Skip to content
2000
image of An Updated Review of Nano Techniques for Enhancing the Bioavailability and Therapeutic Efficacy of Poly Phenolic Bioactive Compounds

Abstract

Introduction

Based on the scientific evaluation from the literature survey, polyphenolic compounds have numerous health benefits but limitations such as poor bioavailability, making it difficult for the formulator. Polyphenolic compounds face major challenges such as poor solubility, stability, and lesser absorption in the body. It is the major concern towards the bioactives for formulating it into suitable delivery and also for specific activity.

Objective

The main aim of this article is to describe the developments in nanoformulation techniques designed to enhance the bioavailability of polyphenols and other bioactives.

Methods

The PubMed literature survey with the key term “enhancing the bioavailability of poly phenolic bioactive compounds brought around 38 articles for the year 2008 to 2024. The term “nanoformulations for Poly phenols” tend to give the efficient methodologies and different nanoformulation techniques for formulating the bioactives. Nanoformulations are said to have advancements like nanoscale range in size, and tailored structure which give solutions to overcome the challenges and improve the delivery of bioactives. It serves as an innovative solution and has an impact on the improvement of polyphenols. The evaluation role includes the modulation of pharmacokinetic, pharmacodynamic, and enhancement of therapeutic efficacy by applying the nanoformulation methods.

Results

This review mainly highlights the lipid-based nanocarriers such as SLN, NLC, Liposomes, Niosomes, Ethosomes, Transferosomes, and Nanoemulsion and their different methods. The key information about the current trends, benefits, and future directions.

Conclusion

In summary, this article concludes with the advancement made using nanoformulation techniques and effective therapeutic strategies in the field of nano nutraceuticals.

Loading

Article metrics loading...

/content/journals/cnanom/10.2174/0124681873312762241114045714
2024-12-03
2024-12-29
Loading full text...

Full text loading...

References

  1. Alotaibi B.S. Ijaz M. Buabeid M. Kharaba Z.J. Yaseen H.S. Murtaza G. Therapeutic effects and safe uses of plant-derived polyphenolic compounds in cardiovascular diseases: a review. Drug Des. Devel. Ther. 2021 15 4713 4732 10.2147/DDDT.S327238 34848944
    [Google Scholar]
  2. de Araújo F.F. de Paulo Farias D. Neri-Numa I.A. Pastore G.M. Polyphenols and their applications: An approach in food chemistry and innovation potential. Food Chem. 2021 338 127535 10.1016/j.foodchem.2020.127535 32798817
    [Google Scholar]
  3. Di Lorenzo C. Colombo F. Biella S. Stockley C. Restani P. Polyphenols and human health: The role of bioavailability. Nutrients 2021 13 1 273 10.3390/nu13010273 33477894
    [Google Scholar]
  4. Abbaszadeh H. Keikhaei B. Mottaghi S. A review of molecular mechanisms involved in anticancer and antiangiogenic effects of natural polyphenolic compounds. Phytother. Res. 2019 33 8 2002 2014 10.1002/ptr.6403 31373113
    [Google Scholar]
  5. Fraga C.G. Croft K.D. Kennedy D.O. Tomás-Barberán F.A. The effects of polyphenols and other bioactives on human health. Food Funct. 2019 10 2 514 528 10.1039/C8FO01997E 30746536
    [Google Scholar]
  6. Jia W. Zhou L. Li L. Zhou P. Shen Z. Nano-based drug delivery of polyphenolic compounds for cancer treatment: Progress, opportunities, and challenges. Pharmaceuticals 2023 16 1 101 10.3390/ph16010101
    [Google Scholar]
  7. Ozkan G. Kostk T. Effects of lipid-based encapsulation on the bioaccessibility and bioavailability of phenolic compounds. Molecules 2020 25 23 5545 10.3390/molecules25235545 33256012
    [Google Scholar]
  8. Di Santo M.C. D’ Antoni C.L. Domínguez Rubio A.P. Alaimo A. Pérez O.E. Chitosan-tripolyphosphate nanoparticles designed to encapsulate polyphenolic compounds for biomedical and pharmaceutical applications − A review. Biomed. Pharmacother. 2021 142 111970 10.1016/j.biopha.2021.111970 34333289
    [Google Scholar]
  9. Costa R. Costa Lima S.A. Gameiro P. Reis S. On the development of a cutaneous flavonoid delivery system: Advances and limitations. Antioxidants 2021 10 9 1376 10.3390/antiox10091376 34573007
    [Google Scholar]
  10. Simona A.D. Florina A. Rodica C.A. Evelyne O. Maria-Corina S. Nanoscale delivery systems: Actual and potential applications in the natural products industry. Curr. Pharm. Des. 2017 23 17 2414 2421 10.2174/1381612823666170220155540 28228070
    [Google Scholar]
  11. Enaru B. Socaci S. Farcas A. Socaciu C. Danciu C. Stanila A. Diaconeasa Z. Novel delivery systems of polyphenols and their potential health benefits. Pharmaceuticals 2021 14 10 946 10.3390/ph14100946 34681170
    [Google Scholar]
  12. Yang B. Dong Y. Wang F. Zhang Y. Nanoformulations to enhance the bioavailability and physiological functions of polyphenols. Molecules 2020 25 20 4613 10.3390/molecules25204613 33050462
    [Google Scholar]
  13. Pezeshki A. Hamishehkar H. Ghanbarzadeh B. Fathollahy I. Keivani Nahr F. Khakbaz Heshmati M. Mohammadi M. Nanostructured lipid carriers as a favorable delivery system for β-carotene. Food Biosci. 2019 27 11 17 10.1016/j.fbio.2018.11.004
    [Google Scholar]
  14. Syed Azhar S.N.A. Ashari S.E. Zainuddin N. Hassan M. Nanostructured lipid carriers-hydrogels system for drug delivery: Nanohybrid technology perspective. Molecules 2022 27 1 289 10.3390/molecules27010289 35011520
    [Google Scholar]
  15. Jafari S.M. McClements D.J. Nanotechnology approaches for increasing nutrient bioavailability. Adv. Food Nutr. Res. 2017 81 1 30 10.1016/bs.afnr.2016.12.008 28317602
    [Google Scholar]
  16. McClements D.J. Nanoscale nutrient delivery systems for food applications: improving bioactive dispersibility, stability, and bioavailability. J. Food Sci. 2015 80 7 N1602 N1611 10.1111/1750‑3841.12919 26073042
    [Google Scholar]
  17. Kumari M. Sharma N. Manchanda R. Gupta N. Syed A. Bahkali A.H. Nimesh S. PGMD/curcumin nanoparticles for the treatment of breast cancer. Sci. Rep. 2021 11 1 3824 10.1038/s41598‑021‑81701‑x 33589661
    [Google Scholar]
  18. Chávez-Zamudio R. Ochoa-Flores A.A. Soto-Rodríguez I. Garcia- Varela R. García H.S. Preparation, characterization and bioavailability by oral administration of O/W curcumin nanoemulsions stabilized with lysophosphatidylcholine. Food Funct. 2017 8 9 3346 3354 10.1039/C7FO00933J 28856361
    [Google Scholar]
  19. Đoković J.B. Savić S.M. Mitrović J.R. Nikolic I. Marković B.D. Randjelović D.V. Antic-Stankovic J. Božić D. Cekić N.D. Stevanović V. Batinić B. Aranđelović J. Savić M.M. Savić S.D. Curcumin loaded pegylated nanoemulsions designed for maintained antioxidant effects and improved bioavailability: a pilot study on rats. Int. J. Mol. Sci. 2021 22 15 7991 10.3390/ijms22157991 34360758
    [Google Scholar]
  20. Tian C. Asghar S. Wu Y. Chen Z. Jin X. Yin L. Huang L. Ping Q. Xiao Y. Improving intestinal absorption and oral bioavailability of curcumin via taurocholic acid-modified nanostructured lipid carriers. Int. J. Nanomedicine 2017 12 7897 7911 10.2147/IJN.S145988 29138557
    [Google Scholar]
  21. Rajput A.P. Butani S.B. Resveratrol anchored nanostructured lipid carrier loaded in situ gel via nasal route: Formulation, optimization and in vivo characterization. J. Drug Deliv. Sci. Technol. 2019 51 214 223 10.1016/j.jddst.2019.01.040
    [Google Scholar]
  22. Sharma B. Iqbal B. Kumar S. Ali J. Baboota S. Resveratrol-loaded nanoemulsion gel system to ameliorate UV-induced oxidative skin damage: from in vitro to in vivo investigation of antioxidant activity enhancement. Arch. Dermatol. Res. 2019 311 10 773 793 10.1007/s00403‑019‑01964‑3 31432208
    [Google Scholar]
  23. Ha E.S. Sim W.Y. Lee S.K. Jeong J.S. Kim J.S. Baek I. Choi D.H. Park H. Hwang S.J. Kim M.S. Preparation and evaluation of resveratrol-loaded composite nanoparticles using a supercritical fluid technology for enhanced oral and skin delivery. Antioxidants 2019 8 11 554 10.3390/antiox8110554 31739617
    [Google Scholar]
  24. Wu P.S. Li Y.S. Kuo Y.C. Tsai S.J.J. Lin C.C. Preparation and evaluation of novel transfersomes combined with the natural antioxidant resveratrol. Molecules 2019 24 3 600 10.3390/molecules24030600 30743989
    [Google Scholar]
  25. Ali H.E. Radwan R.R. Synthesis, characterization and evaluation of resveratrol-loaded functionalized carbon nanotubes as a novel delivery system in radiation enteropathy. Eur. J. Pharm. Sci. 2021 167 106002 10.1016/j.ejps.2021.106002 34517108
    [Google Scholar]
  26. Abbaszadeh S. Rashidipour M. Khosravi P. Shahryarhesami S. Ashrafi B. Kaviani M. Moradi Sarabi M. Biocompatibility, cytotoxicity, antimicrobial and epigenetic effects of novel chitosan-based quercetin nanohydrogel in human cancer cells. Int. J. Nanomedicine 2020 15 5963 5975 10.2147/IJN.S263013 32884259
    [Google Scholar]
  27. Al-Samydai A. Al Qaraleh M. Al Azzam K.M. Mayyas A. Nsairat H. Abu Hajleh M.N. Al-Halaseh L.K. Al-Karablieh N. Akour A. Alshaik F. Alshaer W. Formulating co-loaded nanoliposomes with gallic acid and quercetin for enhanced cancer therapy. Heliyon 2023 9 6 e17267 10.1016/j.heliyon.2023.e17267 37408902
    [Google Scholar]
  28. Rahimi S. Khoee S. Ghandi M. Preparation and characterization of rod-like chitosan–quinoline nanoparticles as pH-responsive nanocarriers for quercetin delivery. Int. J. Biol. Macromol. 2019 128 279 289 10.1016/j.ijbiomac.2019.01.137 30695722
    [Google Scholar]
  29. Liu H. Li Y. Zhang X. Shi M. Li D. Wang Y. Chitosan-Coated Solid Lipid Nano-Encapsulation Improves the Therapeutic Antiairway Inflammation Effect of Berberine against COPD in Cigarette Smoke-Exposed Rats. Can. Respir. J. 2022 2022 1 1 13 10.1155/2022/8509396 35465190
    [Google Scholar]
  30. Azadi R. Mousavi S.E. Kazemi N.M. Yousefi-Manesh H. Rezayat S.M. Jaafari M.R. Anti-inflammatory efficacy of Berberine Nanomicelle for improvement of cerebral ischemia: formulation, characterization and evaluation in bilateral common carotid artery occlusion rat model. BMC Pharmacol. Toxicol. 2021 22 1 54 10.1186/s40360‑021‑00525‑7 34600570
    [Google Scholar]
  31. Godugu C. Patel A.R. Doddapaneni R. Somagoni J. Singh M. Approaches to improve the oral bioavailability and effects of novel anticancer drugs berberine and betulinic acid. PLoS One 2014 9 3 e89919 10.1371/journal.pone.0089919 24614362
    [Google Scholar]
  32. Alnuqaydan A. Almutary A. Azam M. Manandhar B. Yin G. Yen L. Madheswaran T. Paudel K. Hansbro P. Chellappan D. Dua K. Evaluation of the cytotoxic activity and anti-migratory effect of berberine–phytantriol liquid crystalline nanoparticle formulation on non-small- cell lung cancer in vitro. Pharmaceutics 2022 14 6 1119 10.3390/pharmaceutics14061119 35745691
    [Google Scholar]
  33. Sreedhar R. Kumar V.S. Bhaskaran Pillai A.K. Mangalathillam S. Omega-3 fatty acid based nanolipid formulation of atorvastatin for treating hyperlipidemia. Adv. Pharm. Bull. 2019 9 2 271 280 10.15171/apb.2019.031 31380253
    [Google Scholar]
  34. Mohd Zaffarin A.S. Ng S.F. Ng M.H. Hassan H. Alias E. Pharmacology and pharmacokinetics of vitamin E: Nanoformulations to enhance bioavailability. Int. J. Nanomedicine 2020 15 9961 9974 10.2147/IJN.S276355 33324057
    [Google Scholar]
  35. Annaji M. Poudel I. Boddu S.H.S. Arnold R.D. Tiwari A.K. Babu R.J. Resveratrol-loaded nanomedicines for cancer applications. Cancer Rep. 2021 4 3 e1353 10.1002/cnr2.1353 33655717
    [Google Scholar]
  36. Ipar V.S. Dsouza A. Devarajan P.V. Enhancing curcumin oral bioavailability through nanoformulations. Eur. J. Drug Metab. Pharmacokinet. 2019 44 4 459 480 10.1007/s13318‑019‑00545‑z 30771095
    [Google Scholar]
  37. El-Far A.H. Al Jaouni S.K. Li W. Mousa S.A. Protective roles of thymoquinone nanoformulations: potential nanonutraceuticals in human diseases. Nutrients 2018 10 10 1369 10.3390/nu10101369 30257423
    [Google Scholar]
  38. Bhia M. Motallebi M. Abadi B. Zarepour A. Pereira-Silva M. Saremnejad F. Santos A.C. Zarrabi A. Melero A. Jafari S.M. Shakibaei M. Naringenin nano-delivery systems and their therapeutic applications. Pharmaceutics 2021 13 2 291 10.3390/pharmaceutics13020291 33672366
    [Google Scholar]
  39. Dhiman N. Awasthi R. Sharma B. Kharkwal H. Kulkarni G.T. Lipid nanoparticles as carriers for bioactive delivery. Front Chem. 2021 9 580118 10.3389/fchem.2021.580118 33981670
    [Google Scholar]
  40. Javed S. Mangla B. Almoshari Y. Sultan M.H. Ahsan W. Nanostructured lipid carrier system: A compendium of their formulation development approaches, optimization strategies by quality by design, and recent applications in drug delivery. Nanotechnol. Rev. 2022 11 1 1744 1777 10.1515/ntrev‑2022‑0109
    [Google Scholar]
  41. Cruz Z García-Estrada C Olabarrieta I Rainieri S. Lipid nanoparticles: delivery system for bioactive food compounds. Microencapsulation and microspheres for food applications Academic Press 2015 313 331
    [Google Scholar]
  42. Qin L. Lu T. Qin Y. He Y. Cui N. Du A. Sun J. in vivo effect of resveratrol-loaded solid lipid nanoparticles to relieve physical fatigue for sports nutrition supplements. Molecules 2020 25 22 5302 10.3390/molecules25225302 33202918
    [Google Scholar]
  43. Samie SM Nasr M Food to medicine transformation of stilbenoid vesicular and lipid-based nanocarriers: technological advances Drug Delivery Aspects 2020 4 227 245 10.1016/B978‑0‑12‑821222‑6.00011‑7
    [Google Scholar]
  44. Gumireddy A. Christman R. Kumari D. Tiwari A. North E.J. Chauhan H. Preparation, characterization, and in vitro evaluation of curcumin-and resveratrol-loaded solid lipid nanoparticles. AAPS PharmSciTech 2019 20 4 145 10.1208/s12249‑019‑1349‑4 30887133
    [Google Scholar]
  45. Bohara R.A. Tabassum N. Singh M.P. Gigli G. Ragusa A. Leporatti S. Recent overview of resveratrol’s beneficial effects and its nano-delivery systems. Molecules 2022 27 16 5154 10.3390/molecules27165154 36014390
    [Google Scholar]
  46. Rahman M. Almalki W.H. Afzal O. Alfawaz Altamimi A.S. Kazmi I. Al-Abbasi F.A. Choudhry H. Alenezi S. Barkat M.A. Beg S. Kumar V. Alhalmi A. Cationic solid lipid nanoparticles of resveratrol for hepatocellular carcinoma treatment: systematic optimization, in vitro characterization and preclinical investigation. Int. J. Nanomedicine 2020 15 9283 9299 10.2147/IJN.S277545 33262588
    [Google Scholar]
  47. Mohamed J.M. Alqahtani A. Ahmad F. Krishnaraju V. Kalpana K. Pectin co-functionalized dual layered solid lipid nanoparticle made by soluble curcumin for the targeted potential treatment of colorectal cancer. Carbohydr. Polym. 2021 252 117180 10.1016/j.carbpol.2020.117180 33183627
    [Google Scholar]
  48. Jain S. An overview of nanostructured lipid carriers and its application in drug delivery through different routes. Adv Pharm Bull. 2022 13 3 446 460
    [Google Scholar]
  49. Patil T.S. Gujarathi N.A. Aher A.A. Pachpande H.E. Sharma C. Ojha S. Goyal S.N. Agrawal Y.O. Recent advancements in topical anti-psoriatic nanostructured lipid carrier-based drug delivery. Int. J. Mol. Sci. 2023 24 3 2978 10.3390/ijms24032978 36769305
    [Google Scholar]
  50. Azevedo M.A. Cerqueira M.A. Gonçalves C. Amado I.R. Teixeira J.A. Pastrana L. Encapsulation of vitamin D3 using rhamnolipids-based nanostructured lipid carriers. Food Chem. 2023 427 136654 10.1016/j.foodchem.2023.136654 37399642
    [Google Scholar]
  51. de Barros D.P.C. Santos R. Reed P. Fonseca L.P. Oliva A. Design of quercetin-loaded natural oil-based nanostructured lipid carriers for the treatment of bacterial skin infections. Molecules 2022 27 24 8818 10.3390/molecules27248818 36557947
    [Google Scholar]
  52. Imran M. Iqubal M.K. Imtiyaz K. Saleem S. Mittal S. Rizvi M.M.A. Ali J. Baboota S. Topical nanostructured lipid carrier gel of quercetin and resveratrol: Formulation, optimization, in vitro and ex-vivo study for the treatment of skin cancer. Int. J. Pharm. 2020 587 119705 10.1016/j.ijpharm.2020.119705 32738456
    [Google Scholar]
  53. Gokce E. Korkmaz E. Dellera E. Sandri G. Bonferoni M.C. Ozer O. Resveratrol-loaded solid lipid nanoparticles versus nanostructured lipid carriers: Evaluation of antioxidant potential for dermal applications. Int. J. Nanomedicine 2012 7 1841 1850 10.2147/IJN.S29710 22605933
    [Google Scholar]
  54. Sabjan K.B. Munawar S.M. Rajendiran D. Vinoji S.K. Kasinathan K. Nanoemulsion as oral drug delivery-a review. Curr. Drug Res. Rev. 2020 12 1 4 15 10.2174/2589977511666191024173508 31774040
    [Google Scholar]
  55. Iqbal R. Mehmood Z. Baig A. Khalid N. Formulation and characterization of food grade O/W nanoemulsions encapsulating quercetin and curcumin: Insights on enhancing solubility characteristics. Food Bioprod. Process. 2020 123 304 311 10.1016/j.fbp.2020.07.013
    [Google Scholar]
  56. Son H.Y. Lee M.S. Chang E. Kim S.Y. Kang B. Ko H. Kim I.H. Zhong Q. Jo Y.H. Kim C.T. Kim Y. Formulation and characterization of quercetin-loaded oil in water nanoemulsion and evaluation of hypocholesterolemic activity in rats. Nutrients 2019 11 2 244 10.3390/nu11020244 30678282
    [Google Scholar]
  57. Algahtani M.S. Ahmad M.Z. Ahmad J. Nanoemulsion loaded polymeric hydrogel for topical delivery of curcumin in psoriasis. J. Drug Deliv. Sci. Technol. 2020 59 101847 10.1016/j.jddst.2020.101847
    [Google Scholar]
  58. García-Pinel B. Porras-Alcalá C. Ortega-Rodríguez A. Sarabia F. Prados J. Melguizo C. López-Romero J.M. Lipid-based nanoparticles: application and recent advances in cancer treatment. Nanomaterials (Basel) 2019 9 4 638 10.3390/nano9040638 31010180
    [Google Scholar]
  59. Shah S. Dhawan V. Holm R. Nagarsenker M.S. Perrie Y. Liposomes: Advancements and innovation in the manufacturing process. Adv. Drug Deliv. Rev. 2020 154-155 102 122 10.1016/j.addr.2020.07.002 32650041
    [Google Scholar]
  60. Liu P. Chen G. Zhang J. A review of liposomes as a drug delivery system: current status of approved products, regulatory environments, and future perspectives. Molecules 2022 27 4 1372 10.3390/molecules27041372 35209162
    [Google Scholar]
  61. Guimarães D. Cavaco-Paulo A. Nogueira E. Design of liposomes as drug delivery system for therapeutic applications. Int. J. Pharm. 2021 601 120571 10.1016/j.ijpharm.2021.120571 33812967
    [Google Scholar]
  62. Liu G. Hou S. Tong P. Li J. Liposomes: preparation, characteristics, and application strategies in analytical chemistry. Crit. Rev. Anal. Chem. 2022 52 2 392 412 10.1080/10408347.2020.1805293 32799645
    [Google Scholar]
  63. Antimisiaris SG Preparation of DRV liposomes. Liposomes: Methods and Protocols. Methods Mol. Biol. 2017 1522 23 47 10.1007/978‑1‑4939‑6591‑5_3
    [Google Scholar]
  64. Šturm L. Poklar Ulrih N. Basic methods for preparation of liposomes and studying their interactions with different compounds, with the emphasis on polyphenols. Int. J. Mol. Sci. 2021 22 12 6547 10.3390/ijms22126547 34207189
    [Google Scholar]
  65. Bang-qing WU Ying-ju HE Zong-ning YI Zhi-rong ZH Li DE Preparation and Characterization of Clopidogrel Bisulfate Liposomes. Sichuan Da Xue Xue Bao Yi Xue Ban 2021 52 4 630 636 10.12182/20210760102
    [Google Scholar]
  66. Li T. Cipolla D. Rades T. Boyd B.J. Drug nanocrystallisation within liposomes. J. Control. Release 2018 288 96 110 10.1016/j.jconrel.2018.09.001 30184465
    [Google Scholar]
  67. Huang M. Liang C. Tan C. Huang S. Ying R. Wang Y. Wang Z. Zhang Y. Liposome co-encapsulation as a strategy for the delivery of curcumin and resveratrol. Food Funct. 2019 10 10 6447 6458 10.1039/C9FO01338E 31524893
    [Google Scholar]
  68. Patel G. Thakur N.S. Kushwah V. Patil M.D. Nile S.H. Jain S. Banerjee U.C. Kai G. Liposomal delivery of mycophenolic acid with quercetin for improved breast cancer therapy in SD rats. Front. Bioeng. Biotechnol. 2020 8 631 10.3389/fbioe.2020.00631 32612988
    [Google Scholar]
  69. Song J.W. Liu Y.S. Guo Y.R. Zhong W.X. Guo Y.P. Guo L. Nano–liposomes double loaded with curcumin and tetrandrine: Preparation, characterization, hepatotoxicity and anti–tumor effects. Int. J. Mol. Sci. 2022 23 12 6858 10.3390/ijms23126858 35743311
    [Google Scholar]
  70. Sartaj A. Aggarwal N. Qamar Z. Tabassum H. Narang JK. Liposomal nanocarriers for delivery of combination drugs. Nanocarriers for the Delivery of Combination Drugs Elsevier 2021 47 83
    [Google Scholar]
  71. Altamimi M.A. Hussain A. AlRajhi M. Alshehri S. Imam S.S. Qamar W. Luteolin-loaded elastic liposomes for transdermal delivery to control breast cancer: in vitro and ex-vivo evaluations. Pharmaceuticals 2021 14 11 1143 10.3390/ph14111143 34832925
    [Google Scholar]
  72. Kuotsu K. Karim K.M. Mandal A.S. Biswas N. Guha A. Chatterjee S. Behera M. Niosome: A future of targeted drug delivery systems. J. Adv. Pharm. Technol. Res. 2010 1 4 374 380 10.4103/0110‑5558.76435 22247876
    [Google Scholar]
  73. Ge X. Wei M. He S. Yuan W.E. Advances of non-ionic surfactant vesicles (niosomes) and their application in drug delivery. Pharmaceutics 2019 11 2 55 10.3390/pharmaceutics11020055 30700021
    [Google Scholar]
  74. Momekova D.B. Gugleva V.E. Petrov P.D. Nanoarchitectonics of multifunctional niosomes for advanced drug delivery. ACS Omega 2021 6 49 33265 33273 10.1021/acsomega.1c05083 34926878
    [Google Scholar]
  75. Thabet Y. Elsabahy M. Eissa N.G. Methods for preparation of niosomes: A focus on thin-film hydration method. Methods 2022 199 9 15 10.1016/j.ymeth.2021.05.004 34000392
    [Google Scholar]
  76. Durak S. Esmaeili Rad M. Alp Yetisgin A. Eda Sutova H. Kutlu O. Cetinel S. Zarrabi A. Niosomal drug delivery systems for ocular disease—Recent advances and future prospects. Nanomaterials (Basel) 2020 10 6 1191 10.3390/nano10061191 32570885
    [Google Scholar]
  77. Chen S. Hanning S. Falconer J. Locke M. Wen J. Recent advances in non-ionic surfactant vesicles (niosomes): Fabrication, characterization, pharmaceutical and cosmetic applications. Eur. J. Pharm. Biopharm. 2019 144 18 39 10.1016/j.ejpb.2019.08.015 31446046
    [Google Scholar]
  78. Murugesan N. Damodaran C. Krishnamoorthy S. Niosomal formulation of Quercetin and Resveratrol and in-vitro release studies. J. Integr. Sci. Technol.. 2022 10 2 134 138
    [Google Scholar]
  79. Talebi V. Ghanbarzadeh B. Hamishehkar H. Pezeshki A. Ostadrahimi A. Effects of different stabilizers on colloidal properties and encapsulation efficiency of vitamin D3 loaded nano-niosomes. J. Drug Deliv. Sci. Technol. 2021 61 101284 10.1016/j.jddst.2019.101284
    [Google Scholar]
  80. Sadeghi Ghadi Z. Ebrahimnejad P. Curcumin entrapped hyaluronan containing niosomes: preparation, characterisation and in vitro/in vivo evaluation. J. Microencapsul. 2019 36 2 169 179 10.1080/02652048.2019.1617360 31104531
    [Google Scholar]
  81. Sadeghi-Ghadi Z. Ebrahimnejad P. Talebpour Amiri F. Nokhodchi A. Improved oral delivery of quercetin with hyaluronic acid containing niosomes as a promising formulation. J. Drug Target. 2021 29 2 225 234 10.1080/1061186X.2020.1830408 32997536
    [Google Scholar]
  82. Kumar N Dubey A Mishra A Tiwari P. Ethosomes: A Novel Approach in Transdermal Drug Delivery System. IJPLS 2020 11 5 6598 6608
    [Google Scholar]
  83. Nainwal N. Jawla S. Singh R. Saharan V.A. Transdermal applications of ethosomes – a detailed review. J. Liposome Res. 2019 29 2 103 113 10.1080/08982104.2018.1517160 30156120
    [Google Scholar]
  84. Nayak D. Tippavajhala V.K. A comprehensive review on preparation, evaluation and applications of deformable liposomes. Iran. J. Pharm. Res. 2021 20 1 186 205 10.22037/ijpr.2020.112878.13997 34400952
    [Google Scholar]
  85. Sallustio V. Farruggia G. di Cagno M.P. Tzanova M.M. Marto J. Ribeiro H. Goncalves L.M. Mandrone M. Chiocchio I. Cerchiara T. Abruzzo A. Bigucci F. Luppi B. Design and characterization of an ethosomal gel encapsulating rosehip extract. Gels 2023 9 5 362 10.3390/gels9050362 37232954
    [Google Scholar]
  86. Li Y. Xu F. Li X. Chen S.Y. Huang L.Y. Bian Y.Y. Wang J. Shu Y.T. Yan G.J. Dong J. Yin S.P. Gu W. Chen J. Development of curcumin-loaded composite phospholipid ethosomes for enhanced skin permeability and vesicle stability. Int. J. Pharm. 2021 592 119936 10.1016/j.ijpharm.2020.119936 33038455
    [Google Scholar]
  87. Rajan R. Jose S. Biju Mukund V.P. Vasudevan D. Transferosomes - A vesicular transdermal delivery system for enhanced drug permeation. J. Adv. Pharm. Technol. Res. 2011 2 3 138 143 10.4103/2231‑4040.85524 22171309
    [Google Scholar]
  88. Fernández-García R. Lalatsa A. Statts L. Bolás-Fernández F. Ballesteros M.P. Serrano D.R. Transferosomes as nanocarriers for drugs across the skin: Quality by design from lab to industrial scale. Int. J. Pharm. 2020 573 118817 10.1016/j.ijpharm.2019.118817 31678520
    [Google Scholar]
  89. Opatha S.A.T. Titapiwatanakun V. Chutoprapat R. Transfersomes: A promising nanoencapsulation technique for transdermal drug delivery. Pharmaceutics 2020 12 9 855 10.3390/pharmaceutics12090855 32916782
    [Google Scholar]
  90. Namrata M. Vijeta B. Alagusundaram M. Transferosomes The Effective Targeted Drug Delivery System Overview. J. Pharm. Negat. Results 2022 ••• 4316 4321 10.47750/pnr.2022.13.S08.548
    [Google Scholar]
  91. Salem H.F. Kharshoum R.M. Abou-Taleb H.A. Naguib D.M. Nanosized transferosome-based intranasal in situ gel for brain targeting of resveratrol: formulation, optimization, in vitro evaluation, and in vivo pharmacokinetic study. AAPS PharmSciTech 2019 20 5 181 10.1208/s12249‑019‑1353‑8 31049748
    [Google Scholar]
  92. Elkomy M.H. Zaki R.M. Alsaidan O.A. Elmowafy M. Zafar A. Shalaby K. Abdelgawad M.A. Abo El-Ela F.I. Rateb M.E. Naguib I.A. Eid H.M. Intranasal nanotransferosomal gel for quercetin brain targeting: I. Optimization, characterization, brain localization, and cytotoxic studies. Pharmaceutics 2023 15 7 1805 10.3390/pharmaceutics15071805 37513991
    [Google Scholar]
  93. Arun Raj R. Murali A. Formulation and evaluation of curcumin loaded transferosomal nasal in situ gel for Alzheimer’s disease. Res Rev AJ Drug Formul Dev Prod. 2019 6 2 19 31
    [Google Scholar]
  94. Asensio-Regalado C. Alonso-Salces R.M. Gallo B. Berrueta L.A. Era B. Pintus F. Caddeo C. Tempranillo grape extract in transfersomes: A nanoproduct with antioxidant activity. Nanomaterials 2022 12 5 746 10.3390/nano12050746 35269233
    [Google Scholar]
  95. Plaza-Oliver M. Santander-Ortega M.J. Lozano M.V. Current approaches in lipid-based nanocarriers for oral drug delivery. Drug Deliv. Transl. Res. 2021 11 2 471 497 10.1007/s13346‑021‑00908‑7 33528830
    [Google Scholar]
  96. Lagarce F. Alyaa R. Legras Pierre Tessier-Marteau A. Thomas O. Macchi L. Saulnier P. Benoit J.P. Oral fondaparinux: use of lipid nanocapsules as nanocarriers and in vivo pharmacokinetic study. Int. J. Nanomedicine 2011 6 2941 2951 10.2147/IJN.S25791 22162653
    [Google Scholar]
  97. Moura R.P. Pacheco C. Pêgo A.P. des Rieux A. Sarmento B. Lipid nanocapsules to enhance drug bioavailability to the central nervous system. J. Control. Release 2020 322 390 400 10.1016/j.jconrel.2020.03.042 32247807
    [Google Scholar]
  98. Arshad R. Gulshad L. Haq I.U. Farooq M.A. Al-Farga A. Siddique R. Manzoor M.F. Karrar E. Nanotechnology: A novel tool to enhance the bioavailability of micronutrients. Food Sci. Nutr. 2021 9 6 3354 3361 10.1002/fsn3.2311 34136200
    [Google Scholar]
  99. Waghule T. Gorantla S. Rapalli V.K. Shah P. Dubey S.K. Saha R.N. Singhvi G. Emerging trends in topical delivery of curcumin through lipid nanocarriers: Effectiveness in skin disorders. AAPS PharmSciTech 2020 21 7 284 10.1208/s12249‑020‑01831‑9 33058071
    [Google Scholar]
  100. Bapat P. Ghadi R. Chaudhari D. Katiyar S.S. Jain S. Tocophersolan stabilized lipid nanocapsules with high drug loading to improve the permeability and oral bioavailability of curcumin. Int. J. Pharm. 2019 560 219 227 10.1016/j.ijpharm.2019.02.013 30776407
    [Google Scholar]
  101. Ranganathan A. Hindupur R. Vallikannan B. Biocompatible lutein-polymer-lipid nanocapsules: Acute and subacute toxicity and bioavailability in mice. Mater. Sci. Eng. C 2016 69 1318 1327 10.1016/j.msec.2016.08.029 27612832
    [Google Scholar]
  102. Basak S. Gokhale J. Immunity boosting nutraceuticals: Current trends and challenges. J. Food Biochem. 2022 46 3 e13902 10.1111/jfbc.13902 34467553
    [Google Scholar]
  103. Tsiaka T. Kritsi E. Tsiantas K. Christodoulou P. Sinanoglou V.J. Zoumpoulakis P. Design and development of novel nutraceuticals: Current trends and methodologies. Nutraceuticals 2022 2 2 71 90 10.3390/nutraceuticals2020006
    [Google Scholar]
  104. Daliri EB Lee BH Current trends and future perspectives on functional foods and nutraceuticals. Beneficial Microorganisms in Food and Nutraceuticals Springer International Publishing 2015 221 244 10.1007/978‑3‑319‑23177‑8_10
    [Google Scholar]
  105. Lestari L.A. Opportunities and Challenges of Functional Foods and Nutraceuticals Development during Covid-19 Pandemic. BIO Web of Conferences 2021 10.1051/bioconf/20214102009
    [Google Scholar]
  106. Puttasiddaiah R. Lakshminarayana R. Somashekar N.L. Gupta V.K. Inbaraj B.S. Usmani Z. Raghavendra V.B. Sridhar K. Sharma M. Advances in nanofabrication technology for nutraceuticals: New insights and future trends. Bioengineering 2022 9 9 478 10.3390/bioengineering9090478 36135026
    [Google Scholar]
  107. Ban Q.Y. Liu M. Ding N. Chen Y. Lin Q. Zha J.M. He W.Q. Nutraceuticals for the treatment of IBD: current progress and future directions. Front. Nutr. 2022 9 794169 10.3389/fnut.2022.794169 35734374
    [Google Scholar]
  108. Rayate Y.T. Yadav A.R. Mohite S.K. Novel Drug Delivery systems and its future prospects. World J Appl Pharm. 2023 1 1 14 19
    [Google Scholar]
/content/journals/cnanom/10.2174/0124681873312762241114045714
Loading
/content/journals/cnanom/10.2174/0124681873312762241114045714
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test