Skip to content
2000
image of Advancements in Colloidosome Fabrication, Functionalization, and Applications: A Comprehensive Review

Abstract

Among the recent developments in the field of microcapsules, colloidosomes microcapsules made of colloidal particles have elicited much interest in promising perspectives in microencapsulation technologies. First reported by Dinsmore , these structures hold a lot of potential in different areas of application, which include gene delivery, targeting the brain, and tumor treatment. However, the challenges associated with their permeability and stability limit the use of these coatings. Nevertheless, these problems define colloidosomes as possessing some features of protocells that include metabolic activities and response to stimuli, which make them significant in synthetic biology and biomimetic systems. In drug delivery, colloidosomes have the potential of providing solubility, stability, and a controlled rate of drug release, which will have an impact on the therapeutic use of drugs. Fabrication of colloidosomes is done in many ways, and the common ones include the mulsion strategy, layer adsorption, and microfluidics strategy. Some of these fabrication techniques have been investigated in the recent past to determine how their application can lead to enhanced colloidosome characteristics. Some of these methods include spray drying, sol-gel processes, and electrostatic assembly. For example, the study by Payizila Zulipiker showed that different levels of permeability are controllable through the use of spray drying technology. Another study by Jia Jia presented the preparation of pH-responsive colloidosomes and the high efficiency of encapsulation. Consequently, improvements in the manufacturing process and new self-assembly technologies that include microfluidics systems have also improved the creation of colloidosomes. New advancements in the field of colloidosome synthesis, as well as their surface modification, will open up numerous application prospects in the fields of pharmaceutics, regenerative medicine, and bioinspired materials science. New trends range from 3D printing to stimuli-responsive materials and design, as well as hybrid systems that are application-specific. Despite the difficulties that remain to be faced, colloidosomes represent an extraordinary opportunity for the growth of biotechnology and materials science to open the path to new generations of drugs and bioinspired applications.

Loading

Article metrics loading...

/content/journals/cnanom/10.2174/0124681873336609241014074522
2024-11-07
2025-01-13
Loading full text...

Full text loading...

References

  1. Ghosh S.K. Böker A. Self-assembly of nanoparticles in 2D and 3D: Recent advances and future trends. Macromol. Chem. Phys. 2019 220 17 1900196 10.1002/macp.201900196
    [Google Scholar]
  2. Jiang Y. Interfacial assembly of soft polymeric janus nanoparticles towards structuring liquids. Doctor of Philosophy, University of California, Berkeley 2021
    [Google Scholar]
  3. Park J.H. Galanti A. Ayling I. Rochat S. Workentin M.S. Gobbo P. Colloidosomes as a protocell model: Engineering life-like behaviour through organic chemistry. Eur. J. Org. Chem. 2022 2022 43 e202200968 10.1002/ejoc.202200968
    [Google Scholar]
  4. Sparks J.F. Utilising inorganic protocells in hydrogel-based prototissues. Thesis, University of Bristol 2020
    [Google Scholar]
  5. Dahiya R. Dahiya S. Advanced drug delivery applications of self-assembled nanostructures and polymeric nanoparticles. Handbook on Nanobiomaterials for Therapeutics and Diagnostic Applications. Elsevier 2021 297 339 10.1016/B978‑0‑12‑821013‑0.00021‑0
    [Google Scholar]
  6. Mansour A. Romani M. Acharya A.B. Rahman B. Verron E. Badran Z. Drug delivery systems in regenerative medicine: An updated review. Pharmaceutics 2023 15 2 695 10.3390/pharmaceutics15020695 36840018
    [Google Scholar]
  7. Chaouiki A. Chafiq M. Ko Y.G. The art of controlled nanoscale lattices: A review on the self-assembly of colloidal metal–organic framework particles and their multifaceted architectures. Mater. Sci. Eng. Rep. 2024 159 100785 10.1016/j.mser.2024.100785
    [Google Scholar]
  8. Wei M. Lin Y. Qiao Y. Engineered colloidosomes as biomimetic cellular models. Giant 2023 13 100143 10.1016/j.giant.2023.100143
    [Google Scholar]
  9. Wang B. Yin B. Yu H. Zhang Z. Wang G. Shi S. Gu X. Yang W. Tang B.Z. Russell T.P. Interfacial assembly and jamming of soft nanoparticle surfactants into colloidosomes and structured liquids. ACS Appl. Mater. Interfaces 2022 14 48 54287 54292 10.1021/acsami.2c13414 36440677
    [Google Scholar]
  10. Jiang H. Sheng Y. Ngai T. Pickering emulsions: Versatility of colloidal particles and recent applications. Curr. Opin. Colloid Interface Sci. 2020 49 1 15 10.1016/j.cocis.2020.04.010 32390759
    [Google Scholar]
  11. Bollhorst T. Rezwan K. Maas M. Colloidal capsules: Nano- and microcapsules with colloidal particle shells. Chem. Soc. Rev. 2017 46 8 2091 2126 10.1039/C6CS00632A 28230870
    [Google Scholar]
  12. Gaur D. Dubey N.C. Tripathi B.P. Designing configurable soft microgelsomes as a smart biomimetic protocell. Biomacromolecules 2024 25 2 acs.biomac.3c01127 10.1021/acs.biomac.3c01127 38236272
    [Google Scholar]
  13. Sadeghi A. Potential applications of encapsulated yeasts especially within alginate and chitosan as smart bioreactors and intelligent micro-machines. Carbohydr. Polym. Technol. Appl. 2024 100513 7 10.1016/j.carpta.2024.100513
    [Google Scholar]
  14. Lekkerkerker H.N. Tuinier R. Vis M. Colloids and the depletion interaction. Springer Nature Cham 2024 10.1007/978‑3‑031‑52131‑7
    [Google Scholar]
  15. Gallegos M.J. Soetrisno D.D. Safi Samghabadi F. Conrad J.C. Effects of polymer molecular weight on structure and dynamics of colloid–polymer bridging systems. J. Phys. Chem. B 2023 127 17 3969 3978 10.1021/acs.jpcb.3c01135 37097805
    [Google Scholar]
  16. Luo H. Hooshmand-Ahoor Z. Danas K. Diani J. Numerical estimation via remeshing and analytical modeling of nonlinear elastic composites comprising a large volume fraction of randomly distributed spherical particles or voids. Eur. J. Mech. A, Solids 2023 101 105076 10.1016/j.euromechsol.2023.105076
    [Google Scholar]
  17. Gricius Z. Øye G. Recent advances in the design and use of pickering emulsions for wastewater treatment applications. Soft Matter 2023 19 5 818 840 10.1039/D2SM01437H 36649133
    [Google Scholar]
  18. Wu T. Chen S. Chen P. Li S. Clustering and collision of brownian particles in homogeneous and isotropic turbulence. J. Aerosol Sci. 2023 169 106134 10.1016/j.jaerosci.2022.106134
    [Google Scholar]
  19. Wang T. Riggleman R.A. Lee D. Stebe K.J. Bicontinuous interfacially jammed emulsion gels with nearly uniform sub-micrometer domains via regulated co-solvent removal. Mater. Horiz. 2023 10 4 1385 1391 10.1039/D2MH01479C 36748227
    [Google Scholar]
  20. Qi L. Lei J. Zhou Y. Gao Q. Zhang B. Lou W. Luo Z. Surfactant-assisted synthesis of colloidosomes for positional assembly of a bienzyme system. Chem. Eng. J. 2023 452 139305 10.1016/j.cej.2022.139305
    [Google Scholar]
  21. Mtui H.I. Li Z-M. Wang W. Yang S-Z. Mu B-Z. Effect of different hydrophilic heads on strong interfacial activities of non-edible oil-derived ultra-long chain (UC24:1) Bio-based zwitterionic surfactants for tertiary oil recovery. Colloids Surf. A Physicochem. Eng. Asp. 2024 685 133131 10.1016/j.colsurfa.2023.133131
    [Google Scholar]
  22. Brossault D.F.F. McCoy T.M. Routh A.F. Preparation of multicore colloidosomes: Nanoparticle-assembled capsules with adjustable size, internal structure, and functionalities for oil encapsulation. ACS Appl. Mater. Interfaces 2021 13 43 51495 51503 10.1021/acsami.1c15334 34672538
    [Google Scholar]
  23. Ozturk O.K. Turasan H. Applications of microfluidization in emulsion-based systems, nanoparticle formation, and beverages. Trends Food Sci. Technol. 2021 116 609 625 10.1016/j.tifs.2021.07.033
    [Google Scholar]
  24. Shang L. Zhao Y. Droplet-templated synthetic cells. Matter 2021 4 1 95 115 10.1016/j.matt.2020.10.003
    [Google Scholar]
  25. Ngocho K. Yang X. Wang Z. Hu C. Yang X. Shi H. Wang K. Liu J. Synthetic cells from droplet-based microfluidics for biosensing and biomedical applications. Small 2024 20 33 2400086 10.1002/smll.202400086 38563581
    [Google Scholar]
  26. Song R. Cho S. Shin S. Kim H. Lee J. From shaping to functionalization of micro-droplets and particles. Nanoscale Adv. 2021 3 12 3395 3416 10.1039/D1NA00276G 36133725
    [Google Scholar]
  27. Koroleva M.Y. Yurtov E.V. Pickering emulsions: Structure, properties and the use as colloidosomes and stimuli-sensitive emulsions. Russ. Chem. Rev. 2022 91 5 RCR5024 10.1070/RCR5024
    [Google Scholar]
  28. Visaveliya N.R. Köhler J.M. Hierarchical assemblies of polymer particles through tailored interfaces and controllable interfacial interactions. Adv. Funct. Mater. 2021 31 9 2007407 10.1002/adfm.202007407
    [Google Scholar]
  29. Liu R.K. Gu Y.H. Jia J. Qiao M. Wei Y. Sun Q. Zhao H. Wang J.X. Three-fluid nozzle spray drying strategy for efficient fabrication of functional colloidosomes. Langmuir 2022 38 51 16194 16202 10.1021/acs.langmuir.2c02961 36517019
    [Google Scholar]
  30. Borah R. Ag K.R. Minja A.C. Verbruggen S.W. A review on self-assembly of colloidal nanoparticles into clusters, patterns, and films: Emerging synthesis techniques and applications. Small Methods 2023 7 6 2201536 10.1002/smtd.202201536 36856157
    [Google Scholar]
  31. Payizila Z. Teng F. Huang X. Liu W. Wu T. Sun Q. Zhao S. Efficient fabrication of self-assembled polylactic acid colloidosomes for pesticide encapsulation. ACS Omega 2024 9 3 acsomega.3c07802 10.1021/acsomega.3c07802 38284048
    [Google Scholar]
  32. Jia J. Liu R.K. Sun Q. Wang J.X. Efficient construction of ph-stimuli-responsive colloidosomes with high encapsulation efficiency. Langmuir 2023 39 49 17808 17817 10.1021/acs.langmuir.3c02415 38015806
    [Google Scholar]
  33. Chu W.Y. Chiou Y-R. Luo R-H. Chen T-H. Yu C-J. Chou Y-J. Chang H-T. Chen C-F. Partially miscible droplet microfluidics to enhance interfacial adsorption of hydrophilic nanoparticles for colloidosome synthesis. Chem. Eng. J. 2023 471 144223 10.1016/j.cej.2023.144223
    [Google Scholar]
  34. Jung S.H. Meyer F. Hörnig S. Bund M. Häßel B. Guerzoni L.P.B. De Laporte L. Ben Messaoud G. Centeno S.P. Pich A. On-chip fabrication of colloidal suprastructures by assembly and supramolecular interlinking of microgels. Small 2024 20 2 2303444 10.1002/smll.202303444 37705132
    [Google Scholar]
  35. Liu D. Cao A. Gong Y. Rapid and positioned fabrication of pure gold microsphere arrays with stable deep-pressing anisotropic conductivity for next-generation advanced packaging. Res. Sq. 2024 10.21203/rs.3.rs‑3996433/v1
    [Google Scholar]
  36. Hou S. Bai L. Lu D. Duan H. Interfacial colloidal self-assembly for functional materials. Acc. Chem. Res. 2023 56 7 740 751 10.1021/acs.accounts.2c00705 36920352
    [Google Scholar]
  37. Li J. Baxani D.K. Jamieson W.D. Xu W. Rocha V.G. Barrow D.A. Castell O.K. Formation of polarized, functional artificial cells from compartmentalized droplet networks and nanomaterials, using one-step, dual-material 3D-printed microfluidics. Adv. Sci. (Weinh.) 2020 7 1 1901719 10.1002/advs.201901719 31921557
    [Google Scholar]
  38. Dixit S. Stefańska A. Singh P. Manufacturing technology in terms of digital fabrication of contemporary biomimetic structures. Int. J. Constr. Manag. 2023 23 11 1828 1836 10.1080/15623599.2021.2015105
    [Google Scholar]
  39. Tolabi H. Davari N. Khajehmohammadi M. Malektaj H. Nazemi K. Vahedi S. Ghalandari B. Reis R.L. Ghorbani F. Oliveira J.M. Progress of microfluidic hydrogel-based scaffolds and organ-on-chips for the cartilage tissue engineering. Adv. Mater. 2023 35 26 2208852 10.1002/adma.202208852 36633376
    [Google Scholar]
  40. Liu M. Yang M. Wan X. Tang Z. Jiang L. Wang S. From nanoscopic to macroscopic materials by stimuli-responsive nanoparticle aggregation. Adv. Mater. 2023 35 20 2208995 10.1002/adma.202208995 36409139
    [Google Scholar]
  41. Mariello M. Eş I. Proctor C.M. Soft and flexible bioelectronic micro-systems for electronically controlled drug delivery. Adv. Healthc. Mater. 2023 13 24 e2302969 10.1002/adhm.202302969 37924224
    [Google Scholar]
  42. Wu Y. Zeng M. Cheng Q. Huang C. Recent progress toward physical stimuli-responsive emulsions. Macromol. Rapid Commun. 2022 43 18 2200193 10.1002/marc.202200193 35622941
    [Google Scholar]
  43. Sallam N. Sanad R. Khafagy E-S. Colloidal delivery of drugs: Present strategies and conditions. Rec. Pharm. Biomedical Sci. 2021 5 40 51 10.21608/rpbs.2020.30372.1070
    [Google Scholar]
  44. Liu Z. Zhou W. Qi C. Kong T. Interface engineering in multiphase systems toward synthetic cells and organelles: From soft matter fundamentals to biomedical applications. Adv. Mater. 2020 32 43 2002932 10.1002/adma.202002932 32954548
    [Google Scholar]
  45. Wang X. Liu X. Huang X. Bioinspired protein-based assembling: Toward advanced life-like behaviors. Adv. Mater. 2020 32 25 2001436 10.1002/adma.202001436 32374501
    [Google Scholar]
  46. Ugrinic M. A droplet-based microfluidic platform for the production, analysis and use of designer proteinosomes. Doctor of Philosophy, ETH Zurich 2019
    [Google Scholar]
  47. Gao Y. Gao C. Fan Y. Sun H. Du J. Physically and chemically compartmentalized polymersomes for programmed delivery and biological applications. Biomacromolecules 2023 24 12 5511 5538 10.1021/acs.biomac.3c00826 37933444
    [Google Scholar]
  48. Govindan B. Sabri M.A. Hai A. Banat F. Haija M.A. A review of advanced multifunctional magnetic nanostructures for cancer diagnosis and therapy integrated into an artificial intelligence approach. Pharmaceutics 2023 15 3 868 10.3390/pharmaceutics15030868 36986729
    [Google Scholar]
  49. Harish V. Ansari M.M. Tewari D. Yadav A.B. Sharma N. Bawarig S. García-Betancourt M-L. Karatutlu A. Bechelany M. Barhoum A. Cutting-edge advances in tailoring size, shape, and functionality of nanoparticles and nanostructures: A review. J. Taiwan Inst. Chem. Eng. 2023 149 105010 10.1016/j.jtice.2023.105010
    [Google Scholar]
  50. Parthibarajan R. Colloidosomes drug delivery—a review. Int. J. Pharm. Biol. Sci. 2011 1 183 197
    [Google Scholar]
  51. Umashankar M. An intact overview on self assembled drug delivery system for controlled release and enhanced bioavailability. Multidiscip. Res. Develop. 2023 1
    [Google Scholar]
  52. Rahman P.M.S. Emerging materials for biosensor applications in healthcare. Emerging Materials: Design, Characterization and Applications Springer Singapore 2022 213 263 10.1007/978‑981‑19‑1312‑9_7
    [Google Scholar]
/content/journals/cnanom/10.2174/0124681873336609241014074522
Loading
/content/journals/cnanom/10.2174/0124681873336609241014074522
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: applications ; Colloidosome ; advancements ; fabrication ; functionalization ; microcapsule
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test