Skip to content
2000
image of 
Biosynthesis of Silver Nanoparticles with Antifungal Potential

Abstract

Metallic nanoparticles, specifically silver nanoparticles, find huge applications in health, medicine, and drug delivery. However, the physical and chemical synthesis methods pose challenges regarding gener, action of toxic by-products, or high energy requirements. Hence biosynthetic approaches have gained interest in the last few years utilizing various sources including yeast, fungi, bacteria, or plant extracts containing reducing and capping agents like quercetin, apocyanin, gallic acid, alkaloids, tannins,

The present review would throw light on plant extracts containing such reducing and capping agents for the biosynthesis of silver nanoparticles, including the phytofactors and physicochemical parameters affecting the synthetic methods. Further characterization concerning the polydispersity index (ranging from 0-1) and zeta potential values (stable nanoparticles with ranges >+30 mV or <-30 mV) for improving stability would also be discussed. The potential and applications of silver based nanohybrids or nanocomposites will be described. The antibacterial potential of silver nanoparticles has been shown in previous reviews. Antifungal potential of biosynthetic silver nanoparticles obtained from plant extracts like morong leaf extract or aqueous extract of (date palm) pit evaluated on fungal strains will be illustrated in the present review. The underlying mechanism for the antifungal activity of silver nanoparticles will also be discussed.

At the conclusion, the list of patents on biosynthetic silver nanoparticles and the limitations and regulatory guidelines for commercial production will be illustrated.

Loading

Article metrics loading...

/content/journals/cnanom/10.2174/0124681873323798241105025029
2024-11-08
2025-07-10
Loading full text...

Full text loading...

References

  1. Parak W.J. Nel A.E. Weiss P.S. Grand Challenges for nanoscience and nanotechnology. ACS Nano 2015 9 7 6637 6640 10.1021/acsnano.5b04386 26192457
    [Google Scholar]
  2. Hasnain M.S. Ahmad S.A. Chaudhary N. Biodegradable polymer matrix nanocomposites for bone tissue engineering Applications of Nanocomposite Materials in Orthopedics Woodhead Publishing 2019 1 37 10.1016/B978‑0‑12‑813740‑6.00001‑6
    [Google Scholar]
  3. Beumer K. Broadening nanotechnology’s impact on development. Nat. Nanotechnol. 2016 11 5 398 400 10.1038/nnano.2016.71 27146952
    [Google Scholar]
  4. Khalid K. Tan X. Mohd Zaid H.F. Tao Y. Lye Chew C. Chu D.T. Lam M.K. Ho Y.C. Lim J.W. Chin Wei L. Advanced in developmental organic and inorganic nanomaterial: A review. Bioengineered 2020 11 1 328 355 10.1080/21655979.2020.1736240 32138595
    [Google Scholar]
  5. Waghule T. Rapalli V.K. Singhvi G. Manchanda P. Hans N. Dubey S.K. Hasnain M.S. Nayak A.K. Voriconazole loaded nanostructured lipid carriers based topical delivery system: QbD based designing, characterization, in-vitro and ex-vivo evaluation. J. Drug Deliv. Sci. Technol. 2019 52 303 315 10.1016/j.jddst.2019.04.026
    [Google Scholar]
  6. Hasnain M.S. Nayak A.K. Carbon nanotubes as quantum dots for therapeutic purpose. Carbon Nanotubes for Targeted Drug Delivery. Singapore Springer 2019 59 64 10.1007/978‑981‑15‑0910‑0_10
    [Google Scholar]
  7. Prashant Y.R. Nirangan C.A. Shripal M.C. Nanotechnology: Needs and applications. Int. J. Pharm. Sci. Rev. Res. 2013 18 50 57
    [Google Scholar]
  8. Lahiri S. Mandal D. Biswas S. Gogate P.R. Bhardwaj R.L. Sonocatalytic recovery of ceria from graphite and inhibition of graphite erosion by ionic liquid based platinum nanocatalyst. Ultrason. Sonochem. 2022 82 105863 10.1016/j.ultsonch.2021.105863 34896908
    [Google Scholar]
  9. Pal D. Nayak A.K. Nanotechnology for targeted delivery in cancer therapeutics. Int. J. Pharm. Sci. Rev. Res. 2010 1 1 7
    [Google Scholar]
  10. Hasnain M.S. Nayak A.K. Applications of carbon nanotubes. Carbon Nanotubes for Targeted Drug Delivery. Singapore Springer 2019 33 36 10.1007/978‑981‑15‑0910‑0_6
    [Google Scholar]
  11. Hasnain M.S. Nayak A.K. Nanocomposites for improved orthopedic and bone tissue engineering applications. Applications of Nanocomposite Materials in Orthopedics Woodhead Publishing 2019 145 177 10.1016/B978‑0‑12‑813740‑6.00008‑9
    [Google Scholar]
  12. Nayak A.K. Mazumder S. Ara T.J. Calcium fluoride-based dental nanocomposites. Applications of Nanocomposite Materials in Dentistry Woodhead Publishing 2019 27 45 10.1016/B978‑0‑12‑813742‑0.00002‑X
    [Google Scholar]
  13. Burato C. Centomo P. Pace G. Favaro M. Prati L. Corain B. Generation of size-controlled palladium(0) and gold(0) nanoclusters inside the nanoporous domains of gel-type functional resins. J. Mol. Catal. Chem. 2005 238 1-2 26 34 10.1016/j.molcata.2005.04.062
    [Google Scholar]
  14. Karami M. Ghanbari M. Amiri O. Salavati-Niasari M. Enhanced antibacterial activity and photocatalytic degradation of organic dyes under visible light using cesium lead iodide perovskite nanostructures prepared by hydrothermal method. Separ. Purif. Tech. 2020 253 117526 10.1016/j.seppur.2020.117526
    [Google Scholar]
  15. Daraee H. Eatemadi A. Abbasi E. Fekri Aval S. Kouhi M. Akbarzadeh A. Application of gold nanoparticles in biomedical and drug delivery. Artif. Cells Nanomed. Biotechnol. 2016 44 1 410 422 10.3109/21691401.2014.955107 25229833
    [Google Scholar]
  16. Sánchez-López E. Gomes D. Esteruelas G. Metal-based nanoparticles as antimicrobial agents: An overview. Nanomaterials 2020 10 2 292 10.3390/nano10020292
    [Google Scholar]
  17. Abou El-Nour K.M.M. Eftaiha A. Al-Warthan A. Ammar R.A.A. Synthesis and applications of silver nanoparticles. Arab. J. Chem. 2010 3 3 135 140 10.1016/j.arabjc.2010.04.008
    [Google Scholar]
  18. Burdușel AC. Gherasim O. Grumezescu AM. Biomedical applications of silver nanoparticles: An up-to-date overview. Nanomaterials 2018 8 9 681 10.3390/nano8090681
    [Google Scholar]
  19. Mathur P. Jha S. Ramteke S. Pharmaceutical aspects of silver nanoparticles. Artif. Cells Nanomed. Biotechnol. 2018 46 Sup1 115 126 10.1080/21691401.2017.1414825 29231755
    [Google Scholar]
  20. Hembram KC. Kumar R. Kandha L. Therapeutic prospective of plant-induced silver nanoparticles: Application as antimicrobial and anticancer agent. Artif. Cells Nanomed. Biotechnol. 2018 46 Sup3 S38 S51 10.1080/21691401.2018.1489262 30001158
    [Google Scholar]
  21. Rajeshkumar S. Malarkodi C. Paulkumar K. Vanaja M. Gnanajobitha G. Annadurai G. Algae mediated green fabrication of silver nanoparticles and examination of its antifungal activity against clinical pathogens. International Journal of Metals 2014 2014 1 8 10.1155/2014/692643
    [Google Scholar]
  22. Iravani S. Korbekandi H. Mirmohammadi S.V. Zolfaghari B. Synthesis of silver nanoparticles: Chemical, physical and biological methods. Res. Pharm. Sci. 2014 9 6 385 406 26339255
    [Google Scholar]
  23. Khan F. Chemical hazards of nanoparticles to human and environment (A Review). Orient. J. Chem. 2013 29 4 1399 1408 10.13005/ojc/290415
    [Google Scholar]
  24. Rawat M. A Review on green synthesis and characterization of silver nanoparticles and their applications: A green nanoworld. World J. Pharm. Pharm. Sci. 2016 ••• 730 762 10.20959/wjpps20167‑7227
    [Google Scholar]
  25. Mourato A. Gadanho M. Lino A.R. Tenreiro R. Biosynthesis of crystalline silver and gold nanoparticles by extremophilic yeasts. Bioinorg. Chem. Appl. 2011 2011 1 8 10.1155/2011/546074 21912532
    [Google Scholar]
  26. Shivaji S. Madhu S. Singh S. Extracellular synthesis of antibacterial silver nanoparticles using psychrophilic bacteria. Process Biochem. 2011 46 9 1800 1807 10.1016/j.procbio.2011.06.008
    [Google Scholar]
  27. Iravani S. Green synthesis of metal nanoparticles using plants. Green Chem. 2011 13 10 2638 2650 10.1039/c1gc15386b
    [Google Scholar]
  28. Ahmed S. Ahmad M. Swami B.L. Ikram S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J. Adv. Res. 2016 7 1 17 28 10.1016/j.jare.2015.02.007 26843966
    [Google Scholar]
  29. Ovais M. Khalil A.T. Raza A. Khan M.A. Ahmad I. Islam N.U. Saravanan M. Ubaid M.F. Ali M. Shinwari Z.K. Green synthesis of silver nanoparticles via plant extracts: Beginning a new era in cancer theranostics. Nanomedicine (Lond.) 2016 11 23 3157 3177 10.2217/nnm‑2016‑0279 27809668
    [Google Scholar]
  30. Górka K. Kubiński K. Antifungal activity against human and plant mycopathogens, and green synthesis of silver nanoparticles exhibiting such activity. Appl. Sci. (Basel) 2023 14 1 115 10.3390/app14010115
    [Google Scholar]
  31. Hashem A.H. Saied E. Amin B.H. Alotibi F.O. Al-Askar A.A. Arishi A.A. Elkady F.M. Elbahnasawy M.A. Antifungal Activity of biosynthesized silver nanoparticles (AgNPs) against Aspergilli causing aspergillosis: Ultrastructure study. J. Funct. Biomater. 2022 13 4 242 10.3390/jfb13040242 36412883
    [Google Scholar]
  32. Mallmann E.J.J. Cunha F.A. Castro B.N.M.F. Maciel A.M. Menezes E.A. Fechine P.B.A. Antifungal activity of silver nanoparticles obtained by green synthesis. Rev. Inst. Med. Trop. São Paulo 2015 57 2 165 167 10.1590/S0036‑46652015000200011 25923897
    [Google Scholar]
  33. Singh J. Kumar A. Nayal A.S. Vikal S. Shukla G. Singh A. Singh A. Goswami S. Kumar A. Gautam Y.K. Verma Y. Gaurav S.S. Pratap D. Comprehensive antifungal investigation of green synthesized silver nanoformulation against four agriculturally significant fungi and its cytotoxic applications. Sci. Rep. 2024 14 1 5934 10.1038/s41598‑024‑56619‑9 38467843
    [Google Scholar]
  34. Barkat M.A. Harshita Beg S. Naim M.J. Pottoo F.H. Singh S.P. Ahmad F.J. Current progress in synthesis, characterization and applications of silver nanoparticles: Precepts and prospects. Recent Patents Anti-Infect. Drug Disc. 2018 13 1 53 69 10.2174/1574891X12666171006102833 28990540
    [Google Scholar]
  35. Roldán M.V. Pellegri N. de Sanctis O. Electrochemical method for Ag-PEG nanoparticles synthesis. Journal of Nanoparticles 2013 2013 1 7 10.1155/2013/524150
    [Google Scholar]
  36. Zhang Q. Li N. Goebl J. Lu Z. Yin Y. A systematic study of the synthesis of silver nanoplates: Is citrate a “magic” reagent? J. Am. Chem. Soc. 2011 133 46 18931 18939 10.1021/ja2080345 21999679
    [Google Scholar]
  37. Sotiriou G.A. Teleki A. Camenzind A. Krumeich F. Meyer A. Panke S. Pratsinis S.E. Nanosilver on nanostructured silica: Antibacterial activity and Ag surface area. Chem. Eng. J. 2011 170 2-3 547 554 10.1016/j.cej.2011.01.099 23730198
    [Google Scholar]
  38. Ge L. Li Q. Wang M. Ouyang J. Li X. Xing M.M. Nanosilver particles in medical applications: Synthesis, performance, and toxicity. Int. J. Nanomedicine 2014 9 2399 2407 24876773
    [Google Scholar]
  39. Zhang X.F. Liu Z.G. Shen W. Gurunathan S. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci. 2016 17 9 1534 10.3390/ijms17091534 27649147
    [Google Scholar]
  40. Tien D.C. Tseng K.H. Liao C.Y. Huang J-C. Tsung T-T. Discovery of ionic silver in silver nanoparticle suspension fabricated by arc discharge method. J. Alloys Compd. 2008 463 1-2 408 411 10.1016/j.jallcom.2007.09.048
    [Google Scholar]
  41. Kosmala A. Wright R. Zhang Q. Kirby P. Synthesis of silver nano particles and fabrication of aqueous Ag inks for inkjet printing. Mater. Chem. Phys. 2011 129 3 1075 1080 10.1016/j.matchemphys.2011.05.064
    [Google Scholar]
  42. Asanithi P. Chaiyakun S. Limsuwan P. Growth of silver nanoparticles by DC magnetron sputtering. J. Nanomater. 2012 2012 1 963609 10.1155/2012/963609
    [Google Scholar]
  43. Husen A. Siddiqi K.S. Phytosynthesis of nanoparticles: Concept, controversy and application. Nanoscale Res. Lett. 2014 a 9 1 229 10.1186/1556‑276X‑9‑229 24910577
    [Google Scholar]
  44. Husen A. Siddiqi K.S. Plants and microbes assisted selenium nanoparticles: Characterization and application. J. Nanobiotechnology 2014 b 12 1 28 10.1186/s12951‑014‑0028‑6 25128031
    [Google Scholar]
  45. Siddiqi K.S. Husen A. Green synthesis, characterization and uses of palladium/platinum nanoparticles. Nanoscale Res. Lett. 2016 11 1 482 10.1186/s11671‑016‑1695‑z 27807824
    [Google Scholar]
  46. Sintubin L. De Windt W. Dick J. Mast J. van der Ha D. Verstraete W. Boon N. Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Appl. Microbiol. Biotechnol. 2009 84 4 741 749 10.1007/s00253‑009‑2032‑6 19488750
    [Google Scholar]
  47. Li G. He D. Qian Y. Guan B. Gao S. Cui Y. Yokoyama K. Wang L. Fungus-mediated green synthesis of silver nanoparticles using Aspergillus terreus. Int. J. Mol. Sci. 2011 13 1 466 476 10.3390/ijms13010466 22312264
    [Google Scholar]
  48. Ammar H.A.M. El-Desouky T.A. Green synthesis of nanosilver particles by Aspergillus terreus HA1N and Penicillium expansum HA2N and its antifungal activity against mycotoxigenic fungi. J. Appl. Microbiol. 2016 121 1 89 100 10.1111/jam.13140 27002915
    [Google Scholar]
  49. Balaji D.S. Basavaraja S. Deshpande R. Mahesh D.B. Prabhakar B.K. Venkataraman A. Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids Surf. B Biointerfaces 2009 68 1 88 92 10.1016/j.colsurfb.2008.09.022 18995994
    [Google Scholar]
  50. Sintubin L. Verstraete W. Boon N. Biologically produced nanosilver: Current state and future perspectives. Biotechnol. Bioeng. 2012 109 10 2422 2436 10.1002/bit.24570 22674445
    [Google Scholar]
  51. Mashwani Z.R. Khan T. Khan M.A. Nadhman A. Synthesis in plants and plant extracts of silver nanoparticles with potent antimicrobial properties: current status and future prospects. Appl. Microbiol. Biotechnol. 2015 99 23 9923 9934 10.1007/s00253‑015‑6987‑1 26392135
    [Google Scholar]
  52. Park Y. New paradigm shift for the green synthesis of antibacterial silver nanoparticles utilizing plant extracts. Toxicol. Res. 2014 30 3 169 178 10.5487/TR.2014.30.3.169 25343010
    [Google Scholar]
  53. Savithramma N. Rao M.L. Rukmini K. Antimicrobial activity of silver nanoparticles synthesized by using medicinal plants. Int. J. Chemtech Res. 2011 3 1394 1402
    [Google Scholar]
  54. Hasnain M.S. Javed M.N. Alam M.S. Rishishwar P. Rishishwar S. Ali S. Nayak A.K. Beg S. Purple heart plant leaves extract-mediated silver nanoparticle synthesis: Optimization by Box-Behnken design. Mater. Sci. Eng. C 2019 99 1105 1114 10.1016/j.msec.2019.02.061 30889643
    [Google Scholar]
  55. Elumalai E. Prasad T. Hemachandran J. Extracellular synthesis of silver nanoparticles using leaves of Euphorbia hirta and their antibacterial activities. J Pharm Sci Res. 2010 2 549 554
    [Google Scholar]
  56. Beg M. Maji A. Mandal A.K. Das S. Aktara M.N. Jha P.K. Hossain M. Green synthesis of silver nanoparticles using Pongamia pinnata seed: Characterization, antibacterial property, and spectroscopic investigation of interaction with human serum albumin. J. Mol. Recognit. 2017 30 1 e2565 10.1002/jmr.2565 27677774
    [Google Scholar]
  57. Şeker Karatoprak G. Aydin G. Altinsoy B. Altinkaynak C. Koşar M. Ocsoy I. The Effect of Pelargonium endlicherianum Fenzl. root extracts on formation of nanoparticles and their antimicrobial activities. Enzyme Microb. Technol. 2017 97 21 26 10.1016/j.enzmictec.2016.10.019 28010769
    [Google Scholar]
  58. Moldovan B. David L. Achim M. Clichici S. Filip G.A. A green approach to phytomediated synthesis of silver nanoparticles using Sambucus nigra L. fruits extract and their antioxidant activity. J. Mol. Liq. 2016 221 271 278 10.1016/j.molliq.2016.06.003
    [Google Scholar]
  59. Hazarika S.N. Gupta K. Shamin K.N.A.M. Bhardwaj P. Boruah R. Yadav K.K. Naglot A. Deb P. Mandal M. Doley R. Veer V. Baruah I. Namsa N.D. One-pot facile green synthesis of biocidal silver nanoparticles. Mater. Res. Express 2016 3 7 075401 10.1088/2053‑1591/3/7/075401
    [Google Scholar]
  60. Logaranjan K. Raiza A.J. Gopinath S.C.B. Chen Y. Pandian K. Shape- and size-controlled synthesis of silver nanoparticles using Aloe vera plant extract and their antimicrobial activity. Nanoscale Res. Lett. 2016 11 1 520 10.1186/s11671‑016‑1725‑x 27885623
    [Google Scholar]
  61. Sathishkumar M. Sneha K. Won S.W. Cho C.W. Kim S. Yun Y.S. Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids Surf. B Biointerfaces 2009 73 2 332 338 10.1016/j.colsurfb.2009.06.005 19576733
    [Google Scholar]
  62. Krishnaraj C. Jagan e.g. Rajasekar S. Selvakumar P. Kalaichelvan P.T. Mohan N. Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf. B Biointerfaces 2010 76 1 50 56 10.1016/j.colsurfb.2009.10.008 19896347
    [Google Scholar]
  63. Veerasamy R. Xin T.Z. Gunasagaran S. Xiang T.F.W. Yang E.F.C. Jeyakumar N. Dhanaraj S.A. Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities. J. Saudi Chem. Soc. 2011 15 2 113 120 10.1016/j.jscs.2010.06.004
    [Google Scholar]
  64. Muthukrishnan S. Bhakya S. Senthil Kumar T. Rao M.V. Biosynthesis, characterization and antibacterial effect of plant-mediated silver nanoparticles using Ceropegia thwaitesii – An endemic species. Ind. Crops Prod. 2015 63 119 124 10.1016/j.indcrop.2014.10.022
    [Google Scholar]
  65. Brayner R. The toxicological impact of nanoparticles. Nano Today 2008 3 1-2 48 55 10.1016/S1748‑0132(08)70015‑X
    [Google Scholar]
  66. Niraimathi K.L. Sudha V. Lavanya R. Brindha P. Biosynthesis of silver nanoparticles using Alternanthera sessilis (Linn.) extract and their antimicrobial, antioxidant activities. Colloids Surf. B Biointerfaces 2013 102 288 291 10.1016/j.colsurfb.2012.08.041 23006568
    [Google Scholar]
  67. Jagtap U.B. Bapat V.A. Green synthesis of silver nanoparticles using Artocarpus heterophyllus Lam. seed extract and its antibacterial activity. Ind. Crops Prod. 2013 46 132 137 10.1016/j.indcrop.2013.01.019
    [Google Scholar]
  68. Kanipandian N. Kannan S. Ramesh R. Subramanian P. Thirumurugan R. Characterization, antioxidant and cytotoxicity evaluation of green synthesized silver nanoparticles using Cleistanthus collinus extract as surface modifier. Mater. Res. Bull. 2014 49 494 502 10.1016/j.materresbull.2013.09.016
    [Google Scholar]
  69. Vijay Kumar P.P.N. Pammi S.V.N. Kollu P. Satyanarayana K.V.V. Shameem U. Green synthesis and characterization of silver nanoparticles using Boerhaavia diffusa plant extract and their anti bacterial activity. Ind. Crops Prod. 2014 52 562 566 10.1016/j.indcrop.2013.10.050
    [Google Scholar]
  70. Kumari M. Pandey S. Giri V.P. Bhattacharya A. Shukla R. Mishra A. Nautiyal C.S. Tailoring shape and size of biogenic silver nanoparticles to enhance antimicrobial efficacy against MDR bacteria. Microb. Pathog. 2017 105 346 355 10.1016/j.micpath.2016.11.012 27889528
    [Google Scholar]
  71. Yugandhar P. Haribabu R. Savithramma N. Synthesis, characterization and antimicrobial properties of green-synthesised silver nanoparticles from stem bark extract of Syzygium alternifolium (Wt.) Walp. 3 Biotech 2015 5 6 1031 1039 10.1007/s13205‑015‑0307‑4 28324410
    [Google Scholar]
  72. Kumara Swamy M. Sudipta K.M. Jayanta K. Balasubramanya S. The green synthesis, characterization, and evaluation of the biological activities of silver nanoparticles synthesized from Leptadenia reticulata leaf extract. Appl. Nanosci. 2015 5 1 73 81 10.1007/s13204‑014‑0293‑6
    [Google Scholar]
  73. Singhal G. Bhavesh R. Kasariya K. Sharma A.R. Singh R.P. Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity. J. Nanopart. Res. 2011 13 7 2981 2988 10.1007/s11051‑010‑0193‑y
    [Google Scholar]
  74. Wang L. Xu H. Gu L. Han T.T. Wang S. Meng F.B. Bioinspired synthesis, characterization and antibacterial activity of plant-mediated silver nanoparticles using purple sweet potato root extract. Mater. Technol. 2016 31 8 437 442 10.1080/10667857.2015.1105575
    [Google Scholar]
  75. Safaepour M. Shahverdi A.R. Shahverdi H.R. Khorramizadeh M.R. Gohari A.R. Green synthesis of small silver nanoparticles using geraniol and its cytotoxicity against fibrosarcoma-wehi 164. Avicenna J. Med. Biotechnol. 2009 1 2 111 115 23407598
    [Google Scholar]
  76. Balashanmugam P. Balakumaran M.D. Murugan R. Dhanapal K. Kalaichelvan P.T. Phytogenic synthesis of silver nanoparticles, optimization and evaluation of in vitro antifungal activity against human and plant pathogens. Microbiol. Res. 2016 192 52 64 10.1016/j.micres.2016.06.004 27664723
    [Google Scholar]
  77. Kokila T. Ramesh P.S. Geetha D. Biosynthesis of AgNPs using Carica Papaya peel extract and evaluation of its antioxidant and antimicrobial activities. Ecotoxicol. Environ. Saf. 2016 134 Pt 2 467 473 10.1016/j.ecoenv.2016.03.021 27156649
    [Google Scholar]
  78. Begum N.A. Mondal S. Basu S. Laskar R.A. Mandal D. Biogenic synthesis of Au and Ag nanoparticles using aqueous solutions of Black Tea leaf extracts. Colloids Surf. B Biointerfaces 2009 71 1 113 118 10.1016/j.colsurfb.2009.01.012 19250808
    [Google Scholar]
  79. Bar H. Bhui D.K. Sahoo G.P. Sarkar P. Pyne S. Misra A. Green synthesis of silver nanoparticles using seed extract of Jatropha curcas. Colloids Surf. A Physicochem. Eng. Asp. 2009 348 1-3 212 216 10.1016/j.colsurfa.2009.07.021
    [Google Scholar]
  80. Sathishkumar M. Sneha K. Yun Y.S. Immobilization of silver nanoparticles synthesized using Curcuma longa tuber powder and extract on cotton cloth for bactericidal activity. Bioresour. Technol. 2010 101 20 7958 7965 10.1016/j.biortech.2010.05.051 20541399
    [Google Scholar]
  81. Babu S.A. Prabu H.G. Synthesis of AgNPs using the extract of Calotropis procera flower at room temperature. Mater. Lett. 2011 65 11 1675 1677 10.1016/j.matlet.2011.02.071
    [Google Scholar]
  82. Sun Q. Cai X. Li J. Zheng M. Chen Z. Yu C-P. Green synthesis of silver nanoparticles using tea leaf extract and evaluation of their stability and antibacterial activity. Colloids Surf. A Physicochem. Eng. Asp. 2014 444 226 231 10.1016/j.colsurfa.2013.12.065
    [Google Scholar]
  83. Javan bakht Dalir S. Djahaniani H. Nabati F. Hekmati M. Characterization and the evaluation of antimicrobial activities of silver nanoparticles biosynthesized from Carya illinoinensis leaf extract. Heliyon 2020 6 3 e03624 10.1016/j.heliyon.2020.e03624 32215333
    [Google Scholar]
  84. David L. Moldovan B. Baldea I. Olteanu D. Bolfa P. Clichici S. Filip G.A. Modulatory effects of Cornus sanguinea L. mediated green synthesized silver nanoparticles on oxidative stress, COX-2/NOS2 and NFkB/pNFkB expressions in experimental inflammation in Wistar rats. Mater. Sci. Eng. C 2020 110 110709 10.1016/j.msec.2020.110709 32204021
    [Google Scholar]
  85. Majoumouo M.S. Sibuyi N.R.S. Tincho M.B. Mbekou M. Boyom F.F. Meyer M. Enhanced anti-bacterial activity of biogenic silvernanoparticles synthesized from Terminalia mantaly extracts. Int. J. Nanomedicine 2019 14 9031 9046 10.2147/IJN.S223447 31819417
    [Google Scholar]
  86. Djahaniani H. Rahimi-Nasrabadi M. Saiedpour M. Nazarian S. Ganjali M. Batooli H. Facile synthesis of silver nanoparticles using Tribulus longipetalus extract and their antioxidant and antibacterial activities. Int. J. Food Prop. 2017 20 4 922 930 10.1080/10942912.2016.1188826
    [Google Scholar]
  87. Patil M.P. Singh R.D. Koli P.B. Patil K.T. Jagdale B.S. Tipare A.R. Kim G.D. Antibacterial potential of silver nanoparticles synthesized using Madhuca longifolia flower extract as a green resource. Microb. Pathog. 2018 121 184 189 10.1016/j.micpath.2018.05.040 29807133
    [Google Scholar]
  88. Behravan M. Hossein Panahi A. Naghizadeh A. Ziaee M. Mahdavi R. Mirzapour A. Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity. Int. J. Biol. Macromol. 2019 124 148 154 10.1016/j.ijbiomac.2018.11.101 30447360
    [Google Scholar]
  89. Khatoon A. Khan F. Ahmad N. Shaikh S. Rizvi S.M.D. Shakil S. Al-Qahtani M.H. Abuzenadah A.M. Tabrez S. Ahmed A.B.F. Alafnan A. Islam H. Iqbal D. Dutta R. Silver nanoparticles from leaf extract of Mentha piperita: Eco-friendly synthesis and effect on acetylcholinesterase activity. Life Sci. 2018 209 430 434 10.1016/j.lfs.2018.08.046 30138593
    [Google Scholar]
  90. Hemlata. Meena P.R. Singh A.P. Tejavath K.K. Biosynthesis of silver nanoparticles using Cucumis prophetarum aqueous leaf extract and their antibacterial and antiproliferative activity against cancer cell lines. ACS Omega 2020 5 10 5520 5528 10.1021/acsomega.0c00155
    [Google Scholar]
  91. Bindhu M.R. Umadevi M. Esmail G.A. Al-Dhabi N.A. Arasu M.V. Green synthesis and characterization of silver nanoparticles from Moringa oleifera flower and assessment of antimicrobial and sensing properties. J. Photochem. Photobiol. B 2020 205 111836 10.1016/j.jphotobiol.2020.111836 32172135
    [Google Scholar]
  92. Dash S.S. Samanta S. Dey S. Giri B. Dash S.K. Rapid Green Synthesis of biogenic silvernanoparticles using Cinnamomum tamala leaf extract and its potential antimicrobial application against clinically isolated multidrug-resistant bacterial strains. Biol. Trace Elem. Res. 2020 198 2 681 696 10.1007/s12011‑020‑02107‑w 32180127
    [Google Scholar]
  93. Foroohimanjili F. Mirzaie A. Hamdi S.M.M. Noorbazargan H. Hedayati Ch M. Dolatabadi A. Rezaie H. Bishak F.M. Antibacterial, antibiofilm, and antiquorum sensing activities of phytosynthesized silver nanoparticles fabricated from Mespilus germanica extract against multidrug resistance of Klebsiella pneumoniae clinical strains. J. Basic Microbiol. 2020 60 3 216 230 10.1002/jobm.201900511 31994223
    [Google Scholar]
  94. Pilaquinga F. Amaguaña D. Morey J. Synthesis of silver nanoparticles using aqueous leaf extract of Mimosa albida (Mimosoideae): Characterization and antioxidant activity. Materials 2020 13 3 503 10.3390/ma13030503
    [Google Scholar]
  95. Shobana S. Veena S. Sameer S.S.M. Swarnalakshmi K. Vishal L.A. Green synthesis of silvernanoparticles using Artocarpus hirsutus seed extract and its antibacterial activity. Curr. Pharm. Biotechnol. 2020 21 10 980 989 10.2174/1389201021666200107115849 31914911
    [Google Scholar]
  96. Ali EM. Abdallah BM. Effective inhibition of candidiasis using an eco-friendly leaf extract of Calotropis-gigantean-mediated silver nanoparticles. Nanomaterials 2020 10 3 422 10.3390/nano10030422
    [Google Scholar]
  97. Osibe D.A. Chiejina N.V. Ogawa K. Aoyagi H. Stable antibacterial silver nanoparticles produced with seed-derived callus extract of Catharanthus roseus. Artif. Cells Nanomed. Biotechnol. 2018 46 6 1266 1273 10.1080/21691401.2017.1367927 28830244
    [Google Scholar]
  98. Torres-Martínez Y. Arredondo-Espinoza E. Puente C. González-Santiago O. Pineda-Aguilar N. Balderas-Rentería I. López I. Ramírez-Cabrera M.A. Synthesis of silver nanoparticles using a Mentha spicata extract and evaluation of its anticancer and cytotoxic activity. PeerJ 2019 7 e8142 10.7717/peerj.8142 31844570
    [Google Scholar]
  99. Balkrishna A. Sharma V.K. Das S.K. Mishra N. Bisht L. Joshi A. Sharma N. Characterization and anti-cancerous effect of Putranjiva roxburghii seed extract mediated silvernanoparticles on human colon (HCT-116), pancreatic (PANC-1) and breast (MDA-MB 231) cancer cell lines: A comparative study. Int. J. Nanomedicine 2020 15 573 585 10.2147/IJN.S230244 32158209
    [Google Scholar]
  100. Mohammadi M. Shahisaraee S.A. Tavajjohi A. Pournoori N. Muhammadnejad S. Mohammadi S.R. Poursalehi R. Delavari H H. Green synthesis of silver nanoparticles using Zingiber officinale and Thymus vulgaris extracts: characterisation, cell cytotoxicity, and its antifungal activity against Candida albicans in comparison to fluconazole. IET Nanobiotechnol. 2019 13 2 114 119 10.1049/iet‑nbt.2018.5146 31051440
    [Google Scholar]
  101. Sysak S. Czarczynska-Goslinska B. Szyk P. Koczorowski T. Mlynarczyk D.T. Szczolko W. Lesyk R. Goslinski T. Metal nanoparticle-flavonoid connections: Synthesis, physicochemical and biological properties, as well as potential applications in medicine. Nanomaterials (Basel) 2023 13 9 1531 10.3390/nano13091531 37177076
    [Google Scholar]
  102. Javed B. Raja N.I. Nadhman A. Mashwani Z-R. Understanding the potential of bio-fabricated non-oxidative silver nanoparticles to eradicate Leishmania and plant bacterial pathogens. Appl. Nanosci. 2020 10 6 2057 2067 10.1007/s13204‑020‑01355‑5
    [Google Scholar]
  103. Jha A.K. Prasad K. Kumar V. Prasad K. Biosynthesis of silver nanoparticles using Eclipta leaf. Biotechnol. Prog. 2009 25 5 1476 1479 10.1002/btpr.233 19725113
    [Google Scholar]
  104. Prabhu S. Poulose E.K. Silver nanoparticles: Mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int. Nano Lett. 2012 2 1 32 10.1186/2228‑5326‑2‑32
    [Google Scholar]
  105. Von White G. Kerscher P. Brown R.M. Morella J.D. McAllister W. Dean D. Kitchens C.L. Green synthesis of robust, biocompatible silver nanoparticles using garlic extract. J. Nanomater. 2012 2012 1 730746 10.1155/2012/730746 24683414
    [Google Scholar]
  106. Christensen L. Vivekanandhan S. Misra M. Kumar Mohanty A. Biosynthesis of silver nanoparticles using murraya koenigii (curry leaf): An investigation on the effect of broth concentration in reduction mechanism and particle size. Adv. Mater. Lett. 2011 2 6 429 434 10.5185/amlett.2011.4256
    [Google Scholar]
  107. Gan P.P. Li S.F.Y. Potential of plant as a biological factory to synthesize gold and silver nanoparticles and their applications. Rev. Environ. Sci. Biotechnol. 2012 11 2 169 206 10.1007/s11157‑012‑9278‑7
    [Google Scholar]
  108. Aziz W.J. Jassim H.A. A novel study of pH influence on Ag nanoparticles size with antibacterial and antifungal activity using green synthesis. World Sci. News 2018 97 139 152
    [Google Scholar]
  109. Velmurugan P. Lee S.M. Iydroose M. Lee K.J. Oh B.T. Pine cone-mediated green synthesis of silver nanoparticles and their antibacterial activity against agricultural pathogens. Appl. Microbiol. Biotechnol. 2013 97 1 361 368 10.1007/s00253‑012‑3892‑8 22290649
    [Google Scholar]
  110. Tripathi A. Chandrasekaran N. Raichur A.M. Mukherjee A. Antibacterial applications of silver nanoparticles synthesized by aqueous extract of Azadirachta indica (Neem) leaves. J. Biomed. Nanotechnol. 2009 5 1 93 98 10.1166/jbn.2009.038 20055111
    [Google Scholar]
  111. Marciniak L. Nowak M. Trojanowska A. Tylkowski B. Jastrzab R. The effect of pH on the size of silver nanoparticles obtained in the reduction reaction with citric and malic acids. Materials (Basel) 2020 13 23 5444 10.3390/ma13235444 33260479
    [Google Scholar]
  112. Khodashenas B. Ghorbani H.R. Synthesis of silver nanoparticles with different shapes. Arab. J. Chem. 2019 12 8 1823 1838 10.1016/j.arabjc.2014.12.014
    [Google Scholar]
  113. Antony J.J. Sivalingam P. Siva D. Kamalakkannan S. Anbarasu K. Sukirtha R. Krishnan M. Achiraman S. Comparative evaluation of antibacterial activity of silver nanoparticles synthesized using Rhizophora apiculata and glucose. Colloids Surf. B Biointerfaces 2011 88 1 134 140 10.1016/j.colsurfb.2011.06.022 21764570
    [Google Scholar]
  114. Mahbubul I.M. Introduction to nanofluid. Preparation, Characterization, Properties and Application of Nanofluid William Andrew 2019 1 13 10.1016/B978‑0‑12‑813245‑6.00001‑0
    [Google Scholar]
  115. Clogston J.D. Patri A.K. Zeta potential measurement. Methods Mol. Biol. 2011 697 63 70 10.1007/978‑1‑60327‑198‑1_6 21116954
    [Google Scholar]
  116. Elamawi R.M. Al-Harbi R.E. Hendi A.A. Biosynthesis and characterization of silver nanoparticles using Trichoderma longibrachiatum and their effect on phytopathogenic fungi. Egypt. J. Biol. Pest Control 2018 28 1 28 10.1186/s41938‑018‑0028‑1
    [Google Scholar]
  117. Liaqat N. Jahan N. Khalil-ur-Rahman Anwar T. Qureshi H. Green synthesized silver nanoparticles: Optimization, characterization, antimicrobial activity, and cytotoxicity study by hemolysis assay. Front Chem. 2022 10 952006 10.3389/fchem.2022.952006 36105303
    [Google Scholar]
  118. Raza S. Ansari A. Siddiqui N.N. Ibrahim F. Abro M.I. Aman A. Biosynthesis of silver nanoparticles for the fabrication of non cytotoxic and antibacterial metallic polymer based nanocomposite system. Sci. Rep. 2021 11 1 10500 10.1038/s41598‑021‑90016‑w 34006995
    [Google Scholar]
  119. Savvidou M.G. Kontari E. Kalantzi S. Mamma D. Green synthesis of silver nanoparticles using the cell-free supernatant of Haematococcus pluvialis culture. Materials (Basel) 2023 17 1 187 10.3390/ma17010187 38204044
    [Google Scholar]
  120. Xu J. Yıldıztekin M. Han D. Keskin C. Baran A. Baran M.F. Eftekhari A. Ava C.A. Kandemir S.İ. Cebe D.B. Dağ B. Beilerli A. Khalilov R. Biosynthesis, characterization, and investigation of antimicrobial and cytotoxic activities of silver nanoparticles using Solanum tuberosum peel aqueous extract. Heliyon 2023 9 8 e19061 10.1016/j.heliyon.2023.e19061 37636361
    [Google Scholar]
  121. Al-Soub A. Khleifat K. Al-Tarawneh A. Al-limoun M. Alfarrayeh I. Sarayreh A.A. Qaisi Y.A. Qaralleh H. Alqaraleh M. Albashaireh A. Silver nanoparticles biosynthesis using an airborne fungal isolate, Aspergillus flavus: Optimization, characterization and antibacterial activity. Iran. J. Microbiol. 2022 14 4 518 528 10.18502/ijm.v14i4.10238 36721511
    [Google Scholar]
  122. Sharma A. Sagar A. Rana J. Rani R. Green synthesis of silver nanoparticles and its antibacterial activity using fungus Talaromyces purpureogenus isolated from Taxus baccata Linn. Micro and Nano Systems Letters 2022 10 1 2 10.1186/s40486‑022‑00144‑9
    [Google Scholar]
  123. Alghuthaymi M.A. Abd-Elsalam K.A. Shami A. Said-Galive E. Shtykova E.V. Naumkin A.V. Silver/chitosan nanocomposites: Preparation and characterization and their fungicidal activity against dairy cattle toxicosis Penicillium expansum. J. Fungi (Basel) 2020 6 2 51 10.3390/jof6020051 32325907
    [Google Scholar]
  124. Cobos M. De-La-Pinta I. Quindós G. Fernández M.J. Fernández M.D. Graphene oxide–silver nanoparticle nanohybrids: Synthesis, characterization, and antimicrobial properties. Nanomaterials (Basel) 2020 10 2 376 10.3390/nano10020376 32098083
    [Google Scholar]
  125. Xiong K. Liang Y. Ou-yang Y. Wu D. Fu R. Nanohybrids of silver nanoparticles grown in-situ on a graphene oxide silver ion salt: Simple synthesis and their enhanced antibacterial activity. N. Carbon Mater. 2019 34 5 426 433 10.1016/S1872‑5805(19)60024‑7
    [Google Scholar]
  126. Al-Senani G.M. Abdelfatah A. Abdel-Gawad O.F. Alshabanat M.N. Shaban M. Al-Ghamdi A. Mohamed F. Polyaminophenol/glycerol–silver nanohybrids: Synthesis, characterization, and antimicrobial activity. J. Polym. Environ. 2024 10.1007/s10924‑024‑03331‑4
    [Google Scholar]
  127. Rodríguez Nuñez Y. Castro R. Arenas F. López-Cabaña Z. Carreño G. Carrasco-Sánchez V. Marican A. Villaseñor J. Vargas E. Santos L. Durán-Lara E. Preparation of hydrogel/silver nanohybrids mediated by tunable-size silver nanoparticles for potential antibacterial applications. Polymers (Basel) 2019 11 4 716 10.3390/polym11040716 31010156
    [Google Scholar]
  128. Control of neglected tropical diseases. Available from: https://www.who.int/teams/control-of-neglected-tropical-diseases
  129. Rodrigues M.L. Albuquerque P.C. Albuquerque P.C. Searching for a change: The need for increased support for public health and research on fungal diseases. PLoS Negl. Trop. Dis. 2018 12 6 e0006479 10.1371/journal.pntd.0006479 29902170
    [Google Scholar]
  130. Queiroz-Telles F. Fahal A.H. Falci D.R. Caceres D.H. Chiller T. Pasqualotto A.C. Neglected endemic mycoses. Lancet Infect. Dis. 2017 17 11 e367 e377 10.1016/S1473‑3099(17)30306‑7 28774696
    [Google Scholar]
  131. Ramirez J.L. Dunlap C.A. Muturi E.J. Barletta A.B.F. Rooney A.P. Entomopathogenic fungal infection leads to temporospatial modulation of the mosquito immune system. PLoS Negl. Trop. Dis. 2018 12 4 e0006433 10.1371/journal.pntd.0006433 29684026
    [Google Scholar]
  132. Chakrabarti A. Chatterjee S.S. Shivaprakash M.R. Overview of opportunistic fungal infections in India. Nippon Ishinkin Gakkai Zasshi 2008 49 3 165 172 10.3314/jjmm.49.165 18689964
    [Google Scholar]
  133. Gibała A. Żeliszewska P. Gosiewski T. Krawczyk A. Duraczyńska D. Szaleniec J. Szaleniec M. Oćwieja M. Antibacterial and antifungal properties of silver nanoparticles — Effect of a surface-stabilizing agent. Biomolecules 2021 11 10 1481 10.3390/biom11101481 34680114
    [Google Scholar]
  134. Kaur P. Thakur R. Choudhary A. An in vitro study of the antifungal activity of silver/chitosan nanoformulations against important seed borne pathogens. Int J Sci Technol Res. 2012 1 83 86
    [Google Scholar]
  135. Kathiravan V. Ravi S. Ashokkumar S. Velmurugan S. Elumalai K. Khatiwada C.P. Green synthesis of silver nanoparticles using Croton sparsiflorus morong leaf extract and their antibacterial and antifungal activities. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015 139 200 205 10.1016/j.saa.2014.12.022 25561298
    [Google Scholar]
  136. Khatami M. Pourseyedi S. Phoenix dactylifera (date palm) pit aqueous extract mediated novel route for synthesis high stable silver nanoparticles with high antifungal and antibacterial activity. IET Nanobiotechnol. 2015 9 4 184 190 10.1049/iet‑nbt.2014.0052 26224347
    [Google Scholar]
  137. Bankar A. Joshi B. Kumar A.R. Zinjarde S. Banana peel extract mediated novel route for the synthesis of silver nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2010 368 1-3 58 63 10.1016/j.colsurfa.2010.07.024
    [Google Scholar]
  138. Singh A. Jain D. Upadhyay M.K. Green synthesis of silver nanoparticles using Argemone mexicana leaf extract and evaluation of their antimicrobial activities. Dig. J. Nanomater. Biostruct. 2010 5 483 489
    [Google Scholar]
  139. Vivek M. Kumar P.S. Steffi S. Sudha S. Biogenic silver nanoparticles by Gelidiella acerosa extract and their antifungal effects. Avicenna J. Med. Biotechnol. 2011 3 3 143 148 23408653
    [Google Scholar]
  140. Govindaraju K. Tamilselvan S. Kiruthiga V. Biogenic silver nanoparticles by Solanum torvum and their promising antimicrobial activity. J. Biopesticides 2010 3 394 399
    [Google Scholar]
  141. Nagajyothi P.C. Lee K.D. Synthesis of plant-mediated silver nanoparticles using Dioscorea batatas rhizome extract and evaluation of their antimicrobial activities. J. Nanomater. 2011 2011 1 7 10.1155/2011/573429
    [Google Scholar]
  142. Vankar P.S. Shukla D. Biosynthesis of silver nanoparticles using lemon leaves extract and its application for antimicrobial finish on fabric. Appl. Nanosci. 2012 2 2 163 168 10.1007/s13204‑011‑0051‑y
    [Google Scholar]
  143. Masurkar S.A. Chaudhari P.R. Shidore V.B. Kamble S.P. Rapid biosynthesis of silver nanoparticles using Cymbopogan Citratus (Lemongrass) and its antimicrobial activity. Nano-Micro Lett. 2011 3 3 189 194 10.1007/BF03353671
    [Google Scholar]
  144. Prasad T.N.V.K.V. Elumalai E.K. Biofabrication of Ag nanoparticles using Moringa oleifera leaf extract and their antimicrobial activity. Asian Pac. J. Trop. Biomed. 2011 1 6 439 442 10.1016/S2221‑1691(11)60096‑8 23569809
    [Google Scholar]
  145. Rao M.L. Savithramma N. Biological synthesis of silver nanoparticles using Svensonia hyderabadensis leaf extract and evaluation of their antimicrobial efficacy. J Pharm Sci Res. 2011 3 1117 1121
    [Google Scholar]
  146. Rout Y. Green synthesis of silver nanoparticles using Ocimum sanctum (Tulashi) and study of their antibacterial and antifungal activities. J. Microbiol. Antimicrob. 2012 4 6 103 109 10.5897/JMA11.060
    [Google Scholar]
  147. Nguyen DH. Lee JS. Park KD. Green silver nanoparticles formed by Phyllanthus urinaria, Pouzolzia zeylanica, and Scoparia dulcis leaf extracts and the antifungal activity. Nanomaterials 2020 10 3 542 10.3390/nano10030542
    [Google Scholar]
  148. Thombre R. Parekh F. Patil N. Green synthesis of silver nanoparticles using seed extract of Argyreia nervosa. Int. J. Pharm. Biol. Sci. 2014 5 114 119
    [Google Scholar]
  149. Narayanan K.B. Park H.H. Antifungal activity of silver nanoparticles synthesized using turnip leaf extract (Brassica rapa L.) against wood rotting pathogens. Eur. J. Plant Pathol. 2014 140 2 185 192 10.1007/s10658‑014‑0399‑4
    [Google Scholar]
  150. Valsalam S. Agastian P. Arasu M.V. Al-Dhabi N.A. Ghilan A.K.M. Kaviyarasu K. Ravindran B. Chang S.W. Arokiyaraj S. Rapid biosynthesis and characterization of silver nanoparticles from the leaf extract of Tropaeolum majus L. and its enhanced in-vitro antibacterial, antifungal, antioxidant and anticancer properties. J. Photochem. Photobiol. B 2019 191 65 74 10.1016/j.jphotobiol.2018.12.010 30594044
    [Google Scholar]
  151. Arsène M.M.J. Viktorovna P.I. Alla M. Mariya M. Nikolaevitch S.A. Davares A.K.L. Yurievna M.E. Rehailia M. Gabin A.A. Alekseevna K.A. Vyacheslavovna Y.N. Vladimirovna Z.A. Svetlana O. Milana D. Antifungal activity of silver nanoparticles prepared using Aloe vera extract against Candida albicans. Vet. World 2023 16 1 18 26 10.14202/vetworld.2023.18‑26 36855352
    [Google Scholar]
  152. Medda S. Hajra A. Dey U. Bose P. Mondal N.K. Biosynthesis of silver nanoparticles from Aloe vera leaf extract and antifungal activity against Rhizopus sp. and Aspergillus sp. Appl. Nanosci. 2015 5 7 875 880 10.1007/s13204‑014‑0387‑1
    [Google Scholar]
  153. Kumar P. Senthamil Selvi S. Govindaraju M. Seaweed-mediated biosynthesis of silver nanoparticles using Gracilaria corticata for its antifungal activity against Candida spp. Appl. Nanosci. 2013 3 6 495 500 10.1007/s13204‑012‑0151‑3
    [Google Scholar]
  154. Soares M.R.P.S. Corrêa R.O. Stroppa P.H.F. Marques F.C. Andrade G.F.S. Corrêa C.C. Brandão M.A.F. Raposo N.R.B. Biosynthesis of silver nanoparticles using Caesalpinia ferrea (Tul.) Martius extract: Physicochemical characterization, antifungal activity and cytotoxicity. PeerJ 2018 6 e4361 10.7717/peerj.4361 29576936
    [Google Scholar]
  155. Khatami M. Nejad M.S. Salari S. Almani P.G.N. Plant-mediated green synthesis of silver nanoparticles using Trifolium resupinatum seed exudate and their antifungal efficacy on Neofusicoccum parvum and Rhizoctonia solani. IET Nanobiotechnol. 2016 10 4 237 243 10.1049/iet‑nbt.2015.0078 27463795
    [Google Scholar]
  156. Parvataneni R. Biogenic synthesis and characterization of silver nanoparticles using aqueous leaf extract of Scoparia dulcis L. and assessment of their antimicrobial property. Drug Chem. Toxicol. 2020 43 3 307 321 10.1080/01480545.2018.1505903 30915859
    [Google Scholar]
  157. Wang L. Wu Y. Xie J. Wu S. Wu Z. Characterization, antioxidant and antimicrobial activities of green synthesized silver nanoparticles from Psidium guajava L. leaf aqueous extracts. Mater. Sci. Eng. C 2018 86 1 8 10.1016/j.msec.2018.01.003 29525084
    [Google Scholar]
  158. Khan S. Singh S. Gaikwad S. Optimization of process parameters for the synthesis of silver nanoparticles from Piper betle leaf aqueous extract, and evaluation of their antiphytofungal activity. Environ. Sci. Pollut. Res. Int. 2019 27 22 27221 27233 10.1007/s11356‑019‑05239‑2 31065983
    [Google Scholar]
  159. Haroon M. Zaidi A. Ahmed B. Rizvi A. Khan M.S. Musarrat J. Effective inhibition of phytopathogenic microbes by eco-friendly leaf extract mediated silver nanoparticles (AgNPs). Indian J. Microbiol. 2019 59 3 273 287 10.1007/s12088‑019‑00801‑5 31388204
    [Google Scholar]
  160. Biswas A. Vanlalveni C. Adhikari P.P. Lalfakzuala R. Rokhum L. Green biosynthesis, characterisation and antimicrobial activities of silver nanoparticles using fruit extract of Solanum viarum. IET Nanobiotechnol. 2018 12 7 933 938 10.1049/iet‑nbt.2018.0050 30247133
    [Google Scholar]
  161. Jayaseelan C. Ramkumar R. Rahuman A.A. Perumal P. Green synthesis of gold nanoparticles using seed aqueous extract of Abelmoschus esculentus and its antifungal activity. Ind. Crops Prod. 2013 45 423 429 10.1016/j.indcrop.2012.12.019
    [Google Scholar]
  162. Ibrahim H.M.M. Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J. Radiat. Res Appl. Sci. 2015 8 3 265 275 10.1016/j.jrras.2015.01.007
    [Google Scholar]
  163. Sulaiman G.M. Mohammed W.H. Marzoog T.R. Al-Amiery A.A.A. Kadhum A.A.H. Mohamad A.B. Green synthesis, antimicrobial and cytotoxic effects of silver nanoparticles using Eucalyptus chapmaniana leaves extract. Asian Pac. J. Trop. Biomed. 2013 3 1 58 63 10.1016/S2221‑1691(13)60024‑6 23570018
    [Google Scholar]
  164. Rao N.H. N L. Pammi S.V.N. Kollu P. S G. P L. Green synthesis of silver nanoparticles using methanolic root extracts of Diospyros paniculata and their antimicrobial activities. Mater. Sci. Eng. C 2016 62 553 557 10.1016/j.msec.2016.01.072 26952458
    [Google Scholar]
  165. Ali S.G. Khan H.M. Jalal M. Green synthesis of silver nanoparticles using the leaf extract of Putranjiva roxburghii wall and their antimicrobial activity. Asian J. Pharm. Clin. Res. 2015 8 335 338
    [Google Scholar]
  166. Khatami M. Pourseyedi S. Khatami M. Hamidi H. Zaeifi M. Soltani L. Synthesis of silver nanoparticles using seed exudates of Sinapis arvensis as a novel bioresource, and evaluation of their antifungal activity. Bioresour. Bioprocess. 2015 2 1 19 10.1186/s40643‑015‑0043‑y
    [Google Scholar]
  167. Ghaedi M. Yousefinejad M. Safarpoor M. Khafri H.Z. Purkait M.K. Rosmarinus officinalis leaf extract mediated green synthesis of silver nanoparticles and investigation of its antimicrobial properties. J. Ind. Eng. Chem. 2015 31 167 172 10.1016/j.jiec.2015.06.020
    [Google Scholar]
  168. Ajitha B. Reddy Y.A.K. Reddy P.S. Biosynthesis of silver nanoparticles using Momordica charantia leaf broth: Evaluation of their innate antimicrobial and catalytic activities. J. Photochem. Photobiol. B 2015 146 1 9 10.1016/j.jphotobiol.2015.02.017 25771428
    [Google Scholar]
  169. Kolya H. Maiti P. Pandey A. Tripathy T. Green synthesis of silver nanoparticles with antimicrobial and azo dye (Congo red) degradation properties using Amaranthus gangeticus Linn leaf extract. J. Anal. Sci. Technol. 2015 6 1 33 10.1186/s40543‑015‑0074‑1
    [Google Scholar]
  170. Sundararajan B. Mahendran G. Thamaraiselvi R. Ranjitha Kumari B.D. Biological activities of synthesized silver nanoparticles from Cardiospermum halicacabum L. Bull. Mater. Sci. 2016 39 2 423 431 10.1007/s12034‑016‑1174‑2
    [Google Scholar]
  171. Zaheer Z. Biogenic synthesis, optical, catalytic, and in vitro antimicrobial potential of Ag-nanoparticles prepared using Palm date fruit extract. J. Photochem. Photobiol. B 2018 178 584 592 10.1016/j.jphotobiol.2017.12.002 29272851
    [Google Scholar]
  172. Al Aboody M.S. Silver/silver chloride (Ag/AgCl) nanoparticles synthesized from Azadirachta indica lalex and its antibiofilm activity against fluconazole resistant Candida tropicalis. Artif. Cells Nanomed. Biotechnol. 2019 47 1 2107 2113 10.1080/21691401.2019.1620257 31137983
    [Google Scholar]
  173. Balamanikandan T. Balaji S. Pandiarajan J.J. Biological synthesis of silver nanoparticles by using onion (Allium cepa) extract and their antibacterial and antifungal activity. World Appl. Sci. J. 2015 33 939 943
    [Google Scholar]
  174. Vijayan R. Joseph S. Mathew B. Indigofera tinctoria leaf extract mediated green synthesis of silver and gold nanoparticles and assessment of their anticancer, antimicrobial, antioxidant and catalytic properties. Artif. Cells Nanomed. Biotechnol. 2018 46 4 861 871 10.1080/21691401.2017.1345930 28681622
    [Google Scholar]
  175. Fernandes R.A. Berretta A.A. Torres E.C. Buszinski A.F.M. Fernandes G.L. Mendes-Gouvêa C.C. De Souza-Neto F.N. Gorup L.F. De Camargo E.R. Barbosa D.B. Antimicrobial potential and cytotoxicity of silver nanoparticles phytosynthesized by pomegranate peel extract. Antibiotics (Basel) 2018 7 3 51 10.3390/antibiotics7030051 29949885
    [Google Scholar]
  176. Ajitha B. Ashok Kumar Reddy Y. Rajesh K.M. Sreedhara Reddy P. Sesbania grandiflora leaf extract assisted green synthesis of silver nanoparticles: Antimicrobial activity. Mater. Today Proc. 2016 3 6 1977 1984 10.1016/j.matpr.2016.04.099
    [Google Scholar]
  177. Padalia H. Moteriya P. Chanda S. Green synthesis of silver nanoparticles from marigold flower and its synergistic antimicrobial potential. Arab. J. Chem. 2015 8 5 732 741 10.1016/j.arabjc.2014.11.015
    [Google Scholar]
  178. Ajitha B. Ashok Kumar Reddy Y. Sreedhara Reddy P. Biosynthesis of silver nanoparticles using Plectranthus amboinicus leaf extract and its antimicrobial activity. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014 128 257 262 10.1016/j.saa.2014.02.105 24674916
    [Google Scholar]
  179. Gaddam S.A. Kotakadi V.S. Sai Gopal D.V.R. Subba Rao Y. Varada Reddy A. Efficient and robust biofabrication of silver nanoparticles by cassia alata leaf extract and their antimicrobial activity. J. Nanostructure Chem. 2014 4 1 82 10.1007/s40097‑014‑0082‑5
    [Google Scholar]
  180. Mohamed N.H. Ismail M.A. Abdel-Mageed W.M. Mohamed Shoreit A.A. Antimicrobial activity of latex silver nanoparticles using Calotropis procera. Asian Pac. J. Trop. Biomed. 2014 4 11 876 883 10.12980/APJTB.4.201414B216
    [Google Scholar]
  181. Shaik M. Khan M. Kuniyil M. Al-Warthan A. Alkhathlan H. Siddiqui M. Shaik J. Ahamed A. Mahmood A. Khan M. Adil S. Plant-extract-assisted green synthesis of silver nanoparticles using Origanum vulgare L. extract and their microbicidal activities. Sustainability (Basel) 2018 10 4 913 10.3390/su10040913
    [Google Scholar]
  182. Velmurugan P. Sivakumar S. Young-Chae S. Seong-Ho J. Pyoung-In Y. Jeong-Min S. Sung-Chul H. Synthesis and characterization comparison of peanut shell extract silver nanoparticles with commercial silver nanoparticles and their antifungal activity. J. Ind. Eng. Chem. 2015 31 51 54 10.1016/j.jiec.2015.06.031
    [Google Scholar]
  183. Khatoon N. Sharma Y. Sardar M. Manzoor N. Mode of action and anti-Candida activity of Artemisia annua mediated-synthesized silver nanoparticles. J. Mycol. Med. 2019 29 3 201 209 10.1016/j.mycmed.2019.07.005 31378442
    [Google Scholar]
  184. Lee S.H. Jun B.H. Silver Nanoparticles: Synthesis and Application for Nanomedicine. Int. J. Mol. Sci. 2019 20 4 865 10.3390/ijms20040865 30781560
    [Google Scholar]
  185. Dakal T.C. Kumar A. Majumdar R.S. Yadav V. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front. Microbiol. 2016 7 1831 10.3389/fmicb.2016.01831 27899918
    [Google Scholar]
  186. Abdal Dayem A. Hossain M. Lee S. Kim K. Saha S. Yang G.M. Choi H. Cho S.G. The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles. Int. J. Mol. Sci. 2017 18 1 120 10.3390/ijms18010120 28075405
    [Google Scholar]
  187. Alsalhi M.S. Devanesan S. Synthesis of silver nanoparticles from Abelmoschus esculentus extract. US Patent 10059601B1 2018
  188. Awad 2016 Synthesis of nanoparticles of metals and metal oxides using plant seed extract. US Patent 9428399B1
  189. Hoag G.E. Collins J.B. Varma R.S. Nadagouda M.N. 2011 Green synthesis of nanometals using plant extracts and use thereof. US Patent 8057682B2
  190. Varma R.S. Baruwati B. Hoag G.E. Collins J.B. 2011 Green synthesis of nanometals using fruit extracts and use thereof. US Patent 20110110723A1
  191. Alsalhi M.S. Alfuraydi A.A. Devanesan S. 2016 Synthesis of silver nanoparticles from Pimpinella anisum seeds. US Patent 9144544B1
  192. Oroumi G. Monsef R. Dawi E.A. Aljeboree A.M. Alubiady M.H.S. Al-Ani A.M. Salavati-Niasari M. Achieving new insights on rational design and application of double perovskite Y2CrMnO6 nanostructures as potential materials for electrochemical hydrogen storage performance. J. Energy Storage 2024 85 111161 10.1016/j.est.2024.111161
    [Google Scholar]
  193. Amiri M. Pardakhti A. Ahmadi-Zeidabadi M. Akbari A. Salavati-Niasari M. Magnetic nickel ferrite nanoparticles: Green synthesis by Urtica and therapeutic effect of frequency magnetic field on creating cytotoxic response in neural cell lines. Colloids Surf. B Biointerfaces 2018 172 244 253 10.1016/j.colsurfb.2018.08.049 30173091
    [Google Scholar]
  194. Safardoust-Hojaghan H. Salavati-Niasari M. Amiri O. Hassanpour M. Preparation of highly luminescent nitrogen doped graphene quantum dots and their application as a probe for detection of Staphylococcus aureus and E. coli. J. Mol. Liq. 2017 241 1114 1119 10.1016/j.molliq.2017.06.106
    [Google Scholar]
  195. Mazloom F. Masjedi-Arani M. Ghiyasiyan-Arani M. Salavati-Niasari M. Novel sodium dodecyl sulfate-assisted synthesis of Zn3V2O8 nanostructures via a simple route. J. Mol. Liq. 2016 214 46 53 10.1016/j.molliq.2015.11.033
    [Google Scholar]
  196. Guidelines for evaluation of nanopharmaceuticals in India. Available from: https://cdsco.gov.in/opencms/resources/UploadCDSCOWeb/2018/UploadPublic_NoticesFiles/newdrunoti7march.pdf
/content/journals/cnanom/10.2174/0124681873323798241105025029
Loading
/content/journals/cnanom/10.2174/0124681873323798241105025029
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test