Skip to content
2000
image of Liposomal Drug Delivery System for the Management of Prostate Cancer: An Update

Abstract

Prostate cancer is a significant health concern affecting a large population of males worldwide. Liposomes, with their versatile properties and drug delivery capabilities, hold promise as a targeted and efficient delivery system for prostate cancer treatment. Various studies have explored different liposomal formulations loaded with anticancer agents to improve drug efficacy, reduce side effects, and enhance targeted delivery to prostate cancer cells. Future research in this area should focus on refining liposomal formulations to maximize drug encapsulation, stability, and specific targeting of prostate cancer cells. Understanding the tumor microenvironment and utilizing stimuli-responsive liposomes can further enhance drug release at the targeted site. Additionally, investigating the biodistribution and pharmacokinetics of liposomal drug delivery systems will provide valuable insights into their efficacy and potential for clinical translation. Overall, liposome-based drug delivery systems have the potential to revolutionize prostate cancer treatment, ultimately improving patient outcomes and quality of life. Further advancements and continued research in this field will contribute to the development of effective and personalized therapeutic strategies for prostate cancer patients.

Loading

Article metrics loading...

/content/journals/cnanom/10.2174/0124681873303323240923064015
2024-12-03
2025-01-01
Loading full text...

Full text loading...

References

  1. Andra V.V.S.N.L. Pammi S.V.N. Bhatraju L.V.K.P. Ruddaraju L.K. A comprehensive review on novel liposomal methodologies, commercial formulations, clinical trials and patents. J. Bionanosci. 2022 12 1 274 291 10.1007/s12668‑022‑00941‑x 35096502
    [Google Scholar]
  2. Jung G. Hernández-Illán E. Moreira L. Balaguer F. Goel A. Epigenetics of colorectal cancer: Biomarker and therapeutic potential. Nat. Rev. Gastroenterol. Hepatol. 2020 17 2 111 130 10.1038/s41575‑019‑0230‑y 31900466
    [Google Scholar]
  3. Da Silva M.H.A. De Souza D.B. Current evidence for the involvement of sex steroid receptors and sex hormones in benign prostatic hyperplasia. Res. Rep. Urol. 2019 11 1 8 10.2147/RRU.S155609 30662879
    [Google Scholar]
  4. Dobbs R.W. Malhotra N.R. Greenwald D.T. Wang A.Y. Prins G.S. Abern M.R. Estrogens and prostate cancer. Prostate Cancer Prostatic Dis. 2019 22 2 185 194 10.1038/s41391‑018‑0081‑6 30131606
    [Google Scholar]
  5. Sathianathen N.J. Konety B.R. Crook J. Saad F. Lawrentschuk N. Landmarks in prostate cancer. Nat. Rev. Urol. 2018 15 10 627 642 10.1038/s41585‑018‑0060‑7 30065357
    [Google Scholar]
  6. Jemal A. Siegel R. Xu J. Ward E. Cancer Statistics, 2010. CA Cancer J. Clin. 2010 60 5 277 300 10.3322/caac.20073 20610543
    [Google Scholar]
  7. Junejo N.N. AlKhateeb S.S. BRCA2 gene mutation and prostate cancer risk. Saudi Med. J. 2020 41 1 9 17 10.15537/smj.2020.1.24759 31915789
    [Google Scholar]
  8. Holmstrom S. Naidoo S. Turnbull J. Hawryluk E. Paty J. Morlock R. Symptoms and impacts in metastatic castration-resistant prostate cancer: qualitative findings from patient and physician interviews. Patient 2019 12 1 57 67 10.1007/s40271‑018‑0349‑x 30519830
    [Google Scholar]
  9. Descotes J.L. Diagnosis of prostate cancer. Asian J. Urol. 2019 6 2 129 136 10.1016/j.ajur.2018.11.007 31061798
    [Google Scholar]
  10. Bruzzese D. Mazzarella C. Ferro M. Perdonà S. Chiodini P. Perruolo G. Terracciano D. Prostate health index vs percent free prostate-specific antigen for prostate cancer detection in men with “gray” prostate-specific antigen levels at first biopsy: Systematic review and meta-analysis. Transl. Res. 2014 164 6 444 451 10.1016/j.trsl.2014.06.006 25035153
    [Google Scholar]
  11. Hema S. Thambiraj S. Shankaran D.R. Nanoformulations for targeted drug delivery to prostate cancer: An overview. J. Nanosci. Nanotechnol. 2018 18 8 5171 5191 10.1166/jnn.2018.15420 29458568
    [Google Scholar]
  12. Thompson I.M. Pauler D.K. Goodman P.J. Tangen C.M. Lucia M.S. Parnes H.L. Minasian L.M. Ford L.G. Lippman S.M. Crawford E.D. Crowley J.J. Coltman C.A. Jr Prevalence of prostate cancer among men with a prostate-specific antigen level ≤4.0 ng per milliliter N. Engl. J. Med. 2004 350 22 2239 2246 10.1056/NEJMoa031918 15163773
    [Google Scholar]
  13. Catalona W.J. Prostate cancer screening. Med. Clin. North Am. 2018 102 2 199 214 10.1016/j.mcna.2017.11.001 29406053
    [Google Scholar]
  14. Bostwick D.G. Burke H.B. Djakiew D. Euling S. Ho S. Landolph J. Morrison H. Sonawane B. Shifflett T. Waters D.J. Timms B. Human prostate cancer risk factors. Cancer 2004 101 S10 2371 2490 10.1002/cncr.20408 15495199
    [Google Scholar]
  15. Compton C. Cancer initiation, promotion, and progression and the acquisition of key behavioral traits. Cancer: The Enemy from Within Springer 2020 10.1007/978‑3‑030‑40651‑6_2
    [Google Scholar]
  16. Basu A. Haldar S. The relationship between BcI2, Bax and p53: Consequences for cell cycle progression and cell death. Mol. Hum. Reprod. 1998 4 12 1099 1109 10.1093/molehr/4.12.1099 9872359
    [Google Scholar]
  17. Vis A.N. Schröder F.H. Key targets of hormonal treatment of prostate cancer. Part 1: The androgen receptor and steroidogenic pathways. BJU Int. 2009 104 4 438 448 10.1111/j.1464‑410X.2009.08695.x 19558559
    [Google Scholar]
  18. Martin T.A. Ye L. Sanders A.J. Lane J. Jiang W.G. Cancer invasion and metastasis: Molecular and cellular perspective. Madame Curie Bioscience Database Landes Bioscience 2013
    [Google Scholar]
  19. Rajabi M. Mousa S. The role of angiogenesis in cancer treatment. Biomedicines 2017 5 2 34 10.3390/biomedicines5020034 28635679
    [Google Scholar]
  20. Reva B.A. Omelchenko T. Nair S.S. Tewari A.K. Immune escape in prostate cancer: Known and predicted mechanisms and targets. J. Urol. Clin. 2020 47 4S e9 e16 33446324
    [Google Scholar]
  21. Wang G. Zhao D. Spring D.J. DePinho R.A. Genetics and biology of prostate cancer. Genes Dev. 2018 32 17-18 1105 1140 10.1101/gad.315739.118 30181359
    [Google Scholar]
  22. Chatterjee B. The role of the androgen receptor in the development of prostatic hyperplasia and prostate cancer. Mol. Cell. Biochem. 2003 253 1/2 89 101 10.1023/A:1026057402945 14619959
    [Google Scholar]
  23. Clark R. Vesprini D. Narod S.A. The effect of age on prostate cancer survival. Cancers (Basel) 2022 14 17 4149 10.3390/cancers14174149 36077685
    [Google Scholar]
  24. Jemal A. Thomas A. Murray T. Thun M. Cancer Statistics, 2002. CA Cancer J. Clin. 2002 52 1 23 47 10.3322/canjclin.52.1.23 11814064
    [Google Scholar]
  25. Mustapha A. Ismail A. Abdullahi SU. Cancer chemotherapy: A review update of the mechanisms of actions, prospects, and associated problems. Biomed. J. 2022 1 1 1 16
    [Google Scholar]
  26. Alimbetov D. Askarova S. Umbayev B. Davis T. Kipling D. Pharmacological targeting of cell cycle, apoptotic and cell adhesion signaling pathways implicated in chemoresistance of cancer cells. Int. J. Mol. Sci. 2018 19 6 1690 10.3390/ijms19061690 29882812
    [Google Scholar]
  27. Makin G. Principles of chemotherapy. Paediatr. Child Health (Oxford) 2018 28 4 183 188 10.1016/j.paed.2018.02.002
    [Google Scholar]
  28. Tayal S. Tiwari P. Sahu V. Sharma S. Role of liposome as novel carrier molecule. Tnt. J. Pharm. Prof. Res. 2023 14 3 141 150 10.48165/ijppronline.2023.14312
    [Google Scholar]
  29. McClements D.J. Encapsulation, protection, and release of hydrophilic active components: Potential and limitations of colloidal delivery systems. Adv. Colloid Interface Sci. 2015 219 27 53 10.1016/j.cis.2015.02.002 25747522
    [Google Scholar]
  30. Bulbake U. Doppalapudi S. Kommineni N. Khan W. Liposomal formulations in clinical use: An updated review. Pharmaceutics 2017 9 2 12 10.3390/pharmaceutics9020012 28346375
    [Google Scholar]
  31. Li M. Du C. Guo N. Teng Y. Meng X. Sun H. Li S. Yu P. Galons H. Composition design and medical application of liposomes. Eur. J. Med. Chem. 2019 164 640 653 10.1016/j.ejmech.2019.01.007 30640028
    [Google Scholar]
  32. Gopi S. Balakrishnan P. Chapter 6 - Liposomal nanostructures: Properties and applications. Nanoscale Processing Elsevier 2021 163 179
    [Google Scholar]
  33. Fam S.Y. Chee C.F. Yong C.Y. Ho K.L. Mariatulqabtiah A.R. Tan W.S. Stealth coating of nanoparticles in drug-delivery systems. Nanomaterials (Basel) 2020 10 4 787 10.3390/nano10040787 32325941
    [Google Scholar]
  34. Nsairat H. Khater D. Sayed U. Odeh F. Al Bawab A. Alshaer W. Liposomes: Structure, composition, types, and clinical applications. Heliyon 2022 8 5 e09394 10.1016/j.heliyon.2022.e09394 35600452
    [Google Scholar]
  35. Prajapati S.K. Jain A. Jain A. Jain S. Biodegradable polymers and constructs: A novel approach in drug delivery. Eur. Polym. J. 2019 120 109191 10.1016/j.eurpolymj.2019.08.018
    [Google Scholar]
  36. Kumar A. Lunawat A.K. Kumar A. Sharma T. Islam M.M. Kahlon M.S. Mukherjee D. Narang R.K. Kumar A. Raikwar S. Recent trends in nanocarrier-based drug delivery system for prostate cancer. AAPS PharmSciTech. 2024 25 3 55
    [Google Scholar]
  37. Akbarzadeh A. Rezaei-Sadabady R. Davaran S. Joo S.W. Zarghami N. Hanifehpour Y. Samiei M. Kouhi M. Nejati-Koshki K. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett. 2013 8 1 102 10.1186/1556‑276X‑8‑102 23432972
    [Google Scholar]
  38. Dwivedi C. Verma S. Review on preparation and characterization of liposomes with application. Int J Sci Innov Res. 2013 2 486 508
    [Google Scholar]
  39. Wasankar S.R. Deshmukh A.D. Ughade M.A. Burghat R.M. Gandech D.P. Meghwani R.R. Liposome as a drug delivery system - A review. Res. J. Pharm. Dos. Forms Technol. 2012 4 2 104 112
    [Google Scholar]
  40. Has C. Sunthar P. A comprehensive review on recent preparation techniques of liposomes. J. Liposome Res. 2020 30 4 336 365 10.1080/08982104.2019.1668010 31558079
    [Google Scholar]
  41. Boostani S. Jafari S.M. A comprehensive review on the controlled release of encapsulated food ingredients; Fundamental concepts to design and applications. Trends Food Sci. Technol. 2021 109 303 321 10.1016/j.tifs.2021.01.040
    [Google Scholar]
  42. Patil Y.P. Jadhav S. Novel methods for liposome preparation. Chem. Phys. Lipids 2014 177 8 18 10.1016/j.chemphyslip.2013.10.011 24220497
    [Google Scholar]
  43. Li M.J. Atkins W.M. McClary W.D. Preparation of lipid nanodiscs with lipid mixtures. Curr. Protoc. Protein Sci. 2019 98 1 e100 10.1002/cpps.100 31746556
    [Google Scholar]
  44. Ferhan A.R. Yoon B.K. Park S. Sut T.N. Chin H. Park J.H. Jackman J.A. Cho N.J. Solvent-assisted preparation of supported lipid bilayers. Nat. Protoc. 2019 14 7 2091 2118 10.1038/s41596‑019‑0174‑2 31175346
    [Google Scholar]
  45. Khan W. Pethe AS. Talib YA. Preparation of drug loaded liposome. J. Biosci. 2016 5 4221 4226
    [Google Scholar]
  46. Dua J. Rana A. Bhandari A. Liposome: Methods of preparation and applications. Int. J. Pharm. Stud. Res. 2012 3 2 14 20
    [Google Scholar]
  47. Jebastin K. Depofoam technology: Formulation development and characterization of metformin loaded multivesicular liposomal carrier for sustained delivery. Doctor of Philosophy, Madurai Medical College 2029
    [Google Scholar]
  48. Elizondo E. Moreno E. Cabrera I. Córdoba A. Sala S. Veciana J. Ventosa N. Liposomes and other vesicular systems: Structural characteristics, methods of preparation, and use in nanomedicine. Prog. Mol. Biol. Transl. Sci. 2011 104 1 52 10.1016/B978‑0‑12‑416020‑0.00001‑2 22093216
    [Google Scholar]
  49. Kaur L. Kaur P. Khan M. Liposome as a drug carrier — A review. Int. J. Res. Pharm. Chem. 2013 3 1 121 128
    [Google Scholar]
  50. Goyal P. Goyal K. Vijaya Kumar S.G. Singh A. Katare O.P. Mishra D.N. Liposomal drug delivery systems - Clinical applications. Acta Pharm. 2005 55 1 1 25 15907221
    [Google Scholar]
  51. Rajput A. Osmani R.A.M. Singh E. Banerjee R. Chapter 1 - Cancer: A sui generis threat and its global impact. Biosensor Based Advanced Cancer Diagnostics Academic Press 2022 1 25 10.1016/B978‑0‑12‑823424‑2.00019‑3
    [Google Scholar]
  52. Mohammad A.R. Hassan E.S. Majeed S.A. PI3K/AKT and STAT3 pathways mediate the neuroprotective effect of dasatinib from acute cerebral injury in endotoxemic mice. Res. Pharm. Sci. 2024 19 1 64 72 10.4103/1735‑5362.394821 39006974
    [Google Scholar]
  53. Abasalta M. Zibaseresht R. Yousefi Zoshk M. Foroutan Koudehi M. Irani M. Hami Z. Simultaneous loading of clarithromycin and zinc oxide into the chitosan/gelatin/polyurethane core–shell nanofibers for wound dressing. J. Dispers. Sci. Technol. 2023 44 14 2664 2674 10.1080/01932691.2022.2120892
    [Google Scholar]
  54. He D. Chen S. Lin Y.C. Li C. Xu Z. Xiao G. Microstructural evolution characteristics and a unified dislocation-density related constitutive model for a 7046 aluminum alloy during hot tensile. J. Mater. Res. Technol. 2023 25 2353 2367 10.1016/j.jmrt.2023.06.008
    [Google Scholar]
  55. Parsa N. Vela M.F. Current diagnosis of achalasia: Beyond standard high-resolution manometry. Foregut 2022 2 4 395 401 10.1177/26345161221143350
    [Google Scholar]
  56. Sharifi E. Reisi F. Yousefiasl S. Elahian F. Barjui S.P. Sartorius R. Fattahi N. Zare E.N. Rabiee N. Gazi E.P. Paiva-Santos A.C. Parlanti P. Gemmi M. Mobini G-R. Hashemzadeh-Chaleshtori M. De Berardinis P. Sharifi I. Mattoli V. Makvandi P. Chitosan decorated cobalt zinc ferrite nanoferrofluid composites for potential cancer hyperthermia therapy: anti-cancer activity, genotoxicity, and immunotoxicity evaluation. Adv. Compos. Hybrid Mater. 2023 6 6 191 10.1007/s42114‑023‑00768‑4
    [Google Scholar]
/content/journals/cnanom/10.2174/0124681873303323240923064015
Loading
/content/journals/cnanom/10.2174/0124681873303323240923064015
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test