Skip to content
2000
Cover image Placeholder

Abstract

Introduction

Epilepsy is a multifaceted neurological disorder impacting many individuals globally. Although the main treatment method is through medicines, many patients do not respond to existing drugs. This has spurred extensive research for new therapeutic targets and drug delivery methods. Inflammation and oxidative stress have been associated with the development and progression of epilepsy. Nanomedicine-based treatments focussing on these pathways could provide a promising way to enhance treatment results.

Objective

This review aims to provide insights into enhancing antiepileptic therapy through the development of nanoformulations of synthetic and herbal drugs.

Methods

A comprehensive review of existing literature was conducted to evaluate the potential of nanoformulations in improving the delivery and efficacy of antiepileptic drugs. The review covers the pathophysiological hypotheses of epilepsy, including the glutamatergic, GABAergic, oxidative stress, and neuroinflammation hypotheses, and examines the role of neurotransmitter imbalances in seizure activity.

Results

Nanoformulations offer promising advantages for epilepsy treatment by enhancing drug delivery across the blood-brain barrier, reducing required dosages, and minimizing side effects. The utilization of nanoparticles can improve the bioavailability and targeting of AEDs, potentially leading to better seizure control. However, challenges such as ensuring biocompatibility and optimizing nanoparticle characteristics remain.

Conclusion

While significant progress has been made in understanding epilepsy and developing treatments, the disorder continues to pose challenges. Nanoformulations represent a promising area of research that could lead to more effective and targeted therapies for epilepsy, although further studies are needed to address the associated challenges and fully realize their potential.

Loading

Article metrics loading...

/content/journals/cnanom/10.2174/0124681873302617241018085244
2024-10-24
2024-11-23
Loading full text...

Full text loading...

References

  1. Vetri L. Roccella M. Parisi L. Smirni D. Costanza C. Carotenuto M. Elia M. Epilepsy: A multifaced spectrum disorder. Behav Sci (Basel). 2023 13 2 97
    [Google Scholar]
  2. Stotaw A.S. Kumar P. Beyene D.A. Tadesse T.A. Abiye A.A. Health-related quality of life and its predictors among people living with epilepsy at Dessie Referral Hospital, Amhara, Ethiopia: A cross-sectional study. SAGE Open Med. 2022 10 10.1177/20503121221129146 36246536
    [Google Scholar]
  3. Fisher R.S. Cross J.H. D’Souza C. French J.A. Haut S.R. Higurashi N. Hirsch E. Jansen F.E. Lagae L. Moshé S.L. Peltola J. Roulet Perez E. Scheffer i.e. Schulze-Bonhage A. Somerville E. Sperling M. Yacubian E.M. Zuberi S.M. Instruction manual for the ILAE 2017 operational classification of seizure types. Epilepsia 2017 58 4 531 542 10.1111/epi.13671 28276064
    [Google Scholar]
  4. Patel P. Moshé S.L. The evolution of the concepts of seizures and epilepsy: What’s in a name? Epilepsia Open 2020 5 1 22 35 10.1002/epi4.12375 32140641
    [Google Scholar]
  5. Fisher R.S. Acevedo C. Arzimanoglou A. Bogacz A. Cross J.H. Elger C.E. Engel J. Jr Forsgren L. French J.A. Glynn M. Hesdorffer D.C. Lee B.I. Mathern G.W. Moshé S.L. Perucca E. Scheffer i.e. Tomson T. Watanabe M. Wiebe S. ILAE Official Report: A practical clinical definition of epilepsy. Epilepsia 2014 55 4 475 482 10.1111/epi.12550 24730690
    [Google Scholar]
  6. Sharma S. Kumar A. Rana N. Panda S. Quality of life among patients with epilepsy: Institutional-based survey, Western Rajasthan, India. Ann. Indian Acad. Neurol. 2022 25 2 285 289 10.4103/aian.aian_489_21 35693654
    [Google Scholar]
  7. Santulli L. Coppola A. Balestrini S. Striano S. The challenges of treating epilepsy with 25 antiepileptic drugs. Pharmacol. Res. 2016 107 211 219 10.1016/j.phrs.2016.03.016 26995307
    [Google Scholar]
  8. Raut D. Bhatt L.K. Evolving targets for anti-epileptic drug discovery. Eur. J. Pharmacol. 2020 887 173582 10.1016/j.ejphar.2020.173582 32950499
    [Google Scholar]
  9. Łukawski K. Gryta P. Łuszczki J. Czuczwar S.J. Exploring the latest avenues for antiepileptic drug discovery and development. Expert Opin. Drug Discov. 2016 11 4 369 382 10.1517/17460441.2016.1154840 26924638
    [Google Scholar]
  10. Alkhudhayri A. Abdel Moneim A.E. Rizk S. Bauomy A.A. Dkhil M.A. The neuroprotective effect associated with echinops spinosus in an acute seizure model induced by pentylenetetrazole. Neurochem. Res. 2023 48 1 273 283 10.1007/s11064‑022‑03738‑2 36074199
    [Google Scholar]
  11. Matias M. Santos A.O. Silvestre S. Alves G. Fighting epilepsy with nanomedicines—is this the right weapon? Pharmaceutics 2023 15 2 306 10.3390/pharmaceutics15020306 36839629
    [Google Scholar]
  12. Giordano C. Marchiò M. Timofeeva E. Biagini G. Neuroactive peptides as putative mediators of antiepileptic ketogenic diets. Front. Neurol. 2014 5 63 10.3389/fneur.2014.00063 24808888
    [Google Scholar]
  13. Kerr M.P. The impact of epilepsy on patients’ lives. Acta Neurol. Scand. 2012 126 194 1 9 10.1111/ane.12014 23106520
    [Google Scholar]
  14. Rizvi S.A.A. Saleh A.M. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm. J. 2018 26 1 64 70 10.1016/j.jsps.2017.10.012 29379334
    [Google Scholar]
  15. Bonilla L. Esteruelas G. Ettcheto M. Espina M. García M.L. Camins A. Souto E.B. Cano A. Sánchez-López E. Biodegradable nanoparticles for the treatment of epilepsy: From current advances to future challenges. Epilepsia Open 2022 7 S1 Suppl. 1 S121 S132 10.1002/epi4.12567 34862851
    [Google Scholar]
  16. Avoli M. Lévesque M. GABAB receptors: Are they missing in action in focal epilepsy research? Curr. Neuropharmacol. 2022 20 9 1704 1716 10.2174/1570159X19666210823102332 34429053
    [Google Scholar]
  17. Barker-Haliski M. White H.S. Glutamatergic mechanisms associated with seizures and epilepsy. Cold Spring Harb. Perspect. Med. 2015 5 8 a022863 10.1101/cshperspect.a022863 26101204
    [Google Scholar]
  18. Prajapati Y Jain V Mukim M. WJ Pharm Res Technol.
    [Google Scholar]
  19. Kumar A. Yadav M. Parle M. Dhingra S. Dhull D.K. Potential drug targets and treatment of schizophrenia. Inflammopharmacology 2017 25 3 277 292 10.1007/s10787‑017‑0340‑5 28353125
    [Google Scholar]
  20. Shin E.J. Jeong J.H. Chung Y.H. Kim W.K. Ko K.H. Bach J.H. Hong J.S. Yoneda Y. Kim H.C. Role of oxidative stress in epileptic seizures. Neurochem. Int. 2011 59 2 122 137 10.1016/j.neuint.2011.03.025 21672578
    [Google Scholar]
  21. Lorigados Pedre L. Morales Chacón L.M. Orozco Suárez S. Pavón Fuentes N. Estupiñán Díaz B. Serrano Sánchez T. García Maeso I. Rocha Arrieta L. Inflammatory mediators in epilepsy. Curr. Pharm. Des. 2013 19 38 6766 6772 10.2174/1381612811319380009 23530510
    [Google Scholar]
  22. Meurs A. Clinckers R. Ebinger G. Michotte Y. Smolders I. Seizure activity and changes in hippocampal extracellular glutamate, GABA, dopamine and serotonin. Epilepsy Res. 2008 78 1 50 59 10.1016/j.eplepsyres.2007.10.007 18054462
    [Google Scholar]
  23. Manatt M. Chandra S.B. The effects of mitochondrial dysfunction in schizophrenia. Journal of Medical Genetics and Genomics. 2011 3 5 84 94
    [Google Scholar]
  24. Chowdhury F.A. Nashef L. Elwes R.D.C. Misdiagnosis in epilepsy: A review and recognition of diagnostic uncertainty. Eur. J. Neurol. 2008 15 10 1034 1042 10.1111/j.1468‑1331.2008.02260.x 18717721
    [Google Scholar]
  25. Baker G.A. Camfield C. Camfield P. Cramer J.A. Elger C.E. Johnson A.L. Martins da Silva A. Meinardi P.H. Munari C. Perucca E. Thorbecke R. Commission on outcome measurement in epilepsy, 1994–1997. Epilepsia 1998 39 2 213 231 10.1111/j.1528‑1157.1998.tb01361.x 9578003
    [Google Scholar]
  26. Baker G.A. Hesdon B. Marson A.G. Quality-of-life and behavioral outcome measures in randomized controlled trials of antiepileptic drugs: A systematic review of methodology and reporting standards. Epilepsia 2000 41 11 1357 1363 10.1111/j.1528‑1157.2000.tb00110.x 11077448
    [Google Scholar]
  27. Johannessen Landmark C. Johannessen S.I. Patsalos P.N. Therapeutic drug monitoring of antiepileptic drugs: current status and future prospects. Expert Opin. Drug Metab. Toxicol. 2020 16 3 227 238 10.1080/17425255.2020.1724956 32054370
    [Google Scholar]
  28. Dalkara S. Karakurt A. Recent progress in anticonvulsant drug research: strategies for anticonvulsant drug development and applications of antiepileptic drugs for non-epileptic central nervous system disorders. Curr. Top. Med. Chem. 2012 12 9 1033 1071 10.2174/156802612800229215 22352861
    [Google Scholar]
  29. Kim H. Kim D.W. Lee S.T. Byun J.I. Seo J.G. No Y.J. Kang K.W. Kim D. Kim K.T. Cho Y.W. Yang K.I. Antiepileptic drug selection according to seizure type in adult patients with epilepsy. J. Clin. Neurol. 2020 16 4 547 555 10.3988/jcn.2020.16.4.547 33029959
    [Google Scholar]
  30. Verrotti A. Lattanzi S. Brigo F. Zaccara G. Pharmacodynamic interactions of antiepileptic drugs: From bench to clinical practice. Epilepsy Behav. 2020 104 Pt A 106939 10.1016/j.yebeh.2020.106939 32058303
    [Google Scholar]
  31. Brodie M.J. Pharmacological treatment of drug-resistant epilepsy in adults: A practical guide. Curr. Neurol. Neurosci. Rep. 2016 16 9 82 10.1007/s11910‑016‑0678‑x 27443649
    [Google Scholar]
  32. Cramer S.W. McGovern R.A. Chen C.C. Park M.C. Clinical benefit of vagus nerve stimulation for epilepsy: Assessment of randomized controlled trials and prospective non-randomized studies. J. Cent. Nerv. Syst. Dis. 2023 15 10.1177/11795735231151830 36654850
    [Google Scholar]
  33. Jin P. Wu D. Li X. Ren L. Wang Y. Towards precision medicine in epilepsy surgery. Ann. Transl. Med. 2016 4 2 24 26889477
    [Google Scholar]
  34. Moshé S.L. Perucca E. Ryvlin P. Tomson T. Epilepsy: New advances. Lancet 2015 385 9971 884 898 10.1016/S0140‑6736(14)60456‑6 25260236
    [Google Scholar]
  35. Aznarez P.B. Cabeza M.P. Quintana A.S.A. Lara-Almunia M. Sanchez J.A. Evolution of patients with surgically treated drug-resistant occipital lobe epilepsy. Surg. Neurol. Int. 2020 11 222 10.25259/SNI_251_2020 32874725
    [Google Scholar]
  36. Operto F.F. Matricardi S. Pastorino G.M.G. Verrotti A. Coppola G. The ketogenic diet for the treatment of mood disorders in comorbidity with epilepsy in children and adolescents. Front. Pharmacol. 2020 11 578396 10.3389/fphar.2020.578396 33381032
    [Google Scholar]
  37. Marchiò M Roli L Lucchi C Costa AM Borghi M Iughetti L Trenti T Guerra A Biagini G Ghrelin plasma levels after 1 year of ketogenic diet in children with refractory epilepsy. Front Nutr. 2019 6 112 10.3389/fnut.2019.00112
    [Google Scholar]
  38. Löscher W. Models of seizures and epilepsy: Important tools in the discovery and evaluation of novel epilepsy therapies. experimental and translational methods to screen drugs effective against seizures and epilepsy. Neuromethods Springer New York 2021 3 7
    [Google Scholar]
  39. Shringarpure M. Gharat S. Momin M. Omri A. Management of epileptic disorders using nanotechnology-based strategies for nose-to-brain drug delivery. Expert Opin. Drug Deliv. 2021 18 2 169 185 10.1080/17425247.2021.1823965 32921169
    [Google Scholar]
  40. Agrawal M. Saraf S. Saraf S. Dubey S.K. Puri A. Patel R.J. Ajazuddin Ravichandiran V. Murty U.S. Alexander A. Recent strategies and advances in the fabrication of nano lipid carriers and their application towards brain targeting. J. Control. Release 2020 321 372 415 10.1016/j.jconrel.2020.02.020 32061621
    [Google Scholar]
  41. v A. Cutinho L.I. Mourya P. Maxwell A. Thomas G. Rajput B.S. Approaches for encephalic drug delivery using nanomaterials: The current status. Brain Res. Bull. 2020 155 184 190 10.1016/j.brainresbull.2019.11.017 31790722
    [Google Scholar]
  42. Farinha P. Pinho J.O. Matias M. Gaspar M.M. Nanomedicines in the treatment of colon cancer: A focus on metallodrugs. Drug Deliv. Transl. Res. 2021 ••• 1 18 33616870
    [Google Scholar]
  43. Naqvi S. Panghal A. Flora S.J.S. Nanotechnology: A promising approach for delivery of neuroprotective drugs. Front. Neurosci. 2020 14 494 10.3389/fnins.2020.00494 32581676
    [Google Scholar]
  44. Malinovskaya Y. Melnikov P. Baklaushev V. Gabashvili A. Osipova N. Mantrov S. Ermolenko Y. Maksimenko O. Gorshkova M. Balabanyan V. Kreuter J. Gelperina S. Delivery of doxorubicin-loaded PLGA nanoparticles into U87 human glioblastoma cells. Int. J. Pharm. 2017 524 1-2 77 90 10.1016/j.ijpharm.2017.03.049 28359811
    [Google Scholar]
  45. Ribovski L Hamelmann N Paulusse J. Polymeric nanoparticles properties and brain delivery. Pharmaceutics. 13 12 2045 10.3390/pharmaceutics13122045
    [Google Scholar]
  46. Lin C-H. Chen C-H. Lin Z-C. Fang J-Y. Recent advances in oral delivery of drugs and bioactive natural products using solid lipid nanoparticles as the carriers. Yao Wu Shi Pin Fen Xi 2017 25 2 219 234 28911663
    [Google Scholar]
  47. Yingchoncharoen P. Kalinowski D.S. Richardson D.R. Lipid-based drug delivery systems in cancer therapy: What is available and what is yet to come. Pharmacol. Rev. 2016 68 3 701 787 10.1124/pr.115.012070 27363439
    [Google Scholar]
  48. Rostami E. Kashanian S. Azandaryani A.H. Faramarzi H. Dolatabadi J.E.N. Omidfar K. Drug targeting using solid lipid nanoparticles. Chem. Phys. Lipids 2014 181 56 61 10.1016/j.chemphyslip.2014.03.006 24717692
    [Google Scholar]
  49. Qushawy M. Prabahar K. Abd-Alhaseeb M. Swidan S. Nasr A. Preparation and evaluation of carbamazepine solid lipid nanoparticle for alleviating seizure activity in pentylenetetrazole-kindled mice. Molecules 2019 24 21 3971 10.3390/molecules24213971 31684021
    [Google Scholar]
  50. Scioli Montoto S. Sbaraglini M.L. Talevi A. Couyoupetrou M. Di Ianni M. Pesce G.O. Alvarez V.A. Bruno-Blanch L.E. Castro G.R. Ruiz M.E. Islan G.A. Carbamazepine-loaded solid lipid nanoparticles and nanostructured lipid carriers: Physicochemical characterization and in vitro/in vivo evaluation. Colloids Surf. B Biointerfaces 2018 167 73 81 10.1016/j.colsurfb.2018.03.052 29627680
    [Google Scholar]
  51. Leyva-Gómez G. González-Trujano M.E. López-Ruiz E. Couraud P.O. Wekslerg B. Romero I. Miller F. Delie F. Allémann E. Quintanar-Guerrero D. Nanoparticle formulation improves the anticonvulsant effect of clonazepam on the pentylenetetrazole-induced seizures: Behavior and electroencephalogram. J. Pharm. Sci. 2014 103 8 2509 2519 10.1002/jps.24044 24916334
    [Google Scholar]
  52. Nair R. Kumar A.C.K. Priya V.K. Yadav C.M. Raju P.Y. Formulation and evaluation of chitosan solid lipid nanoparticles of carbamazepine. Lipids Health Dis. 2012 11 1 72 10.1186/1476‑511X‑11‑72 22695222
    [Google Scholar]
  53. Abdelbary G. Fahmy R.H. Diazepam-loaded solid lipid nanoparticles: design and characterization. AAPS PharmSciTech 2009 10 1 211 219 10.1208/s12249‑009‑9197‑2 19277870
    [Google Scholar]
  54. Motawea A. Ahmed D.A.M. El-Mansy A.A. Saleh N.M. Crucial role of PLGA nanoparticles in mitigating the amiodarone-induced pulmonary toxicity. Int. J. Nanomedicine 2021 16 4713 4737 34267519
    [Google Scholar]
  55. Das S. Ng W.K. Tan R.B.H. Are nanostructured lipid carriers (NLCs) better than solid lipid nanoparticles (SLNs): Development, characterizations and comparative evaluations of clotrimazole-loaded SLNs and NLCs? Eur. J. Pharm. Sci. 2012 47 1 139 151 10.1016/j.ejps.2012.05.010 22664358
    [Google Scholar]
  56. Muhammad H.S.R. 2014
  57. Khan N. Shah F.A. Rana I. Ansari M.M. Din F. Rizvi S.Z.H. Aman W. Lee G.Y. Lee E.S. Kim J.K. Zeb A. Nanostructured lipid carriers-mediated brain delivery of carbamazepine for improved in vivo anticonvulsant and anxiolytic activity. Int. J. Pharm. 2020 577 119033 10.1016/j.ijpharm.2020.119033 31954864
    [Google Scholar]
  58. Abbas H. Refai H. El Sayed N. Superparamagnetic iron oxide–loaded lipid nanocarriers incorporated in thermosensitive in situ gel for magnetic brain targeting of clonazepam. J. Pharm. Sci. 2018 107 8 2119 2127 10.1016/j.xphs.2018.04.007 29665379
    [Google Scholar]
  59. Alam T. Pandit J. Vohora D. Aqil M. Ali A. Sultana Y. Optimization of nanostructured lipid carriers of lamotrigine for brain delivery: in vitro characterization and in vivo efficacy in epilepsy. Expert Opin. Drug Deliv. 2015 12 2 181 194 10.1517/17425247.2014.945416 25164097
    [Google Scholar]
  60. Eskandari S. Varshosaz J. Minaiyan M. Tabbakhian M. Brain delivery of valproic acid via intranasal administration of nanostructured lipid carriers: in vivo pharmacodynamic studies using rat electroshock model. Int. J. Nanomedicine 2011 6 363 371 21499426
    [Google Scholar]
  61. Vickers N.J. Animal communication: When i’m calling you, will you answer too? Curr. Biol. 2017 27 14 R713 R715 10.1016/j.cub.2017.05.064 28743020
    [Google Scholar]
  62. Lovelyn C. Attama A.A. Current state of nanoemulsions in drug delivery. J. Biomater. Nanobiotechnol. 2011 2 5 626 639 10.4236/jbnb.2011.225075
    [Google Scholar]
  63. Mahato R. Nanoemulsion as targeted drug delivery system for cancer therapeutics. J. Pharm. Sci. Pharmacol. 2017 3 2 83 97 10.1166/jpsp.2017.1082
    [Google Scholar]
  64. Kotta S. Khan A.W. Pramod K. Ansari S.H. Sharma R.K. Ali J. Exploring oral nanoemulsions for bioavailability enhancement of poorly water-soluble drugs. Expert Opin. Drug Deliv. 2012 9 5 585 598 10.1517/17425247.2012.668523 22512597
    [Google Scholar]
  65. Pires P.C. Fazendeiro A.C. Rodrigues M. Alves G. Santos A.O. Nose-to-brain delivery of phenytoin and its hydrophilic prodrug fosphenytoin combined in a microemulsion - formulation development and in vivo pharmacokinetics. Eur. J. Pharm. Sci. 2021 164 105918 10.1016/j.ejps.2021.105918 34174414
    [Google Scholar]
  66. Sargazi S. Hajinezhad M.R. Barani M. Mukhtar M. Rahdar A. Baino F. Karimi P. Pandey S. F127/cisplatin microemulsions: in vitro, in vivo and computational studies. Appl. Sci. (Basel) 2021 11 7 3006 10.3390/app11073006
    [Google Scholar]
  67. Ahmad N Ahmad R Alam MA Ahmad FJ Amir M Impact of ultrasonication techniques on the preparation of novel Amiloride-nanoemulsion used for intranasal delivery in the treatment of epilepsy. Artif Cells Nanomed Biotechnol. 2018 46 sup3 S192 S207
    [Google Scholar]
  68. Assiri A.A. Glover K. Mishra D. Waite D. Vora L.K. Thakur R.R.S. Block copolymer micelles as ocular drug delivery systems. Drug Discov. Today 2024 29 8 104098 10.1016/j.drudis.2024.104098 38997002
    [Google Scholar]
  69. Md S. Bhattmisra S.K. Zeeshan F. Shahzad N. Mujtaba M.A. Srikanth Meka V. Radhakrishnan A. Kesharwani P. Baboota S. Ali J. Nano-carrier enabled drug delivery systems for nose to brain targeting for the treatment of neurodegenerative disorders. J. Drug Deliv. Sci. Technol. 2018 43 295 310 10.1016/j.jddst.2017.09.022
    [Google Scholar]
  70. Yu A. Lv J. Yuan F. Xia Z. Fan K. Chen G. Ren J. Lin C. Wei S. Yang F. mPEG-PLA/TPGS mixed micelles via intranasal administration improved the bioavailability of lamotrigine in the hippocampus. Int. J. Nanomedicine 2017 12 8353 8362 10.2147/IJN.S145488 29200847
    [Google Scholar]
  71. Nour S.A. Abdelmalak N.S. Naguib M.J. Rashed H.M. Ibrahim A.B. Intranasal brain-targeted clonazepam polymeric micelles for immediate control of status epilepticus: in vitro optimization, ex-vivo determination of cytotoxicity, in vivo biodistribution and pharmacodynamics studies. Drug Deliv. 2016 23 9 3681 3695 10.1080/10717544.2016.1223216 27648847
    [Google Scholar]
  72. Liu J. He Y. Zhang J. Li J. Yu X. Cao Z. Meng F. Zhao Y. Wu X. Shen T. Hong Z. Functionalized nanocarrier combined seizure-specific vector with P-glycoprotein modulation property for antiepileptic drug delivery. Biomaterials 2016 74 64 76 10.1016/j.biomaterials.2015.09.041 26447556
    [Google Scholar]
  73. Abdel Hady M. Sayed O.M. Akl M.A. Brain uptake and accumulation of new levofloxacin-doxycycline combination through the use of solid lipid nanoparticles: Formulation; Optimization and in-vivo evaluation. Colloids Surf. B Biointerfaces 2020 193 111076 10.1016/j.colsurfb.2020.111076 32408259
    [Google Scholar]
  74. Blasi P. Giovagnoli S. Schoubben A. Ricci M. Rossi C. Solid lipid nanoparticles for targeted brain drug delivery. Adv. Drug Deliv. Rev. 2007 59 6 454 477 10.1016/j.addr.2007.04.011 17570559
    [Google Scholar]
  75. Danaei M. Kalantari M. Raji M. Samareh Fekri H. Saber R. Asnani G.P. Mortazavi S.M. Mozafari M.R. Rasti B. Taheriazam A. Probing nanoliposomes using single particle analytical techniques: effect of excipients, solvents, phase transition and zeta potential. Heliyon 2018 4 12 e01088 10.1016/j.heliyon.2018.e01088 30603716
    [Google Scholar]
  76. Praveen A. Aqil M. Imam S.S. Ahad A. Moolakkadath T. Ahmad F.J. Lamotrigine encapsulated intra-nasal nanoliposome formulation for epilepsy treatment: Formulation design, characterization and nasal toxicity study. Colloids Surf. B Biointerfaces 2019 174 553 562 10.1016/j.colsurfb.2018.11.025 30502666
    [Google Scholar]
  77. Ucisik M.H. Küpcü S. Schuster B. Sleytr U.B. Characterization of CurcuEmulsomes: Nanoformulation for enhanced solubility and delivery of curcumin. J. Nanobiotechnology 2013 11 1 37 10.1186/1477‑3155‑11‑37 24314310
    [Google Scholar]
  78. El-Zaafarany G.M. Soliman M.E. Mansour S. Cespi M. Palmieri G.F. Illum L. Casettari L. Awad G.A.S. A tailored thermosensitive PLGA-PEG-PLGA/emulsomes composite for enhanced oxcarbazepine brain delivery via the nasal route. Pharmaceutics 2018 10 4 217 10.3390/pharmaceutics10040217 30400577
    [Google Scholar]
  79. El-Zaafarany G.M. Soliman M.E. Mansour S. Awad G.A.S. Identifying lipidic emulsomes for improved oxcarbazepine brain targeting: in vitro and rat in vivo studies. Int. J. Pharm. 2016 503 1-2 127 140 10.1016/j.ijpharm.2016.02.038 26924357
    [Google Scholar]
  80. Shevchenko K.V. Nagaev I.Y. Andreeva L.A. Shevchenko V.P. Myasoedov N.F. Prospects for intranasal delivery of neuropeptides to the brain. Pharm. Chem. J. 2019 53 2 89 100 10.1007/s11094‑019‑01960‑x
    [Google Scholar]
  81. Clynen E. Swijsen A. Raijmakers M. Hoogland G. Rigo J.M. Neuropeptides as targets for the development of anticonvulsant drugs. Mol. Neurobiol. 2014 50 2 626 646 10.1007/s12035‑014‑8669‑x 24705860
    [Google Scholar]
  82. Veronesi M.C. Aldouby Y. Domb A.J. Kubek M.J. Thyrotropin-releasing hormone d,l polylactide nanoparticles (TRH-NPs) protect against glutamate toxicity in vitro and kindling development in vivo. Brain Res. 2009 1303 151 160 10.1016/j.brainres.2009.09.039 19766611
    [Google Scholar]
  83. Kubek M.J. Domb A.J. Veronesi M.C. Attenuation of kindled seizures by intranasal delivery of neuropeptide-loaded nanoparticles. Neurotherapeutics 2009 6 2 359 371 10.1016/j.nurt.2009.02.001 19332331
    [Google Scholar]
  84. Karavasili C. Fatouros D.G. Smart materials: In situ gel-forming systems for nasal delivery. Drug Discov. Today 2016 21 1 157 166 10.1016/j.drudis.2015.10.016 26563428
    [Google Scholar]
  85. Paul A. Fathima K.M. Nair S.C. Intra nasal in situ gelling system of lamotrigine using ion activated mucoadhesive polymer. Open Med. Chem. J. 2017 11 222 244 10.2174/1874104501711010222 29399211
    [Google Scholar]
  86. Wang Y. Ying X. Chen L. Liu Y. Wang Y. Liang J. Xu C. Guo Y. Wang S. Hu W. Du Y. Chen Z. Electroresponsive nanoparticles improve antiseizure effect of phenytoin in generalized tonic-clonic seizures. Neurotherapeutics 2016 13 3 603 613 10.1007/s13311‑016‑0431‑9 27137202
    [Google Scholar]
  87. Ying X. Wang Y. Liang J. Yue J. Xu C. Lu L. Xu Z. Gao J. Du Y. Chen Z. Angiopep-conjugated electro-responsive hydrogel nanoparticles: therapeutic potential for epilepsy. Angew. Chem. Int. Ed. 2014 53 46 12436 12440 10.1002/anie.201403846 25044856
    [Google Scholar]
  88. Samia O. Hanan R. Kamal E.T. Carbamazepine Mucoadhesive Nanoemulgel (MNEG) as brain targeting delivery system via the olfactory mucosa. Drug Deliv. 2012 19 1 58 67 10.3109/10717544.2011.644349 22191715
    [Google Scholar]
  89. Hsiao M.H. Larsson M. Larsson A. Evenbratt H. Chen Y.Y. Chen Y.Y. Liu D.M. Liu D-M. Design and characterization of a novel amphiphilic chitosan nanocapsule-based thermo-gelling biogel with sustained in vivo release of the hydrophilic anti-epilepsy drug ethosuximide. J. Control. Release 2012 161 3 942 948 10.1016/j.jconrel.2012.05.038 22652548
    [Google Scholar]
  90. Hamidi M. Azadi A. Mohamadi-Samani S. Rafiei P. Ashrafi H. Valproate-Loaded hydrogel nanoparticles: Preparation and characterization. J. Appl. Polym. Sci. 2012 124 6 4686 4693 10.1002/app.35527
    [Google Scholar]
  91. Basu S. Bandyopadhyay A.K. Development and characterization of mucoadhesive in situ nasal gel of midazolam prepared with Ficus carica mucilage. AAPS PharmSciTech 2010 11 3 1223 1231 10.1208/s12249‑010‑9477‑x 20683687
    [Google Scholar]
  92. Barakat N.S. Omar S.A. Ahmed A A E. Carbamazepine uptake into rat brain following intra-olfactory transport. J. Pharm. Pharmacol. 2010 58 1 63 72 10.1211/jpp.58.1.0008 16393465
    [Google Scholar]
  93. Wong H.L. Wu X.Y. Bendayan R. Nanotechnological advances for the delivery of CNS therapeutics. Adv. Drug Deliv. Rev. 2012 64 7 686 700 10.1016/j.addr.2011.10.007 22100125
    [Google Scholar]
  94. Lahkar S. Das M.K. Surface modified polymeric nanoparticles for brain targeted drug delivery. Curr. Trends Biotechnol. Pharm. 2013 7 4 914 931
    [Google Scholar]
  95. Jain D.S. Bajaj A.N. Athawale R.B. Shikhande S.S. Pandey A. Goel P.N. Gude R.P. Patil S. Raut P. Thermosensitive PLA based nanodispersion for targeting brain tumor via intranasal route. Mater. Sci. Eng. C 2016 63 411 421 10.1016/j.msec.2016.03.015 27040235
    [Google Scholar]
  96. Gil E.S. Wu L. Xu L. Lowe T.L. β-cyclodextrin-poly(β-amino ester) nanoparticles for sustained drug delivery across the blood-brain barrier. Biomacromolecules 2012 13 11 3533 3541 10.1021/bm3008633 23066958
    [Google Scholar]
  97. Ahmad N. Ahmad R. Al Qatifi S. Alessa M. Al Hajji H. Sarafroz M. A bioanalytical UHPLC based method used for the quantification of Thymoquinone-loaded-PLGA-nanoparticles in the treatment of epilepsy. BMC Chem. 2020 14 1 10 10.1186/s13065‑020‑0664‑x 32083254
    [Google Scholar]
  98. Ugur Yilmaz C. Emik S. Orhan N. Temizyurek A. Atis M. Akcan U. Khodadust R. Arican N. Kucuk M. Gurses C. Ahishali B. Kaya M. Targeted delivery of lacosamide-conjugated gold nanoparticles into the brain in temporal lobe epilepsy in rats. Life Sci. 2020 257 118081 10.1016/j.lfs.2020.118081 32663576
    [Google Scholar]
  99. Liu S Yang S Ho PC Intranasal administration of carbamazepine-loaded carboxymethyl chitosan nanoparticles for drug delivery to the brain. Asian J Pharm Sci. 2018 13 1 72 81
    [Google Scholar]
  100. Zybina A. Anshakova A. Malinovskaya J. Melnikov P. Baklaushev V. Chekhonin V. Maksimenko O. Titov S. Balabanyan V. Kreuter J. Gelperina S. Abbasova K. Nanoparticle-based delivery of carbamazepine: A promising approach for the treatment of refractory epilepsy. Int. J. Pharm. 2018 547 1-2 10 23 10.1016/j.ijpharm.2018.05.023 29751140
    [Google Scholar]
  101. Ammar H.O. Ghorab M.M. Mahmoud A.A. Higazy I.M. Lamotrigine loaded poly-ɛ-(d,l-lactide-co-caprolactone) nanoparticles as brain delivery system. Eur. J. Pharm. Sci. 2018 115 77 87 10.1016/j.ejps.2018.01.028 29341900
    [Google Scholar]
  102. Musumeci T. Serapide M.F. Pellitteri R. Dalpiaz A. Ferraro L. Dal Magro R. Bonaccorso A. Carbone C. Veiga F. Sancini G. Puglisi G. Oxcarbazepine free or loaded PLGA nanoparticles as effective intranasal approach to control epileptic seizures in rodents. Eur. J. Pharm. Biopharm. 2018 133 309 320 10.1016/j.ejpb.2018.11.002 30399400
    [Google Scholar]
  103. Arias L.S. Pessan J.P. Vieira A.P.M. Lima T.M.T. Delbem A.C.B. Monteiro D.R. Lima TMTd, Delbem ACB, Monteiro DR. Iron oxide nanoparticles for biomedical applications: A perspective on synthesis, drugs, antimicrobial activity, and toxicity. Antibiotics (Basel) 2018 7 2 46 10.3390/antibiotics7020046 29890753
    [Google Scholar]
  104. Fang Z. Chen S. Qin J. Chen B. Ni G. Chen Z. Zhou J. Li Z. Ning Y. Wu C. Zhou L. Pluronic P85-coated poly(butylcyanoacrylate) nanoparticles overcome phenytoin resistance in P-glycoprotein overexpressing rats with lithium-pilocarpine-induced chronic temporal lobe epilepsy. Biomaterials 2016 97 110 121 10.1016/j.biomaterials.2016.04.021 27162079
    [Google Scholar]
  105. Sharma D Maheshwari D Philip G Rana R Bhatia S Singh M Gabrani R Sharma SK Ali J Sharma RK Formulation and optimization of polymeric nanoparticles for intranasal delivery of lorazepam using Box-Behnken design: in vitro and in vivo evaluation. Biomed Res Int. 2014 2014 156010
    [Google Scholar]
  106. Wilson B. Lavanya Y. Priyadarshini S.R.B. Ramasamy M. Jenita J.L. Albumin nanoparticles for the delivery of gabapentin: Preparation, characterization and pharmacodynamic studies. Int. J. Pharm. 2014 473 1-2 73 79 10.1016/j.ijpharm.2014.05.056 24999053
    [Google Scholar]
  107. Igartúa D.E. Martinez C.S. Temprana C.F. Alonso S.V. Prieto M.J. PAMAM dendrimers as a carbamazepine delivery system for neurodegenerative diseases: A biophysical and nanotoxicological characterization. Int. J. Pharm. 2018 544 1 191 202 10.1016/j.ijpharm.2018.04.032 29678547
    [Google Scholar]
  108. Rajan R. Jose S. Biju Mukund V.P. Vasudevan D. Transferosomes - a vesicular transdermal delivery system for enhanced drug permeation. J. Adv. Pharm. Technol. Res. 2011 2 3 138 143 10.4103/2231‑4040.85524 22171309
    [Google Scholar]
  109. Nour S. Abdelmalak N. Naguib M. Transferosomes for trans-nasal brain delivery of clonazepam: Preparation, optimization, ex-vivo cytotoxicity and pharmacodynamic study. J. Pharm. Res. 2017 1 2 1 15
    [Google Scholar]
  110. Salama H.A. Mahmoud A.A. Kamel A.O. Abdel Hady M. Awad G.A.S. Brain delivery of olanzapine by intranasal administration of transfersomal vesicles. J. Liposome Res. 2012 22 4 336 345 10.3109/08982104.2012.700460 22881283
    [Google Scholar]
  111. Benzie IF Wachtel-Galor S Herbal medicine: Biomolecular and clinical aspects. CRC Press/Taylor & Francis Boca Raton, Florida, United States 2011 2nd edition
    [Google Scholar]
  112. Patra J.K. Das G. Fraceto L.F. Campos E.V.R. Rodriguez-Torres M.P. Acosta-Torres L.S. Diaz-Torres L.A. Grillo R. Swamy M.K. Sharma S. Habtemariam S. Shin H-S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnology 2018 16 1 71 10.1186/s12951‑018‑0392‑8 29321058
    [Google Scholar]
  113. Kulkarni G.T. Herbal drug delivery systems: An emerging area in herbal drug research. Journal of Chronotherapy and Drug Delivery. 2011 2 3 113 119
    [Google Scholar]
  114. Sharma R. Hazra J. Prajapati P. Nanophytomedicines: A novel approach to improve drug delivery and pharmacokinetics of herbal medicine. Bio Bull. 2017 3 1 132 135
    [Google Scholar]
  115. Shah S.M.A. Nisar Z. Nisar J. Akram M. Ghotekar S. Oza R. Nanobiomedicine: A new approach of medicinal plants and their therapeutic modalities. J. Mater. Environ. Sci. 2021 12 1 14
    [Google Scholar]
  116. da Silva P.B. dos Santos Ramos M.A. Bonifácio B.V. Negri K.M.S. Sato M.R. Bauab T.M. Chorilli M. Nanotechnological strategies for vaginal administration of drugs--a review. J. Biomed. Nanotechnol. 2014 10 9 2218 2243 10.1166/jbn.2014.1890 25992455
    [Google Scholar]
  117. Nune S.K. Chanda N. Shukla R. Katti K. Kulkarni R.R. Thilakavathy S. Mekapothula S. Kannan R. Katti K.V. Green nanotechnology from tea: Phytochemicals in tea as building blocks for production of biocompatible gold nanoparticles. J. Mater. Chem. 2009 19 19 2912 2920 10.1039/b822015h 20161162
    [Google Scholar]
  118. Kumar R. Sharma M. Herbal nanomedicine interactions to enhance pharmacokinetics, pharmacodynamics, and therapeutic index for better bioavailability and biocompatibility of herbal formulations. Journal of Materials NanoScience. 2018 5 1 35 60
    [Google Scholar]
  119. Rombolà L. Scuteri D. Marilisa S. Watanabe C. Morrone L.A. Bagetta G. Corasaniti M.T. Pharmacokinetic interactions between herbal medicines and drugs: Their mechanisms and clinical relevance. Life (Basel) 2020 10 7 106 10.3390/life10070106 32635538
    [Google Scholar]
  120. Chenthamara D. Subramaniam S. Ramakrishnan S.G. Krishnaswamy S. Essa M.M. Lin F.H. Qoronfleh M.W. Therapeutic efficacy of nanoparticles and routes of administration. Biomater. Res. 2019 23 1 20 10.1186/s40824‑019‑0166‑x 31832232
    [Google Scholar]
  121. Ansari S.H. Islam F. Sameem M. Influence of nanotechnology on herbal drugs: A review. J. Adv. Pharm. Technol. Res. 2012 3 3 142 146 10.4103/2231‑4040.101006 23057000
    [Google Scholar]
  122. Kumari S. Goyal A. Sönmez Gürer E. Algın Yapar E. Garg M. Sood M. Sindhu R.K. Bioactive loaded novel nano-formulations for targeted drug delivery and their therapeutic potential. Pharmaceutics 2022 14 5 1091 10.3390/pharmaceutics14051091 35631677
    [Google Scholar]
  123. Ahmad N. Ahmad R. Alrasheed R. Almatar H. Al-Ramadan A. Amir M. Sarafroz M. Quantification and evaluations of catechin hydrate polymeric nanoparticles used in brain targeting for the treatment of epilepsy. Pharmaceutics 2020 12 3 203 10.3390/pharmaceutics12030203 32120778
    [Google Scholar]
  124. Zhu D. Zhang W. Nie X. Ding S. Zhang D. Yang L. Rational design of ultra-small photoluminescent copper nano-dots loaded PLGA micro-vessels for targeted co-delivery of natural piperine molecules for the treatment for epilepsy. J. Photochem. Photobiol. B 2020 205 111805 10.1016/j.jphotobiol.2020.111805 32092661
    [Google Scholar]
  125. Anissian D. Ghasemi-Kasman M. Khalili-Fomeshi M. Akbari A. Hashemian M. Kazemi S. Moghadamnia A.A. Piperine-loaded chitosan-STPP nanoparticles reduce neuronal loss and astrocytes activation in chemical kindling model of epilepsy. Int. J. Biol. Macromol. 2018 107 Pt A 973 983 10.1016/j.ijbiomac.2017.09.073 28939512
    [Google Scholar]
  126. Ren T. Hu M. Cheng Y. Shek T.L. Xiao M. Ho N.J. Zhang C. Leung S.S.Y. Zuo Z. Piperine-loaded nanoparticles with enhanced dissolution and oral bioavailability for epilepsy control. Eur. J. Pharm. Sci. 2019 137 104988 10.1016/j.ejps.2019.104988 31291598
    [Google Scholar]
  127. Huang R. Zhu Y. Lin L. Song S. Cheng L. Zhu R. Solid lipid nanoparticles enhanced the neuroprotective role of curcumin against epilepsy through activation of Bcl-2 family and P38 MAPK pathways. ACS Chem. Neurosci. 2020 11 13 1985 1995 10.1021/acschemneuro.0c00242 32464055
    [Google Scholar]
  128. Mansoor S.R. Hashemian M. Khalili-Fomeshi M. Ashrafpour M. Moghadamnia A.A. Ghasemi-Kasman M. Upregulation of klotho and erythropoietin contributes to the neuroprotection induced by curcumin-loaded nanoparticles in experimental model of chronic epilepsy. Brain Res. Bull. 2018 142 281 288 10.1016/j.brainresbull.2018.08.010 30130550
    [Google Scholar]
  129. Agarwal N.B. Jain S. Nagpal D. Agarwal N.K. Mediratta P.K. Sharma K.K. Liposomal formulation of curcumin attenuates seizures in different experimental models of epilepsy in mice. Fundam. Clin. Pharmacol. 2013 27 2 169 172 10.1111/j.1472‑8206.2011.01002.x 22044441
    [Google Scholar]
  130. Hashemian M. Anissian D. Ghasemi-Kasman M. Akbari A. Khalili-Fomeshi M. Ghasemi S. Ahmadi F. Moghadamnia A.A. Ebrahimpour A. Curcumin-loaded chitosan-alginate-STPP nanoparticles ameliorate memory deficits and reduce glial activation in pentylenetetrazol-induced kindling model of epilepsy. Prog. Neuropsychopharmacol. Biol. Psychiatry 2017 79 Pt B 462 471 10.1016/j.pnpbp.2017.07.025 28778407
    [Google Scholar]
  131. Zhang Y. Zhao J. Afzal O. Kazmi I. Al-Abbasi F.A. Altamimi A.S.A. Yang Z. Neuroprotective role of chrysin-loaded poly(lactic-co-glycolic acid) nanoparticle against kindling-induced epilepsy through Nrf2/ARE/HO-1 pathway. J. Biochem. Mol. Toxicol. 2021 35 2 e22634 10.1002/jbt.22634 32991785
    [Google Scholar]
  132. El-Missiry M.A. Othman A.I. Amer M.A. Sedki M. Ali S.M. El-Sherbiny I.M. Nanoformulated ellagic acid ameliorates pentylenetetrazol-induced experimental epileptic seizures by modulating oxidative stress, inflammatory cytokines and apoptosis in the brains of male mice. Metab. Brain Dis. 2020 35 2 385 399 10.1007/s11011‑019‑00502‑4 31728888
    [Google Scholar]
  133. Cano A. Ettcheto M. Espina M. Auladell C. Calpena A.C. Folch J. Barenys M. Sánchez-López E. Camins A. García M.L. Epigallocatechin-3-gallate loaded PEGylated-PLGA nanoparticles: A new anti-seizure strategy for temporal lobe epilepsy. Nanomedicine 2018 14 4 1073 1085 10.1016/j.nano.2018.01.019 29454994
    [Google Scholar]
  134. Hashemian M. Ghasemi-Kasman M. Ghasemi S. Akbari A. Moalem-Banhangi M. Zare L. Ahmadian S.R. Fabrication and evaluation of novel quercetin-conjugated Fe3O4–β-cyclodextrin nanoparticles for potential use in epilepsy disorder. Int. J. Nanomedicine 2019 14 6481 6495 10.2147/IJN.S218317 31496698
    [Google Scholar]
  135. Kohane D.S. Holmes G.L. Chau Y. Zurakowski D. Langer R. Cha B.H. Effectiveness of muscimol-containing microparticles against pilocarpine-induced focal seizures. Epilepsia 2002 43 12 1462 1468 10.1046/j.1528‑1157.2002.11202.x 12460246
    [Google Scholar]
  136. Firdous A. Sarwar S. Shah F.A. Tabasum S. Zeb A. Nadeem H. Alamro A. Alghamdi A.A. Alvi A.M. Naeem K. Khalid M.S. Contribution of attenuation of TNF-α and NF-κB in the anti-epileptic, anti-apoptotic and neuroprotective potential of Rosa webbiana fruit and its chitosan encapsulation. Molecules 2021 26 8 2347 10.3390/molecules26082347 33920713
    [Google Scholar]
  137. Rajangam J. Sampathi P. Palei N.N. Balaji A. A S.S. Mohanta B.C. Palanimuthu V.R. Green synthesis, characterization and antiepileptic activity of herbal nanoparticles of Mimusops elengi in mice. Nano Biomed. Eng. 2022 14 4 295 307 10.5101/nbe.v14i4.p295‑307
    [Google Scholar]
  138. Mihailova L. Tchekalarova J. Shalabalija D. Geskovski N. Stoilkovska Gjorgievska V. Stefkov G. Krasteva P. Simonoska Crcarevska M. Glavas Dodov M. Lipid nano-carriers loaded with Cannabis sativa extract for epilepsy treatment – in vitro characterization and in vivo efficacy studies. J. Pharm. Sci. 2022 111 12 3384 3396 10.1016/j.xphs.2022.09.012 36189477
    [Google Scholar]
  139. Al Omairi N.E. Albrakati A. Alsharif K.F. Almalki A.S. Alsanie W. Abd Elmageed Z.Y. Zaafar D. Lokman M.S. Bauomy A.A. Belal S.K. Abdel-Daim M.M. Abdel Moneim A.E. Alyami H. Kassab R.B. Selenium nanoparticles with prodigiosin rescue hippocampal damage associated with epileptic seizures induced by pentylenetetrazole in rats. Biology (Basel) 2022 11 3 354 10.3390/biology11030354 35336729
    [Google Scholar]
  140. Aboutabl M.E. Fayed B. Ismail S.A. Investigation of chitosan, its depolymerized products, and nanoformulation as novel anticonvulsants. Egyptian Pharmaceutical Journal 2022 21 3 385 394 10.4103/epj.epj_58_22
    [Google Scholar]
  141. Ahmad N. Al-Ghamdi M.J.A. Alnajjad H.S.M. Al Omar B.B.A. Khan M.F. Almalki Z.S. Albassam A.A. Ullah Z. Khalid M.S. Ashraf K. A comparative brain Toxico-Pharmacokinetics study of a developed tannic acid nanoparticles in the treatment of epilepsy. J. Drug Deliv. Sci. Technol. 2022 76 103772 10.1016/j.jddst.2022.103772
    [Google Scholar]
  142. Loeb C. Benassi E. Besio G. Maffini M. Tanganelli P. Liposome-entrapped GABA modifies behavioral and electrographic changes of penicillin-induced epileptic activity. Neurology 1982 32 11 1237 10.1212/WNL.32.11.1237 6890156
    [Google Scholar]
  143. Yurtdaş Kırımlıoğlu G. Menceloğlu Y. Erol K. Yazan Y. in vitro/in vivo evaluation of gamma-aminobutyric acid-loaded N, N -dimethylacrylamide-based pegylated polymeric nanoparticles for brain delivery to treat epilepsy. J. Microencapsul. 2016 33 7 625 635 10.1080/02652048.2016.1234515 27606701
    [Google Scholar]
  144. Hon K.L. Leung A.K.C. Torres A.R. Febrile infection-related epilepsy syndrome (FIRES): An overview of treatment and recent patents. Recent Pat. Inflamm. Allergy Drug Discov. 2018 12 2 128 135 10.2174/1872213X12666180508122450 29745347
    [Google Scholar]
  145. Dexmedetomidine in seizure patients. NCT01116700 2013
  146. Clobazam use in epilepsia partialis continua - pilot study. NCT02134366 2018
  147. Real-world study of efficacy and safety of zonisamide in add-on therapy for patients with focal epilepsy. NCT06374966 2024
  148. The efficacy and safety of minocycline in the treatment of drug-resistant epilepsy in NORSE patients. NCT05958069 2023
  149. Study of interest of stiripentol and carbamazepine in the treatment of patients with pharmacoresistant focal epilepsies. NCT05419180 2024
  150. Trial to assess lacosamide as the first add-on anti-epileptic drug treatment in patients with partial-onset seizures. NCT00955357 2018
  151. A double-blind confirmatory trial of levetiracetam in epilepsy patients with partial onset seizures. NCT00280696 2015
  152. A study to evaluate the efficacy and safety of seletracetam in adult patients with refractory partial onset seizures. NCT00422110 2012
  153. An observational study of the safety of topiramate in adults and children with epilepsy. NCT00297323 2010
  154. Efficacy and safety study of pregabalin (lyrica) as monotherapy in patients with partial seizures. NCT00524030 2021
/content/journals/cnanom/10.2174/0124681873302617241018085244
Loading
/content/journals/cnanom/10.2174/0124681873302617241018085244
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Nanoformulation ; Antiseizure drugs ; Herbal nanomedicines ; NPs ; Epilepsy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test