Skip to content
2000
Cover image Placeholder

Abstract

The unveiled properties of a wide variety of engineered nano assembly materials, such as nanostructures and quantum dots groups in cell biology and physiology, reveal desired interactivity at a fundamental molecular level. The vast progress in therapeutic strategies developed for nanoscale measurement and manipulation, which have functional nanostructures for sensing and modulating, entails specific interactions with neurons and glial cells without the need for genetic modification. The current tempo trend for the advancement of technologies is promising and fast- forward. The present opinion seeks to map the function of nano-enabled neural interfaces that have proven their potential in technological advancements in electronics and energy harvesting to biomedicine.

Loading

Article metrics loading...

/content/journals/cnanom/10.2174/0124681873337695240919110801
2024-10-02
2024-10-09
Loading full text...

Full text loading...

References

  1. Wang L. Yang S. Li L. Huang Y. Li R. Fang S. Jing J. Yang C. A low-intensity repetitive transcranial magnetic stimulation coupled to magnetic nanoparticles loaded with scutellarin enhances brain protection against cerebral ischemia reperfusion injury. J. Drug Deliv. Sci. Technol. 2022 74 103606 10.1016/j.jddst.2022.103606
    [Google Scholar]
  2. Lu Q.B. Sun J.F. Yang Q.Y. Cai W.W. Xia M.Q. Wu F.F. Gu N. Zhang Z.J. Magnetic brain stimulation using iron oxide nanoparticle-mediated selective treatment of the left prelimbic cortex as a novel strategy to rapidly improve depressive-like symptoms in mice. Zool. Res. 2020 41 4 381 394 10.24272/j.issn.2095‑8137.2020.076 32400977
    [Google Scholar]
  3. Afshari M. Gharibzadeh S. Pouretemad H. Roghani M. Reversing valproic acid-induced autism-like behaviors through a combination of low-frequency repeated transcranial magnetic stimulation and superparamagnetic iron oxide nanoparticles. Sci. Rep. 2024 14 1 8082 10.1038/s41598‑024‑58871‑5 38582936
    [Google Scholar]
  4. Kopyl S. Surmenev R. Surmeneva M. Fetisov Y. Kholkin A. Magnetoelectric effect: Principles and applications in biology and medicine– a review. Mater. Today Bio 2021 12 100149 10.1016/j.mtbio.2021.100149 34746734
    [Google Scholar]
  5. Anand S. Müller C.A. Nørrehvedde Jensen B. Chen M. Embracing remote fields as the fourth dimension of tissue biofabrication. Adv. Funct. Mater. 2024 34 32 2401654 10.1002/adfm.202401654
    [Google Scholar]
  6. Fan H. Central Nervous System Nanotechnology Springer 2022 1 38 10.1007/978‑981‑13‑9374‑7_29‑1
    [Google Scholar]
  7. Qu W. Chen B. Shu W. Tian H. Ou X. Zhang X. Wang Y. Wu M. Polymer-based scaffold strategies for spinal cord repair and regeneration. Front. Bioeng. Biotechnol. 2020 8 590549 10.3389/fbioe.2020.590549 33117788
    [Google Scholar]
  8. Manousiouthakis E. Park J. Hardy J.G. Lee J.Y. Schmidt C.E. Towards the translation of electroconductive organic materials for regeneration of neural tissues. Acta Biomater. 2022 139 22 42 10.1016/j.actbio.2021.07.065 34339871
    [Google Scholar]
  9. Jiang Y. Fu P. Liu Y. Wang C. Zhao P. Chu X. Jiang X. Yang W. Wu Y. Wang Y. Xu G. Hu J. Bu W. Near-infrared light-triggered NO release for spinal cord injury repair. Sci. Adv. 2020 6 39 eabc3513 10.1126/sciadv.abc3513 32978153
    [Google Scholar]
  10. Wang Y. Gold nanomaterial-enabled optical neural stimulation. Neural Interface Engineering. Springer Cham 2020 337 346 10.1007/978‑3‑030‑41854‑0_14
    [Google Scholar]
  11. Damnjanovic R. Bazard P. Frisina R.D. Bhethanabotla V.R. Hybrid electro-plasmonic neural stimulation with visible-light-sensitive gold nanoparticles. ACS Nano 2020 14 9 10917 10928 10.1021/acsnano.0c00722 32603090
    [Google Scholar]
  12. Shi L. Jiang Y. Zheng N. Cheng J.X. Yang C. High-precision neural stimulation through optoacoustic emitters. Neurophotonics 2022 9 3 032207 10.1117/1.NPh.9.3.032207 35355658
    [Google Scholar]
  13. Chavda V.P. Pandya A. Kumar L. Raval N. Vora L.K. Pulakkat S. Patravale V. Salwa Duo Y. Tang B.Z. Exosome nanovesicles: A potential carrier for therapeutic delivery. Nano Today 2023 49 101771 10.1016/j.nantod.2023.101771
    [Google Scholar]
  14. Ünsal Ö. Future perspectives on peptide therapeutics. Peptide and Peptidomimetic Therapeutics. Elsevier 2022 699 726 10.1016/B978‑0‑12‑820141‑1.00003‑0
    [Google Scholar]
  15. Kaushik A. Jayant R.D. Nikkhah-Moshaie R. Bhardwaj V. Roy U. Huang Z. Ruiz A. Yndart A. Atluri V. El-Hage N. Khalili K. Nair M. Magnetically guided central nervous system delivery and toxicity evaluation of magneto-electric nanocarriers. Sci. Rep. 2016 6 1 25309 10.1038/srep25309 27143580
    [Google Scholar]
  16. Murugan C. Lee H. Park S. Tumor-targeted molybdenum disulfide@barium titanate core–shell nanomedicine for dual photothermal and chemotherapy of triple-negative breast cancer cells. J. Mater. Chem. B Mater. Biol. Med. 2023 11 5 1044 1056 10.1039/D2TB02382B 36606505
    [Google Scholar]
  17. Zhang Z. You Y. Ge M. Lin H. Shi J. Functional nanoparticle-enabled non-genetic neuromodulation. J. Nanobiotechnology 2023 21 1 319 10.1186/s12951‑023‑02084‑x 37674191
    [Google Scholar]
  18. Ahmed S. Mahmood S. Danish Ansari M. Gull A. Sharma N. Sultana Y. Nanostructured lipid carrier to overcome stratum corneum barrier for the delivery of agomelatine in rat brain; Formula optimization, characterization and brain distribution study. Int. J. Pharm. 2021 607 121006 10.1016/j.ijpharm.2021.121006 34391848
    [Google Scholar]
  19. Kumar M. Nishad D.K. Kumar A. Bhatnagar A. Karwasra R. Khanna K. S K. Sharma D. Dua K. Mudaliyar V. Sharma N. Enhancement in brain uptake of vitamin D 3 nanoemulsion for treatment of cerebral ischemia: Formulation, gamma scintigraphy and efficacy study in transient middle cerebral artery occlusion rat models. J. Microencapsul. 2020 37 7 492 501 10.1080/02652048.2020.1801870 32715833
    [Google Scholar]
  20. Soleymani M. Khalighfard S. Khodayari S. Khodayari H. Kalhori M.R. Hadjighassem M.R. Shaterabadi Z. Alizadeh A.M. Effects of multiple injections on the efficacy and cytotoxicity of folate-targeted magnetite nanoparticles as theranostic agents for MRI detection and magnetic hyperthermia therapy of tumor cells. Sci. Rep. 2020 10 1 1695 10.1038/s41598‑020‑58605‑3 32015364
    [Google Scholar]
  21. Shakeri-Zadeh A. Rezaeyan A. Sarikhani A. Ghaffari H. Samadian H. Khademi S. Ghaznavi H. Bulte J.W.M. Folate receptor- targeted nanoprobes for molecular imaging of cancer: Friend or foe? Nano Today 2021 39 101173 10.1016/j.nantod.2021.101173
    [Google Scholar]
  22. Zhao Y. Cui C. Zhan J. Xuan G. Study of folate receptor-targeted macromolecular gadolinium complex tumor contrast agent. Mater. Today Commun. 2022 33 104988 10.1016/j.mtcomm.2022.104988
    [Google Scholar]
  23. Lai Y.H. Su C.Y. Cheng H.W. Chu C.Y. Jeng L.B. Chiang C.S. Shyu W.C. Chen S.Y. Stem cell–nanomedicine system as a theranostic bio-gadolinium agent for targeted neutron capture cancer therapy. Nat. Commun. 2023 14 1 285 10.1038/s41467‑023‑35935‑0 36650171
    [Google Scholar]
  24. Zhou Y.T. Cheng K. Liu B. Cao Y.C. Fan J.X. Liu Z.G. Zhao Y.D. Recent progress of nano-drugs in neutron capture therapy. Theranostics 2024 14 8 3193 3212 10.7150/thno.95034 38855185
    [Google Scholar]
  25. Zare I. Zirak Hassan Kiadeh S. Varol A. Ören Varol T. Varol M. Sezen S. Zarepour A. Mostafavi E. Zahed Nasab S. Rahi A. Khosravi A. Zarrabi A. Glycosylated nanoplatforms: From glycosylation strategies to implications and opportunities for cancer theranostics. J. Control. Release 2024 371 158 178 10.1016/j.jconrel.2024.05.032 38782062
    [Google Scholar]
  26. Fortes Brollo M.E. Domínguez-Bajo A. Tabero A. Domínguez-Arca V. Gisbert V. Prieto G. Johansson C. Garcia R. Villanueva A. Serrano M.C. Morales M.P. Combined magnetoliposome formation and drug loading in one step for efficient alternating current-magnetic field remote-controlled drug release. ACS Appl. Mater. Interfaces 2020 12 4 4295 4307 10.1021/acsami.9b20603 31904927
    [Google Scholar]
  27. Patel M. Meenu M. Pandey J.K. Kumar P. Patel R. Recent development in upconversion nanoparticles and their application in optogenetics: A review. J. Rare Earths 2022 40 6 847 861 10.1016/j.jre.2021.10.003
    [Google Scholar]
  28. Yang X. McGlynn E. Das R. Paşca S.P. Cui B. Heidari H. Nanotechnology enables novel modalities for neuromodulation. Adv. Mater. 2021 33 52 2103208 10.1002/adma.202103208 34668249
    [Google Scholar]
  29. Su M. Wang Z. Zhang J. Near-infrared manipulation of temperature-sensitive ion channel through photothermal nanotransducer brightens in vivo photomedicine. Coord. Chem. Rev. 2023 492 215282 10.1016/j.ccr.2023.215282
    [Google Scholar]
  30. Zhao D. Huang R. Gan J.M. Shen Q.D. Photoactive nanomaterials for wireless neural biomimetics, stimulation, and regeneration. ACS Nano 2022 16 12 19892 19912 10.1021/acsnano.2c08543 36411035
    [Google Scholar]
  31. Zare I. Yaraki M.T. Speranza G. Najafabadi A.H. Shourangiz-Haghighi A. Nik A.B. Manshian B.B. Saraiva C. Soenen S.J. Kogan M.J. Lee J.W. Apollo N.V. Bernardino L. Araya E. Mayer D. Mao G. Hamblin M.R. Gold nanostructures: Synthesis, properties, and neurological applications. Chem. Soc. Rev. 2022 51 7 2601 2680 10.1039/D1CS01111A 35234776
    [Google Scholar]
  32. Xu S. Momin M. Ahmed S. Hossain A. Veeramuthu L. Pandiyan A. Kuo C.C. Zhou T. Illuminating the brain: Advances and perspectives in optoelectronics for neural activity monitoring and modulation. Adv. Mater. 2023 35 42 2303267 10.1002/adma.202303267 37726261
    [Google Scholar]
  33. Lee L.C.C. Lo K.K.W. Luminescent and photofunctional transition metal complexes: From molecular design to diagnostic and therapeutic applications. J. Am. Chem. Soc. 2022 144 32 14420 14440 10.1021/jacs.2c03437 35925792
    [Google Scholar]
  34. Beck C.L. Hickman C.J. Kunze A. Low-cost calcium fluorometry for long-term nanoparticle studies in living cells. Sci. Rep. 2020 10 1 12568 10.1038/s41598‑020‑69412‑1 32724093
    [Google Scholar]
  35. Chen X. Chen B. Jiang B. Gao T. Shang G. Han S-T. Kuo C-C. Roy V.A.L. Zhou Y. Nanowires for UV–vis–IR optoelectronic synaptic devices. Adv. Funct. Mater. 2023 33 1 2208807 10.1002/adfm.202208807
    [Google Scholar]
  36. Yang R. Vision restoration in photoreceptor-degenerated mice and macaque monkeys using nanowires. Research Square 2022 10.21203/rs.3.rs‑492941/v2
    [Google Scholar]
  37. Esteban Linares A. Microfluidic platforms for retina electrophysiology studies. Doctoral Thesis, Vanderbilt University Graduate School 2023
    [Google Scholar]
  38. Arrabito G. Aleeva Y. Ferrara V. Prestopino G. Chiappara C. Pignataro B. On the interaction between 1D materials and living cells. J. Funct. Biomater. 2020 11 2 40 10.3390/jfb11020040 32531950
    [Google Scholar]
  39. Martinez-Curiel R. Jansson L. Tsupykov O. Avaliani N. Aretio-Medina C. Hidalgo I. Monni E. Bengzon J. Skibo G. Lindvall O. Kokaia Z. Palma-Tortosa S. Oligodendrocytes in human induced pluripotent stem cell-derived cortical grafts remyelinate adult rat and human cortical neurons. Stem Cell Reports 2023 18 8 1643 1656 10.1016/j.stemcr.2023.04.010 37236198
    [Google Scholar]
  40. Caneus J. Akanda N. Rumsey J.W. Guo X. Jackson M. Long C.J. Sommerhage F. Georgieva S. Kanaan N.M. Morgan D. Hickman J.J. A human induced pluripotent stem cell-derived cortical neuron human-on-a chip system to study Aβ 42 and tau-induced pathophysiological effects on long-term potentiation. Alzheimers Dement. (N. Y.) 2020 6 1 e12029 10.1002/trc2.12029 32490141
    [Google Scholar]
  41. Lopez-Lengowski K. Kathuria A. Gerlovin K. Karmacharya R. Co-culturing microglia and cortical neurons differentiated from human induced pluripotent stem cells. J. Vis. Exp. 2021 175 e62480 10.3791/62480 34633366
    [Google Scholar]
  42. Hedegaard A. Monzón-Sandoval J. Newey S.E. Whiteley E.S. Webber C. Akerman C.J. Pro-maturational effects of human iPSC-derived cortical astrocytes upon iPSC-derived cortical neurons. Stem Cell Reports 2020 15 1 38 51 10.1016/j.stemcr.2020.05.003 32502466
    [Google Scholar]
  43. Harberts J. Siegmund M. Schnelle M. Zhang T. Lei Y. Yu L. Zierold R. Blick R.H. Robust neuronal differentiation of human iPSC-derived neural progenitor cells cultured on densely-spaced spiky silicon nanowire arrays. Sci. Rep. 2021 11 1 18819 10.1038/s41598‑021‑97820‑4 34552130
    [Google Scholar]
  44. Harberts J.I. Electrophysiology of human induced pluripotent stem cell-derived neurons cultivated on micro-and nanostructured substrates. Staats-und Universitätsbibliothek Hamburg Carl von Ossietzky 2022
    [Google Scholar]
  45. Ding X.L. Liu M.D. Cheng Q. Guo W.H. Niu M.T. Huang Q.X. Zeng X. Zhang X.Z. Multifunctional liquid metal-based nanoparticles with glycolysis and mitochondrial metabolism inhibition for tumor photothermal therapy. Biomaterials 2022 281 121369 10.1016/j.biomaterials.2022.121369 35026671
    [Google Scholar]
  46. Song W. Jia P. Zhang T. Dou K. Liu L. Ren Y. Liu F. Xue J. Hasanin M.S. Qi H. Zhou Q. Cell membrane-camouflaged inorganic nanoparticles for cancer therapy. J. Nanobiotechnology 2022 20 1 289 10.1186/s12951‑022‑01475‑w 35717234
    [Google Scholar]
  47. Shao Y. Xiang L. Zhang W. Chen Y. Responsive shape-shifting nanoarchitectonics and its application in tumor diagnosis and therapy. J. Control. Release 2022 352 600 618 10.1016/j.jconrel.2022.10.046 36341936
    [Google Scholar]
  48. Yi W. Khalid A. Arshad N. Asghar M.S. Irshad M.S. Wang X. Yi Y. Si J. Hou X. Li H.R. Recent progress and perspective of an evolving carbon family from 0D to 3D: Synthesis, biomedical applications, and potential challenges. ACS Appl. Bio Mater. 2023 6 6 2043 2088 10.1021/acsabm.3c00076 37200080
    [Google Scholar]
  49. Maleki A. He J. Bochani S. Nosrati V. Shahbazi M.A. Guo B. Multifunctional photoactive hydrogels for wound healing acceleration. ACS Nano 2021 15 12 18895 18930 10.1021/acsnano.1c08334 34870413
    [Google Scholar]
  50. Dai J. Wang Z. Wu Z. Fang Z. Heliu S. Yang W. Bai Y. Zhang X. Shape memory polymer constructed by π–π stacking with ultrafast photoresponse and self-healing performance. ACS Appl. Polym. Mater. 2023 5 4 2575 2582 10.1021/acsapm.2c02192
    [Google Scholar]
  51. Tan M.W.M. Bark H. Thangavel G. Gong X. Lee P.S. Photothermal modulated dielectric elastomer actuator for resilient soft robots. Nat. Commun. 2022 13 1 6769 10.1038/s41467‑022‑34301‑w 36351948
    [Google Scholar]
/content/journals/cnanom/10.2174/0124681873337695240919110801
Loading
  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test