin. Cosmet. Investig. Dermatol.20158591599 26719718
    [Google Scholar]
  82. MarsanascoM. Liposomes as vehicles for vitamins E and C: An alternative to fortify orange juice and offer vitamin C protection after heat treatment.Food Res. Int.20114493039304610.1016/j.foodres.2011.07.025
    [Google Scholar]
  83. LiH. ChenF. Preparation and quality evaluation of coenzyme Q10 long-circulating liposomes.Saudi J. Biol. Sci.201724479780210.1016/j.sjbs.2015.10.025 28490948
    [Google Scholar]
  84. WagnerM.E. SpothK.A. KourkoutisL.F. RizviS.S. Stability of niosomes with encapsulated vitamin D3 and ferrous sulfate generated using a novel supercritical carbon dioxide method.J. Liposome Res.201626426126810.3109/08982104.2015.1088868 26585564
    [Google Scholar]
  85. AkbariJ. Curcumin niosomes (curcusomes) as an alternative to conventional vehicles: A potential for efficient dermal delivery.J. Drug Deliv. Sci. Technol.20206010203510.1016/j.jddst.2020.102035
    [Google Scholar]
  86. RamezaniV. Formulation and optimization of transfersome containing minoxidil and caffeine.J. Drug Deliv. Sci. Technol.20184412913510.1016/j.jddst.2017.12.003
    [Google Scholar]
  87. ShenL-N. ZhangY.T. WangQ. XuL. FengN.P. Enhanced in vitro and in vivo skin deposition of apigenin delivered using ethosomes.Int. J. Pharm.20144601-228028810.1016/j.ijpharm.2013.11.017 24269286
    [Google Scholar]
  88. OresajoC. PillaiS. MancoM. YatskayerM. McDanielD. Antioxidants and the skin: Understanding formulation and efficacy.Dermatol. Ther.201225325225910.1111/j.1529‑8019.2012.01505.x 22913443
    [Google Scholar]
  89. TavanoL. MuzzalupoR. PicciN. de CindioB. Co-encapsulation of lipophilic antioxidants into niosomal carriers: Percutaneous per-meation studies for cosmeceutical applications.Colloids Surf. B Biointerfaces201411414414910.1016/j.colsurfb.2013.09.055 24176892
    [Google Scholar]
  90. SguizzatoM. MarianiP. SpinozziF. BenedusiM. CervellatiF. CortesiR. DrechslerM. PrieuxR. ValacchiG. EspositoE. Ethosomes for Coenzyme Q10 cutaneous administration: From design to 3D skin tissue evaluation.Antioxidants20209648510.3390/antiox9060485 32503293
    [Google Scholar]
  91. CaddeoC. MancaM.L. PerisJ.E. UsachI. Diez-SalesO. MatosM. Fernàndez-BusquetsX. FaddaA.M. ManconiM. Tocopher-ol-loaded transfersomes: In vitro antioxidant activity and efficacy in skin regeneration.Int. J. Pharm.20185511-2344110.1016/j.ijpharm.2018.09.009 30201294
    [Google Scholar]
  92. ZhouW. LiuW. ZouL. LiuW. LiuC. LiangR. ChenJ. Storage stability and skin permeation of vitamin C liposomes improved by pectin coating.Colloids Surf. B Biointerfaces201411733033710.1016/j.colsurfb.2014.02.036 24681045
    [Google Scholar]
  93. LupoM.P. ColeA.L. Cosmeceutical peptides.Dermatol. Ther.200720534334910.1111/j.1529‑8019.2007.00148.x 18045359
    [Google Scholar]
  94. GazitaevaZ.I. DrobintsevaA.O. ChungY. PolyakovaV.O. KvetnoyI.M. Cosmeceutical product consisting of biomimetic peptides: Antiaging effects in vivo and in vitro.Clin. Cosmet. Investig. Dermatol.201710111610.2147/CCID.S97573 28123310
    [Google Scholar]
  95. LimaT.N. Pedriali MoraesC.A. Bioactive peptides: Applications and relevance for cosmeceuticals.Cosmetics2018512110.3390/cosmetics5010021
    [Google Scholar]
  96. HanF. Nanoliposomes codelivering bioactive peptides produce enhanced anti-aging effect in human skin.J. Drug Deliv. Sci. Technol.20205710169310.1016/j.jddst.2020.101693
    [Google Scholar]
  97. KimJ-E. Transformer-ethosomes with palmitoyl pentapeptide for improved transdermal delivery.J. Drug Deliv. Sci. Technol.20195246046710.1016/j.jddst.2019.04.039
    [Google Scholar]
  98. LawrenceP. CeccoliJ. Advances in the application and impact of microRNAs as therapies for skin disease.BioDrugs201731542343810.1007/s40259‑017‑0243‑4 28875300
    [Google Scholar]
  99. GeusensB. LambertJ. De SmedtS.C. BuyensK. SandersN.N. Van GeleM. Ultradeformable cationic liposomes for delivery of small interfering RNA (siRNA) into human primary melanocytes.J. Control. Release2009133321422010.1016/j.jconrel.2008.10.003 18973779
    [Google Scholar]
  100. GerloffD. SunderkötterC. WohlrabJ. Importance of microRNAs in skin oncogenesis and their suitability as agents and targets for topical therapy.Skin Pharmacol. Physiol.202033527027910.1159/000509879 33080592
    [Google Scholar]
  101. JinY. WangS. TongL. DuL. Rational design of didodecyldimethylammonium bromide-based nanoassemblies for gene delivery.Colloids Surf. B Biointerfaces201512625726410.1016/j.colsurfb.2014.12.032 25576809
    [Google Scholar]
  102. SorgO. AntilleC. KayaG. SauratJ.H. Retinoids in cosmeceuticals.Dermatol. Ther.200619528929610.1111/j.1529‑8019.2006.00086.x 17014484
    [Google Scholar]
  103. KimJ. KimJ. JongudomsombatT. Kim BsE. SukJ. LeeD. LeeJ.H. The efficacy and safety of multilamellar vesicle containing retinaldehyde: A double-blinded, randomized, split-face controlled study.J. Cosmet. Dermatol.20212092874287910.1111/jocd.13993 33569865
    [Google Scholar]
  104. OhY.K. KimM.Y. ShinJ.Y. KimT.W. YunM.O. YangS.J. ChoiS.S. JungW.W. KimJ.A. ChoiH.G. Skin permeation of retinol in Tween 20-based deformable liposomes: In-vitro evaluation in human skin and keratinocyte models.J. Pharm. Pharmacol.200658216116610.1211/jpp.58.2.0002 16451743
    [Google Scholar]
  105. Pena-RodríguezE. MorenoM.C. Blanco-FernandezB. GonzálezJ. Fernández-CamposF. Epidermal delivery of retinyl palmitate loaded transfersomes: Penetration and biodistribution studies.Pharmaceutics202012211210.3390/pharmaceutics12020112 32019144
    [Google Scholar]
  106. ZhangC. ZhangK. ZhangJ. OuH. DuanJ. ZhangS. WangD. MitragotriS. ChenM. Skin delivery of hyaluronic acid by the combined use of sponge spicules and flexible liposomes.Biomater. Sci.2019741299131010.1039/C8BM01555D 30821312
    [Google Scholar]
  107. Vázquez-GonzálezM.L. CalpenaA.C. DomènechÒ. MonteroM.T. BorrellJ.H. Enhanced topical delivery of hyaluronic acid encap-sulated in liposomes: A surface-dependent phenomenon.Colloids Surf. B Biointerfaces2015134313910.1016/j.colsurfb.2015.06.029 26142626
    [Google Scholar]
  108. LopesL.B. Overcoming the cutaneous barrier with microemulsions.Pharmaceutics201461527710.3390/pharmaceutics6010052 24590260
    [Google Scholar]
  109. CarvalhoV.F.M. MigottoA. GiaconeD.V. de LemosD.P. ZanoniT.B. Maria-EnglerS.S. Costa-LotufoL.V. LopesL.B. Co-encapsulation of paclitaxel and C6 ceramide in tributyrin-containing nanocarriers improve co-localization in the skin and potentiate cyto-toxic effects in 2D and 3D models.Eur. J. Pharm. Sci.201710913114310.1016/j.ejps.2017.07.023 28735040
    [Google Scholar]
  110. McClementsD.J. RaoJ. Food-grade nanoemulsions: Formulation, fabrication, properties, performance, biological fate, and potential toxicity.Crit. Rev. Food Sci. Nutr.201151428533010.1080/10408398.2011.559558 21432697
    [Google Scholar]
  111. MusazziU.M. FranzèS. MinghettiP. CasiraghiA. Emulsion versus nanoemulsion: How much is the formulative shift critical for a cosmetic product?Drug Deliv. Transl. Res.20188241442110.1007/s13346‑017‑0390‑7 28508377
    [Google Scholar]
  112. MojeikoG. de BritoM. SalataG.C. LopesL.B. Combination of microneedles and microemulsions to increase celecoxib topical deliv-ery for potential application in chemoprevention of breast cancer.Int. J. Pharm.201956036537610.1016/j.ijpharm.2019.02.011 30772460
    [Google Scholar]
  113. ApolinárioA.C. Opening the pandora’s box of nanomedicine: There is indeed ‘plenty of room at the bottom’.Quim. Nova2020432212225
    [Google Scholar]
  114. RaiV.K. MishraN. YadavK.S. YadavN.P. Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery: For-mulation development, stability issues, basic considerations and applications.J. Control. Release201827020322510.1016/j.jconrel.2017.11.049 29199062
    [Google Scholar]
  115. McClementsD.J. Nanoemulsions versus microemulsions: terminology, differences, and similarities.Soft Matter2012861719172910.1039/C2SM06903B
    [Google Scholar]
  116. MigottoA. CarvalhoV.F.M. SalataG.C. da SilvaF.W.M. YanC.Y.I. IshidaK. Costa-LotufoL.V. SteinerA.A. LopesL.B. Mul-tifunctional nanoemulsions for intraductal delivery as a new platform for local treatment of breast cancer.Drug Deliv.201825165466710.1080/10717544.2018.1440665 29495885
    [Google Scholar]
  117. CarvalhoV.F.M. SalataG.C. de MatosJ.K.R. Costa-FernandezS. ChorilliM. SteinerA.A. de AraujoG.L.B. SilveiraE.R. Costa-LotufoL.V. LopesL.B. Optimization of composition and obtainment parameters of biocompatible nanoemulsions intended for intra-ductal administration of piplartine (piperlongumine) and mammary tissue targeting.Int. J. Pharm.201956711846010.1016/j.ijpharm.2019.118460 31247278
    [Google Scholar]
  118. AzmiN.A.N. Nanoemulsions: Factory for food, pharmaceutical and cosmetics.Processes (Basel)20197961710.3390/pr7090617
    [Google Scholar]
  119. GuptaP.K. An update on nanoemulsions using nanosized liquid in liquid colloidal systems.Intechopen2019Available from: www. intehopen.com/chapters/66445
    [Google Scholar]
  120. SharmaS. SarangdevotK. Nanoemulsions for cosmetics.IJARPB201213408415
    [Google Scholar]
  121. NegiP. SinghB. SharmaG. BegS. KatareO.P. Biocompatible lidocaine and prilocaine loaded-nanoemulsion system for enhanced percutaneous absorption: QbD-based optimisation, dermatokinetics and in vivo evaluation.J. Microencapsul.201532541943110.3109/02652048.2015.1046513 26066775
    [Google Scholar]
  122. CarvalhoV.F. de LemosD.P. VieiraC.S. MigottoA. LopesL.B. Potential of non-aqueous microemulsions to improve the delivery of lipophilic drugs to the skin.AAPS PharmSciTech20171851739174910.1208/s12249‑016‑0643‑7 27757922
    [Google Scholar]
  123. MoniruzzamanM. TamuraM. TaharaY. KamiyaN. GotoM. Ionic liquid-in-oil microemulsion as a potential carrier of sparingly soluble drug: Characterization and cytotoxicity evaluation.Int. J. Pharm.20104001-224325010.1016/j.ijpharm.2010.08.034 20813174
    [Google Scholar]
  124. LinC.C. YangC.H. ChangN.F. WuP.S. ChenY.S. LeeS.M. ChenC.W. Study on the stability of deoxyArbutin in an anhydrous emulsion system.Int. J. Mol. Sci.20111295946595410.3390/ijms12095946 22016637
    [Google Scholar]
  125. SchwarzJ.S. WeisspapirM.R. FriedmanD.I. Enhanced transdermal delivery of diazepam by submicron emulsion (SME) creams.Pharm. Res.199512568769210.1023/A:1016255408348 7479554
    [Google Scholar]
  126. FriedmanD.I. SchwarzJ.S. WeisspapirM. Submicron emulsion vehicle for enhanced transdermal delivery of steroidal and nonsteroi-dal antiinflammatory drugs.J. Pharm. Sci.199584332432910.1002/jps.2600840312 7616372
    [Google Scholar]
  127. WilliamsA.C. BarryB.W. Penetration enhancers.Adv. Drug Deliv. Rev.200456560361810.1016/j.addr.2003.10.025 15019749
    [Google Scholar]
  128. ZhangJ. Michniak-KohnB. Investigation of microemulsion microstructures and their relationship to transdermal permeation of model drugs: Ketoprofen, lidocaine, and caffeine.Int. J. Pharm.20114211344410.1016/j.ijpharm.2011.09.014 21959104
    [Google Scholar]
  129. PepeD. McCallM. ZhengH. LopesL.B. Protein transduction domain-containing microemulsions as cutaneous delivery systems for an anticancer agent.J. Pharm. Sci.201310251476148710.1002/jps.23482 23436680
    [Google Scholar]
  130. Van TranV. Core-shell materials, lipid particles and nanoemulsions, for delivery of active anti-oxidants in cosmetics applications: Chal-lenges and development strategies.Chem. Eng. J.20193688811410.1016/j.cej.2019.02.168
    [Google Scholar]
  131. MitriK. ShegokarR. GohlaS. AnselmiC. MüllerR.H. Lipid nanocarriers for dermal delivery of lutein: preparation, characterization, stability and performance.Int. J. Pharm.20114141-226727510.1016/j.ijpharm.2011.05.008 21596122
    [Google Scholar]
  132. AriantoA. CellaG. BangunH. Preparation and evaluation of sunscreen nanoemulsions with synergistic efficacy on SPF by combina-tion of soybean oil, avobenzone, and octyl methoxycinnamate.Open Access Maced. J. Med. Sci.20197172751275610.3889/oamjms.2019.745 31844431
    [Google Scholar]
  133. GiaconeD.V. Effect of nanoemulsion modification with chitosan and sodium alginate on the topical delivery and efficacy of the cytotoxic agent piplartine in 2D and 3D skin cancer modelsInt J Biol Macromol2020165(Pt A)1055106510.1016/j.ijbiomac.2020.09.167
    [Google Scholar]
  134. Che MarzukiN.H. WahabR.A. Abdul HamidM. An overview of nanoemulsion: concepts of development and cosmeceutical applica-tions.Biotechnol. Biotechnol. Equip.201933177979710.1080/13102818.2019.1620124
    [Google Scholar]
  135. ZhouH. YueY. LiuG. LiY. ZhangJ. GongQ. YanZ. DuanM. Preparation and characterization of a lecithin nanoemulsion as a topical delivery system.Nanoscale Res. Lett.20095122423010.1007/s11671‑009‑9469‑5 20652152
    [Google Scholar]
  136. KongM. Investigations on skin permeation of hyaluronic acid based nanoemulsion as transdermal carrier.Carbohydr. Polym.201186283784310.1016/j.carbpol.2011.05.027
    [Google Scholar]
  137. SharmaB. IqbalB. KumarS. AliJ. BabootaS. Resveratrol-loaded nanoemulsion gel system to ameliorate UV-induced oxidative skin damage: from in vitro to in vivo investigation of antioxidant activity enhancement.Arch. Dermatol. Res.20193111077379310.1007/s00403‑019‑01964‑3 31432208
    [Google Scholar]
  138. ZorziG.K. CaregnatoF. MoreiraJ.C. TeixeiraH.F. CarvalhoE.L. Antioxidant effect of nanoemulsions containing extract of Achyro-cline satureioides (Lam) DC-Asteraceae.AAPS PharmSciTech201617484485010.1208/s12249‑015‑0408‑8 26361953
    [Google Scholar]
  139. Lewińska, A.; Domżał-Kędzia, M.; Jaromin, A.; Łukaszewicz, M. Nanoemulsion stabilized by safe surfactin from Bacillus subtilis as a multifunctional, custom-designed smart delivery system.Pharmaceutics2020121095310.3390/pharmaceutics12100953 33050380
    [Google Scholar]
  140. ChouT-H.C. Encapsulation and characterization of nanoemulsions based on an anti-oxidative polymeric amphiphile for topical apigenin delivery.Polymers (Basel)2021137101610.3390/polym13071016
    [Google Scholar]
  141. GledovicA. Janosevic LezaicA. NikolicI. Tasic-KostovM. Antic-StankovicJ. KrstonosicV. RandjelovicD. BozicD. IlicD. TamburicS. SavicS. Polyglycerol ester-based low energy nanoemulsions with red raspberry seed oil and fruit extracts: Formulation de-velopment toward effective in vitro/in vivo bioperformance.Nanomaterials (Basel)202111121710.3390/nano11010217 33467701
    [Google Scholar]
  142. SamsonS. Design and development of a nanoemulsion system containing copper peptide by D-optimal mixture design and evaluation of its physicochemical properties.RSC Advances2016622178451785610.1039/C5RA24379C
    [Google Scholar]
  143. Atrux-TallauN. DelmasT. HanS.H. KimJ.W. BibetteJ. Skin cell targeting with self-assembled ligand addressed nanoemulsion droplets.Int. J. Cosmet. Sci.201335331031810.1111/ics.12044 23425085
    [Google Scholar]
  144. AlgahtaniM.S. AhmadM.Z. AhmadJ. Nanoemulgel for improved topical delivery of retinyl palmitate: Formulation design and stability evaluation.Nanomaterials (Basel)2020105E84810.3390/nano10050848 32353979
    [Google Scholar]
  145. SabouriM. SamadiA. Ahmad NasrollahiS. FarboudE.S. MirrahimiB. HassanzadehH. Nassiri KashaniM. DinarvandR. FiroozA. Tretinoin loaded nanoemulsion for acne vulgaris: Fabrication, physicochemical and clinical efficacy assessments.Skin Pharmacol. Physiol.201831631632310.1159/000488993 30199861
    [Google Scholar]
  146. KaulS. GulatiN. VermaD. MukherjeeS. NagaichU. Role of nanotechnology in cosmeceuticals: A review of recent advances.J. Pharm. (Cairo)20182018342020410.1155/2018/3420204 29785318
    [Google Scholar]
  147. PugliaC. SantonocitoD. Cosmeceuticals: Nanotechnology-based strategies for the delivery of phytocompounds.Curr. Pharm. Des.201925212314232210.2174/1381612825666190709211101 31584366
    [Google Scholar]
  148. ShahP. BhalodiaD. ShelatP. Nanoemulsion: A pharmaceutical review.Syst. Rev. Pharm.201011243210.4103/0975‑8453.59509
    [Google Scholar]
  149. JeongS-H. Cosmetic composition containing retinol stabilized by porous polymer beads and nanoemulsion.Patent EP11798313.0A2015
    [Google Scholar]
  150. Alexiades-ArmenakasM. Multi-active microtargeted anti-aging skin cream polymer technology.Patent US13/663,9082011
    [Google Scholar]
  151. HongT. Preparation process of anti-aging cosmetic.Patent application CN112494356A2020
    [Google Scholar]
  152. Jae-HongS. Hye-JinS. Liposomal cosmetic composition for moisturizing skin using organic farming materials.Patent application KR102250171B120202020
    [Google Scholar]
  153. JonathanE. TimothyK. BokeZ. Entrega dérmica.Patent number ES2761664T3 (WO09158687)2008
    [Google Scholar]
  154. MaitraP. Gel technology suitable for use in cosmetic compositions.Patents number WO2012/101222A12012
    [Google Scholar]
  155. GreenJ. Semi-permanent mascara and method of applying.Patents US13/678,2512013
    [Google Scholar]
  156. MorigiM. MogaveroF. BallarinB. GalliS. GabbaniniS. Deodorant composition.Patent number WO2012/101222A12012
    [Google Scholar]
  157. OualiL. LatrecheD. Polymeric particles and fragrance delivery systems.Patents number US7279542B22007
    [Google Scholar]
  158. JagtapS.B. ShirkeJ.R. WagdareN.A. Lipid nanoparticles for delayed delivery of fragrance with enhanced water solubility, their preparation and usePatents number WO2021/156213A12021
  159. SpadariC.C. de BastianiF.W.M.D.S. LopesL.B. IshidaK. Alginate nanoparticles as non-toxic delivery system for miltefosine in the treatment of candidiasis and cryptococcosis.Int. J. Nanomedicine2019145187519910.2147/IJN.S205350 31371955
    [Google Scholar]
  160. SpadariC.C. LopesL.B. IshidaK. Potential use of alginate-based carriers as antifungal delivery system.Front. Microbiol.201789710.3389/fmicb.2017.00097 28194145
    [Google Scholar]
  161. de JalónE.G. Blanco-PríetoM.J. YgartuaP. SantoyoS. PLGA microparticles: possible vehicles for topical drug delivery.Int. J. Pharm.20012261-218118410.1016/S0378‑5173(01)00811‑0 11532580
    [Google Scholar]
  162. ChoudharyA. KantV. JangirB.L. JoshiV.G. Quercetin loaded chitosan tripolyphosphate nanoparticles accelerated cutaneous wound healing in Wistar rats.Eur. J. Pharmacol.202088017317210.1016/j.ejphar.2020.173172 32407724
    [Google Scholar]
/content/journals/cosci/10.2174/2666779701666220208091859
Loading
/content/journals/cosci/10.2174/2666779701666220208091859
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test