- Home
- A-Z Publications
- Current Organic Chemistry
- Previous Issues
- Volume 24, Issue 9, 2020
Current Organic Chemistry - Volume 24, Issue 9, 2020
Volume 24, Issue 9, 2020
-
-
Review of the Essential Oil Composition of Iranian Endemic and Native Taxa of Apiaceae (Umbelliferae)
One of the most important families of Iranian flora is Apiaceae (Umbelliferae). Most of the species of this family are aromatic plants and rich in essential oils with diverse structures. In the present review, the essential oil composition of 63 genera comprising 141 Apiaceae (66.4% native 33.6% endemic) is summarized.
-
-
-
Main-Chain Ferrocene-Containing Polymers Prepared by Acyclic Diene Metathesis Polymerization: A Review
Authors: Ye Sha, Zhihua Shen, Huan Jia and Zhenyang LuoFerrocene, the crown of metallocene family, is widely studied as a functional unit in electrochemical and catalytic applications due to its sandwich structure. Ferrocene moieties can be embedded into the polymer backbone, leading to main-chain ferrocenecontaining polymers. These polymeric materials combine the unique functionalities of iron center with the processabilities of polymers. As one of the choice polymerization techniques, acyclic diene metathesis (ADMET) polymerization serves as a versatile method to prepare main-chain ferrocene-containing polymers under mild conditions using α,ω-dienes as monomers. This paper overviews main-chain ferrocene-containing polymers prepared by ADMET polymerization. Advances in the design, synthesis and applications of this class of organometallic monomers and polymers are detailed.
-
-
-
Sulfonamides: Antiviral Strategy for Neglected Tropical Disease Virus
Authors: Rudra N. Dash, Alok Kumar Moharana and Bharat Bhusan SubudhiThe viral infections are a threat to the health system around the globe. Although more than 60 antiviral drugs have been approved by the FDA, most of them are for the management of few viruses like HIV, Hepatitis and Influenza. There is no antiviral for many viruses including Dengue, Chikungunya and Japanese encephalitis. Many of these neglected viruses are increasingly becoming global pathogens. Lack of broad spectrum of action and the rapid rise of resistance and cross-resistance to existing antiviral have further increased the challenge of antiviral development. Sulfonamide, as a privileged scaffold, has been capitalized to develop several bioactive compounds and drugs. Accordingly, several reviews have been published in recent times on bioactive sulfonamides. However, there are not enough review reports of antiviral sulfonamides in the last five years. Sulfonamides scaffolds have received sufficient attention for the development of non- nucleoside antivirals following the emergence of cross-resistance to nucleoside inhibitors. Hybridization of bioactive pharmacophores with sulfonamides has been used as a strategy to develop sulfonamide antivirals. This review is an effort to analyze these attempts and evaluate their translational potential. Parameters including potency (IC50), toxicity (CC50) and selectivity (CC50/IC50) have been used in this report to suggest the potential of sulfonamide derivatives to progress further as antiviral. Since most of these antiviral properties are based on the in vitro results, the drug-likeness of molecules has been predicted to propose in vivo potential. The structure-activity relationship has been analyzed to encourage further optimization of antiviral properties.
-
-
-
Synthesis, Crystal Structure and Thermal Decomposition of a New Energetic Potassium Salt of dihydridobis(3-nitro-1,2,4-triazolyl) Borate
Authors: Wang Guodong, Liu Yucun, Liu Guoqing, Jing Suming and Liao LongyuA new energetic organic potassium salt of dihydridobis (3-nitro-1,2,4-triazolyl) borate was synthesized from 3-nitro-1,2,4-triazole and potassium borohydride at 110 °C, and structurally characterized by elemental analysis, IR spectra, 13C NMR and singlecrystal X-ray diffraction. Results show that the crystal belongs to monoclinic system with space group of p21 / C and cell parameters of a = 10.335 (8) Å, B = 10.812 (8) Å, C = 9.821 (8) Å, α = 90 °, β = 106.470 (13), γ = 90 °, z = 4. Its crystal density is 1.755g/cm3. Thermal properties were studied with TG-DTA and DSC. There was only one sharp decomposition peak temperature of 270 °C at the heating rate of 10 °C/ min-1. The activation energies EK = 48.0kJ/mol-1 and EO = 49.8kJ/mol-1 were calculated by the Kissinger method and Ozawa method respectively (CCDC: 1975139).
-
-
-
A Study on the Reactivity of Monosubstituted Benzenes in the MW-Assisted Pd(OAc)2-catalyzed Hirao Reaction with Ph2P(O)H and (EtO)2P(O)H Reagents
Authors: Réka Henyecz, Bianka Huszár, Viktória Grenitzer and György KeglevichThe reactivity order of “iodobenzene > bromobenzene > phenyl trifluoromethanesulfonate” was established in microwave (MW)-assisted Pd(OAc)2-catalyzed P–C coupling reactions with diphenylphosphine oxide and diethyl phosphite, where the excess of the these >P(O)H reagents served as the reducing agent, and, via its tautomeric >P-OH form, also as the P-ligand. The P–C coupling of Ph2P(O)H with PhBr at 120 °C took place via an induction period, during which the active “P-Pd-P” catalyst was formed from the Pd(II) salt and the >P(O)H species. The lower reactivity of PhBr towards Ph2P(O)H could be promoted by the addition of 20% of KI to the reaction mixture at 120 °C, or utilizing 1 equivalent of KI after a pre-reaction with PhBr at 120-150 °C followed by the P–C coupling at 100 °C. The reactivity of PhOTf and a bromo analogue was compared in competitive couplings with Ph2P(O)H. Beyond this, the reactivity of Ph2P(O)H and (EtO)2P(O)H towards PhOTf was evaluated in another competitive experiment. Increasing the scale of the P–C coupling reaction of (EtO)2P(O)H with PhBr, the quantity for the components of the catalyst could be decreased.
-
Volumes & issues
-
Volume 29 (2025)
-
Volume 28 (2024)
-
Volume 27 (2023)
-
Volume 26 (2022)
-
Volume 25 (2021)
-
Volume 24 (2020)
-
Volume 23 (2019)
-
Volume 22 (2018)
-
Volume 21 (2017)
-
Volume 20 (2016)
-
Volume 19 (2015)
-
Volume 18 (2014)
-
Volume 17 (2013)
-
Volume 16 (2012)
-
Volume 15 (2011)
-
Volume 14 (2010)
-
Volume 13 (2009)
-
Volume 12 (2008)
-
Volume 11 (2007)
-
Volume 10 (2006)
-
Volume 9 (2005)
-
Volume 8 (2004)
-
Volume 7 (2003)
-
Volume 6 (2002)
-
Volume 5 (2001)
-
Volume 4 (2000)