Skip to content
2000
image of Efficacy of Nanoemulsions Containing Ocimum Gratissimum Essential Oil and Hibiscus Sabdariffa Extract in Malaria Treatment

Abstract

Background

has folklorically been ascribed to possess several medicinal activities, including antimalarial.

Objective

This research explored the antimalarial activity in its essential oil and the anti-anaemic effect of (Hs) in combination.

Methods

essential oil (OGE) was extracted through hydro distillation and analyzed using GC/MS. Hs extract was obtained using cold maceration. Pre-formulation studies tested their antimalarial and anti-anemic activities using different concentrations of the essential oil and the Hs extract. Nanoemulsions containing OGE and Hs extract were formulated and characterized using scanning electron microscopy (SEM), particle size, and polydispersity index (PDI). Post-formulation anti-anaemic and antimalarial evaluations were conducted.

Results

The pre-formulation animal studies showed that the group administered 10 ml/kg of 20% oil had the highest reduction in parasitaemia. Also, 230 mg of Hs gave the highest anti-anaemic activity. SEM imaging showed homogenous dispersion of the emulsions. Particle sizes and PDI (size, PDI) were (56.17nm, 0.478), and (44.40 nm, 0.461) for the 10% and 20% nanoemulsions, respectively. The post-formulation suppressive animal studies gave a maximum parasitemia reduction of 88.1, and 100%, respectively, for the treatment groups administered 4ml/kg of 20% nanoemulsion and Artemether-Lumefantrine (AL) 2.3/13.7mg/kg respectively; and a percentage reduction in parasitemia (curative test), of 74.66 and 99.69% respectively. Hematocrit values and body weight were increased in the groups treated with the emulsion.

Conclusion

Emulsions containing essential oil and . extract showed effectiveness in reducing parasitaemia and reversing anaemia in a dose-dependent manner.

Loading

Article metrics loading...

/content/journals/cnanom/10.2174/0124681873335272240915163017
2024-12-04
2025-01-28
Loading full text...

Full text loading...

References

  1. Pernicová E. Krsek M. Current trends in the epidemiology of malaria. Epidemiol. Mikrobiol. Imunol. 2022 71 3 175 178 36257798
    [Google Scholar]
  2. Ouattara Y. Sanon S. Traore Y. Mahiou V. Azas N. Sawadogo L. Antimalarial activity Swartzia madagascariensis Desv. (Leguminosae), Combretum glutinosum Guill and Perr.(Combretaceae) and Tinospora bakis Miers (Menispermaceae), Burkina Faso Medicinal plants. Afr. J. Tradit. Complement. Altern. Med. 2006 3 1 75 81 20162075
    [Google Scholar]
  3. Cox-Singh J. Culleton R. Plasmodium knowlesi : From severe zoonosis to animal model. Trends Parasitol. 2015 31 6 232 238 10.1016/j.pt.2015.03.003 25837310
    [Google Scholar]
  4. Malaria: Burden and interventions. 2010 Available from: https://assets.publishing.service.gov.uk/media/5a7ebec7ed915d74e6226336/malaria-evidence-paper.pdf
  5. Malaria. 2024 Available from: https://www.who.int/news- room/questions-and-answers/item/malaria#:~:text=Nearly%20half%20of%20the%20world's,developing%20severe%20malaria%20than%20others.(Accessed on: 02/03/2024)
  6. Kachur S.P. MacArthur J.R. Slutsker L. A call to action: Addressing the challenge of artemisinin-resistant malaria. Expert Rev. Anti Infect. Ther. 2010 8 4 365 366 10.1586/eri.10.23 20377330
    [Google Scholar]
  7. Cinderella disease needs urgent priority. 2020 Available from: https://www.newscientist.com/
  8. Artemisinin resistance and artemisinin-based combination therapy efficacy. 2019 Available from: https://www.who.int/docs/default- source/documents/publications/gmp/who-cds-gmp-2019-17-eng. pdf?ua=1
  9. Akueshi C.O. Traditional medicine and medicinal plants in Nigeria. History and Philosophy of Science. Ugodulunwa F.X.O. Ike E.E. Jos UniJos Consultancy Ltd. 1999
    [Google Scholar]
  10. Ajayi A.M. Ologe M.O. Ben-Azu B. Okhale S.E. Adzu B. Ademowo O.G. Ocimum gratissimum Linn. Leaf extract inhibits free radical generation and suppressed inflammation in carrageenan-induced inflammation models in rats. J. Basic Clin. Physiol. Pharmacol. 2017 28 6 531 541 10.1515/jbcpp‑2016‑0096 28328528
    [Google Scholar]
  11. Ajayi A. Ben-Azu B. Onasanwo S. Adeoluwa O. Eduviere A. Ademowo O. Flavonoid-rich fraction of Ocimum gratissimum attenuates lipopolysaccharide-induced sickness behaviour, inflammatory and oxidative stress in mice. Drug Res. (Stuttg.) 2019 69 3 151 158 10.1055/a‑0654‑5042 30064151
    [Google Scholar]
  12. Kpadonou Kpoviessi B.G.H. Kpoviessi S.D.S. Yayi Ladekan E. Gbaguidi F. Frédérich M. Moudachirou M. Quetin-Leclercq J. Accrombessi G.C. Bero J. in vitro antitrypanosomal and antiplasmodial activities of crude extracts and essential oils of Ocimum gratissimum Linn from Benin and influence of vegetative stage. J. Ethnopharmacol. 2014 155 3 1417 1423 10.1016/j.jep.2014.07.014
    [Google Scholar]
  13. Hamid A.A. Aiyelaagbe O. Usman L.A. Essential oils: Its medicinal and pharmacological uses. Int. J. Curr. Res. 2011 3 86 98
    [Google Scholar]
  14. Misganaw D. Amare G.G. Mengistu G. Chemo suppressive and curative potential of Hypoestes forskalei against Plasmodium berghe : Evidence for in vivo antimalarial activity. J. Exp. Pharmacol. 2020 12 313 323 10.2147/JEP.S262026 32982487
    [Google Scholar]
  15. Ounjaijean S. Somsak V. Synergistic antimalarial treatment of Plasmodium berghei infection in mice with dihydroartemisinin and Gymnema inodorum leaf extract. BMC complement. med. ther 2023 23 1 20 10.1186/s12906‑023‑03850‑y 36690988
    [Google Scholar]
  16. Mekuria A. B. Geta M. Birru E. M. Gelayee D. A. Antimalarial activity of seed extracts of Schinus molle against Plasmodium berghei in mice. J Evid Based Integr Med 2021 26 10.1177/2515690X20984287
    [Google Scholar]
  17. Montalvo-González E. Villagrán Z. González-Torres S. Iñiguez-Muñoz L. Isiordia-Espinoza M. Ruvalcaba-Gómez J. Arteaga-Garibay R. Acosta J. González-Silva N. Anaya-Esparza L. Physiological effects and human health benefits of Hibiscus sabdariffa: A review of clinical trials. Pharmaceuticals (Basel) 2022 15 4 464 10.3390/ph15040464 35455462
    [Google Scholar]
  18. White N.J. Anaemia and malaria. Malar. J. 2018 17 1 371 10.1186/s12936‑018‑2509‑9 30340592
    [Google Scholar]
  19. Clovis M Machumi F Innocent E Assessment of heavy metals in Hibiscus sabdariffa calyces and Moringa oleifera leaves collected from different areas in Tanzania. J Ecobiotechnol 2020 10.25081/jebt.2020.v12.6549
    [Google Scholar]
  20. Maregesi S. Kagashe G. Dhokia D. Determination of iron contents in Hibiscus sabdariffa calyces and Kigelia africana fruit. Scholars Acad. J. Biosci. 2013 1 4 108 111
    [Google Scholar]
  21. Owoade A.O. Adetutu A. Olorunnisola O.S. A review of chemical constituents and pharmacological properties of Hibiscus sabdariffa L. Int. J. Curr. Res. Biosci. Plant Biol. 2019 6 4 42 51 10.20546/ijcrbp.2019.604.006
    [Google Scholar]
  22. Oyewole A.O. Diosady L.L. Evaluating the potential of Hibiscus sabdariffa beverage to address the prevalence of iron deficiency in sub-Saharan Africa. Lebensm. Wiss. Technol. 2023 188 115433 10.1016/j.lwt.2023.115433 38022393
    [Google Scholar]
  23. Morilla M.J. Ghosal K. Romero E.L. More than pigments: The potential of astaxanthin and bacterioruberin-based nanomedicines. Pharmaceutics 2023 15 7 1828 10.3390/pharmaceutics15071828 37514016
    [Google Scholar]
  24. Morilla M.J. Ghosal K. Romero E.L. Nanomedicines against Chagas disease: A critical review. Beilstein J. Nanotechnol. 2024 15 333 349 10.3762/bjnano.15.30 38590427
    [Google Scholar]
  25. Okeke T.C. Umeyor C.E. Nzekwe I.T. Umeyor I.C. Nebolisa N.M. Uronnachi E.M. Nwakile C.D. Ekweogu C.A. Aziakpono O.M. Attama A.A. Formulation development of Azadirachta indica extract as nanosuppository to improve its intrarectal delivery for the treatment of Malaria. Recent Adv. Drug Deliv. Formul 2022 16 3 217 233 10.2174/2667387816666220426134156 35473532
    [Google Scholar]
  26. Pourmadadi M. Ostovar S. Ruiz-Pulido G. Hassan D. Souri M. Manicum A.E. Behzadmehr R. Fathi-karkan S. Rahdar A. Medina D.I. Pandey S. Novel epirubicin-loaded nanoformulations: Advancements in polymeric nanocarriers for efficient targeted cellular and subcellular anticancer drug delivery. Inorg. Chem. Commun 2023 155 110999 10.1016/j.inoche.2023.110999
    [Google Scholar]
  27. Fathi-karkan S. Zeeshan M. Qindeel M. Eshaghi Malekshah R. Rahdar A. Ferreira L.F.R. NPs loaded with zoledronic acid as an advanced tool for cancer therapy. J. Drug Deliv. Sci. Technol. 2023 87 104805 10.1016/j.jddst.2023.104805
    [Google Scholar]
  28. Bakhshi B. Shoari A. Alibolandi P. Ganji M. Ghazy E. Rahdar A. Fathi-karkan S. Pandey S. Emerging innovations in vincristine-encapsulated nanoparticles: Pioneering a new era in oncological therapeutics. J Drug Delivery Sci Technol 2023 91 4 10.1016/j.jddst.2023.105270
    [Google Scholar]
  29. Aboudzadeh M.A. Novel pH-responsive hybrid hydrogels for controlled delivery of curcumin: Overcoming conventional constraints and enhancing cytotoxicity in MCF-7 cells. Hybrid Adv 2024 6 1 100210 10.1016/j.hybadv.2024.100210.
    [Google Scholar]
  30. Fatima I. Zeinalilathori S. Qindeel M. Kharaba Z. Sahebzade M.S. Rahdar A. Zeinali S. Fathi-karkan S. Khan A. Ghazy E. Pandey S. Advances in targeted nano-delivery of bevacizumab using nanoparticles: Current insights, innovations, and future perspectives. J. Drug Deliv. Sci. Technol. 2024 98 105850 10.1016/j.jddst.2024.105850
    [Google Scholar]
  31. Elyemni M. Louaste B. Nechad I. Elkamli T. Bouia A. Taleb M. Chaouch M. Eloutassi N. Extraction of essential oils of Rosmarinus officinalis L. by two different methods: hydro-distillation and Microwave-assisted hydro-distillation. ScientificWorldJournal 2019 2019 4 3659432 31057339
    [Google Scholar]
  32. Obidoa O. Joshua P.E. Egemole J.C. Ikeyi A. Physicochemical analysis of aqueous flower extract of Hibiscus sadariffa (Zobo Flower). Res J Pharmacogn Phytochem 2011 3 4 169 173
    [Google Scholar]
  33. Fenta M. Kahaliw W. Evaluation of antimalarial activity of hydromethanolic crude extract and solvent fractions of the leaves of Nuxia congesta R. Br. Ex Fresen (Buddlejaceae) in Plasmodium berghei infected mice. J. Exp. Pharmacol. 2019 11 11 121 134 10.2147/JEP.S230636 31908546
    [Google Scholar]
  34. Peters W. Antimalarial drug resistance: An increasing problem. Br. Med. Bull. 1982 38 2 187 192 10.1093/oxfordjournals.bmb.a071757 7052200
    [Google Scholar]
  35. Sheth P.A. Pawar A.T. Mote C.S. More C. Antianemic activity of polyherbal formulation, Raktavardhak Kadha, against phenylhydrazine-induced anemia in rats. J. Ayurveda Integr. Med. 2021 12 2 340 345 10.1016/j.jaim.2021.02.009 34016498
    [Google Scholar]
  36. Yakoubi S. Bourgou S. Mahfoudhi N. Hammami M. Khammassi S. Horchani-Naifer K. Msaada K. Tounsi M.S. Oil-in-water emulsion formulation of cumin/carvi essential oils combination with enhanced antioxidant and antibacterial potentials. J. Essent. Oil Res. 2020 32 6 536 544 10.1080/10412905.2020.1829510
    [Google Scholar]
  37. Lorke D. A new approach to practical acute toxicity testing. Arch. Toxicol. 1983 54 4 275 287 10.1007/BF01234480 6667118
    [Google Scholar]
  38. Melo R.S. Albuquerque Azevedo Á.M. Gomes Pereira A.M. Rocha R.R. Bastos Cavalcante R.M. Carneiro Matos M.N. Ribeiro Lopes P.H. Gomes G.A. Soares Rodrigues T.H. Santos H.S. Ponte I.L. Costa R.A. Brito G.S. Catunda Júnior F.E.A. Carneiro V.A. Chemical composition and antimicrobial effectiveness of Ocimum gratissimum L. essential oil against multidrug-resistant isolates of Staphylococcus aureus and Escherichia coli. Molecules 2019 24 21 3864 10.3390/molecules24213864 31717766
    [Google Scholar]
  39. Ashokkumar K. Vellaikumar S. Murugan M. Dhanya M.K. Aiswarya S. Nimisha M. Chemical composition of Ocimum gratissimum essential oil from the South Western Ghats, India. J Curr Opin Crop Sci 2020 1 1 27 30 10.62773/jcocs.v1i1.14
    [Google Scholar]
  40. Ugbogu O.C. Emmanuel O. Agi G.O. Ibe C. Ekweogu C.N. Ude V.C. Uche M.E. Nnanna R.O. Ugbogu E.A. A review on the traditional uses, phytochemistry, and pharmacological activities of clove basil (Ocimum gratissimum L.). Heliyon 2021 7 11 e08404 10.1016/j.heliyon.2021.e08404 34901489
    [Google Scholar]
  41. Salehi B. Upadhyay S. Erdogan Orhan I. Kumar Jugran A. L D Jayaweera S. A Dias D. Sharopov F. Taheri Y. Martins N. Baghalpour N. Cho W.C. Sharifi-Rad J. Therapeutic potential of α- and β-Pinene: A miracle gift of nature. Biomolecules 2019 9 11 738 10.3390/biom9110738 31739596
    [Google Scholar]
  42. Van Zyl RL. Jansen Van Vuuren NC. Mustapha O. The isomeric effects of pinene on Plasmodium and Anopheles. Proc Ann Meeting Jpn Pharmacol Soc 2018 10.1254/jpssuppl.WCP2018.0_PO1‑9‑27
    [Google Scholar]
  43. Otolowo D.T. Akinmoladun O.F. Omosebi M.O. Anifowose T.M. Olanrewaju T.A. Evaluation of the chemical contents of Zobo (Hibiscus sabdariffa) flavoured with natural spices. MUJAST 2022 2 1 39 54
    [Google Scholar]
  44. Wang M.L. Morris B. Tonnis B. Davis J. Pederson G.A. Assessment of oil content and fatty acid composition variability in two economically important Hibiscus species. J. Agric. Food Chem. 2012 60 26 6620 6626 10.1021/jf301654y 22703121
    [Google Scholar]
  45. Okpalaku O. Uronnachi E. Okoye E. Umeyor C. Nwakile C. Okeke T. Attama A. Evaluating some essential oils-based and coconut oil nanoemulgels for the management of Rheumatoid Arthritis. Lett Appl NanoBioSci 2023 12 75
    [Google Scholar]
  46. Jaiswal M. Dudhe R. Sharma PK. Nanoemulsion: An advanced mode of drug delivery system. 3 Biotech 2015 5 2 123 127 10.1007/s13205‑014‑0214‑0
    [Google Scholar]
  47. Tang S.Y. Manickam S. Wei T.K. Nashiru B. Formulation development and optimization of a novel Cremophore EL-based nanoemulsion using ultrasound cavitation. Ultrason. Sonochem. 2012 19 2 330 345 10.1016/j.ultsonch.2011.07.001 21835676
    [Google Scholar]
  48. Kong M. Park H.J. Stability investigation of hyaluronic acid based nanoemulsion and its potential as transdermal carrier. Carbohydr. Polym. 2011 83 3 1303 1310 10.1016/j.carbpol.2010.09.041
    [Google Scholar]
  49. Wiącek A. Chibowski E. Zeta potential, effective diameter and multimodal size distribution in oil/water emulsion. Colloids Surf. A Physicochem. Eng. Asp. 1999 159 2-3 253 261 10.1016/S0927‑7757(99)00281‑2
    [Google Scholar]
  50. Piorkowski D.T. McClements D.J. Beverage emulsions: Recent developments in formulation, production, and applications. Food Hydrocoll. 2014 42 5 41 10.1016/j.foodhyd.2013.07.009
    [Google Scholar]
  51. Moulai Mostefa N. Hadj Sadok A. Sabri N. Hadji A. Determination of optimal cream formulation from long-term stability investigation using a surface response modelling. Int. J. Cosmet. Sci. 2006 28 3 211 218 10.1111/j.1467‑2494.2006.00305.x 18489277
    [Google Scholar]
  52. Tchoumbougnang F. Zollo P.H. Dagne E. Mekonnen Y. in vivo antimalarial activity of essential oils from Cymbopogon citratus and Ocimum gratissimum on mice infected with Plasmodium berghei. Planta Med. 2005 71 1 20 23 10.1055/s‑2005‑837745 15678368
    [Google Scholar]
  53. Ali B.H. Al-Lawati I. Beegam S. Ziada A. salam S.A. Nemmar A. Blunden G. Effect of Hibiscus sabdariffa and its anthocyanins on some reproductive aspects in rats. Nat. Prod. Commun. 2012 7 1 1934578X1200700 10.1177/1934578X1200700115 22428240
    [Google Scholar]
  54. Bankole A.E. Adekunle A.A. Sowemimo A.A. Umebese C.E. Abiodun O. Gbotosho G.O. Phytochemical screening and in vivo antimalarial activity of extracts from three medicinal plants used in malaria treatment in Nigeria. Parasitol. Res. 2016 115 1 299 305 10.1007/s00436‑015‑4747‑x 26391173
    [Google Scholar]
  55. Mojab F. Antimalarial natural products: A review. Avicenna J. Phytomed. 2012 2 2 52 62 25050231
    [Google Scholar]
  56. Chaniad P. Phuwajaroanpong A. Plirat W. Konyanee A. Septama A.W. Punsawad C. Assessment of antimalarial activity of crude extract of Chan-Ta-Lee-La and Pra-Sa-Chan-Dang formulations and their plant ingredients for new drug candidates of malaria treatment: in vitro and in vivo experiments. PLoS One 2024 19 1 e0296756 10.1371/journal.pone.0296756 38206944
    [Google Scholar]
  57. Ribeiro G.J.G. Rei Yan S.L. Palmisano G. Wrenger C. Plant extracts as a source of natural products with potential antimalarial effects: An update from 2018 to 2022. Pharmaceutics 2023 15 6 1638 10.3390/pharmaceutics15061638 37376086
    [Google Scholar]
  58. Habibi P. Shi Y. Fatima Grossi-de-Sa M. Khan I. Plants as sources of natural and recombinant antimalaria agents. Mol. Biotechnol. 2022 64 11 1177 1197 10.1007/s12033‑022‑00499‑9 35488142
    [Google Scholar]
  59. Delwatta S.L. Gunatilake M. Baumans V. Seneviratne M.D. Dissanayaka M.L.B. Batagoda S.S. Udagedara A.H. Walpola P.B. Reference values for selected hematological, biochemical and physiological parameters of Sprague-Dawley rats at the Animal House, Faculty of Medicine, University of Colombo, Sri Lanka. Animal Model. Exp. Med. 2018 1 4 250 254 10.1002/ame2.12041 30891574
    [Google Scholar]
  60. Peng Y.Y. Uprichard J. Ferritin and iron studies in anaemia and chronic disease. Ann. Clin. Biochem. 2017 54 1 43 48 10.1177/0004563216675185 27701066
    [Google Scholar]
/content/journals/cnanom/10.2174/0124681873335272240915163017
Loading
/content/journals/cnanom/10.2174/0124681873335272240915163017
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Ocimum gratissimum ; essential oil ; Hibiscus sabdariffa ; malaria ; anaemia ; parasitaemia
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test