Skip to content
2000
Volume 15, Issue 2
  • ISSN: 2468-1873
  • E-ISSN: 2468-1881

Abstract

Introduction

Coating of dental implants with nanoparticles can lead to improved fixation of implants.

Aim

The aim of this study was to review the reported antimicrobial nano-coatings of Ti surfaces (dental implants) for anti-inflammatory, tissue integration, and osteogeneration aims.

Methods

The data were collected from Google Scholar, PubMed, and Scopus sources.

Results

The results showed that the antimicrobial nano-coatings of Ti surfaces exhibited a reduction in initial bacterial adhesion, concomitantly with an increase in the attachment of human gingival fibroblasts. In addition, the application of these surfaces resulted in anti-inflammatory effects with different mechanisms. Some nano-coated titanium surfaces have also shown enhanced hydrophilicity and corrosion resistance, aiding the adhesion and proliferation of osteoblasts.

Conclusion

Coating Ti surfaces with antimicrobial nanoparticles can improve soft tissue integration and osteogeneration, leading to improved fixation of implants. Moreover, such coatings may profit biocompatible surfaces with a controlled release profile for the antimicrobial agents.

Loading

Article metrics loading...

/content/journals/cnanom/10.2174/0124681873290646240418060259
2024-04-25
2025-06-27
Loading full text...

Full text loading...

References

  1. SimonisP. DufourT. TenenbaumH. Long-term implant survival and success: A 10–16-year follow-up of non-submerged dental implants.Clin. Oral Implants Res.201021777277710.1111/j.1600‑0501.2010.01912.x20636731
    [Google Scholar]
  2. MoraschiniV. PoubelL.A.C. FerreiraV.F. BarbozaE.S.P. Evaluation of survival and success rates of dental implants reported in longitudinal studies with a follow-up period of at least 10 years: A systematic review.Int. J. Oral Maxillofac. Surg.201544337738810.1016/j.ijom.2014.10.02325467739
    [Google Scholar]
  3. GhinassiB. D’AddazioG. Di BaldassarreA. FemminellaB. Di VincenzoG. PiattelliM. GaggiG. SinjariB. Immunohistochemical results of soft tissues around a new implant healing-abutment surface: A human study.J. Clin. Med.202094100910.3390/jcm904100932252463
    [Google Scholar]
  4. GaviriaL. Current trends in dental implants.JKAOMS20142506010.5125/jkaoms.2014.40.2.50
    [Google Scholar]
  5. ChaturvediV.K. Pleurotus sajor-caju-mediated synthesis of silver and gold nanoparticles active against colon cancer cell lines: A new era of herbonanoceutics.Molecules20202513309110.3390/molecules25133091
    [Google Scholar]
  6. NiuJ. GuoY. LiK. LiuW. DanZ. SunZ. ChangH. ZhouL. Improved mechanical, bio-corrosion properties and in vitro cell responses of Ti-Fe alloys as candidate dental implants.Mater. Sci. Eng. C Mater Biol Appl,202112211191710.1016/j.msec.2021.11191733641910
    [Google Scholar]
  7. HarrisJ. Fibroblasts and their transformations: The connective-tissue cell family.Mol. Biol. Cell199411791193
    [Google Scholar]
  8. ParithimarkalaignanS. PadmanabhanT.V. Osseointegration: An update.The Journal of Indian Prosthodontic Society20131312610.1007/s13191‑013‑0252‑z24431699
    [Google Scholar]
  9. YazdaniJ. AhmadianE. SharifiS. ShahiS. Maleki DizajS. A short view on nanohydroxyapatite as coating of dental implants.Biomed. Pharmacother.201810555355710.1016/j.biopha.2018.06.01329886376
    [Google Scholar]
  10. SchwarzF. DerksJ. MonjeA. WangH.L. Peri-implantitis.J. Periodontol.201889Suppl. 1S267S29010.1002/JPER.16‑035029926957
    [Google Scholar]
  11. ParniaF. YazdaniJ. JavaherzadehV. Maleki DizajS. Overview of nanoparticle coating of dental implants for enhanced osseointegration and antimicrobial purposes.J. Pharm. Pharm. Sci.201720014816010.18433/J3GP6G28554344
    [Google Scholar]
  12. LangN.P. BerglundhT. Working Group 4 of Seventh European Workshop on Periodontology Periimplant diseases: Where are we now? – Consensus of the Seventh European Workshop on Periodontology.J. Clin. Periodontol.201138s11Suppl. 1117818110.1111/j.1600‑051X.2010.01674.x21323713
    [Google Scholar]
  13. SanzM. ChappleI.L. Working Group 4 of the VIII European Workshop on Periodontology Clinical research on peri-implant diseases: Consensus report of W orking G roup 4.J. Clin. Periodontol.201239s12Suppl. 1220220610.1111/j.1600‑051X.2011.01837.x22533957
    [Google Scholar]
  14. LindheJ. MeyleJ. Group D of European Workshop on Periodontology Peri-implant diseases: Consensus report of the sixth european workshop on periodontology.J. Clin. Periodontol.200835s8Suppl.28228510.1111/j.1600‑051X.2008.01283.x18724855
    [Google Scholar]
  15. Al-AhmadA. Shift of microbial composition of peri-implantitis-associated oral biofilm as revealed by 16S rRNA gene cloning.J Med Microbiol. 201867333234010.1099/jmm.0.000682
    [Google Scholar]
  16. De SantisS. SotgiuG. PorcelliF. MarsottoM. IucciG. OrsiniM. A simple cerium coating strategy for titanium oxide nanotubes’ bioactivity enhancement.Nanomaterials202111244510.3390/nano1102044533578788
    [Google Scholar]
  17. ZhouL. LaiY. HuangW. HuangS. XuZ. ChenJ. WuD. Biofunctionalization of microgroove titanium surfaces with an antimicrobial peptide to enhance their bactericidal activity and cytocompatibility.Colloids and Surfaces B Biointerfaces201512855256010.1016/j.colsurfb.2015.03.00825800357
    [Google Scholar]
  18. GosauM. HauptM. ThudeS. StrowitzkiM. SchminkeB. BuergersR. Antimicrobial effect and biocompatibility of novel metallic nanocrystalline implant coatings.J. Biomed. Mater. Res. B Appl. Biomater.201610481571157910.1002/jbm.b.3337626293552
    [Google Scholar]
  19. BottinoM.C. MünchowE.A. AlbuquerqueM.T.P. KamockiK. ShahiR. GregoryR.L. ChuT.M.G. PankajakshanD. Tetracycline-incorporated polymer nanofibers as a potential dental implant surface modifier.J. Biomed. Mater. Res. B Appl. Biomater.201710572085209210.1002/jbm.b.3374327405272
    [Google Scholar]
  20. OdatsuT. KuroshimaS. SatoM. TakaseK. ValanezhadA. NaitoM. SawaseT. Antibacterial properties of nano-ag coating on healing abutment: An in vitro and clinical study.Antibiotics20209634710.3390/antibiotics906034732575552
    [Google Scholar]
  21. Hamidi-AslE. A genosensor for point mutation detection of P53 gene PCR product using magnetic particles.Electroanalysis 20152761378138610.1002/elan.201400660
    [Google Scholar]
  22. HamidiA. Novel aldehyde-terminated dendrimers; Synthesis and cytotoxicity assay.Bioimpacts20122297
    [Google Scholar]
  23. Maleki DizajS. Electrospun nanofibers as versatile platform in antimicrobial delivery: Current state and perspectives.Pharm Dev Technol.201924101187119910.1080/10837450.2019.1656238
    [Google Scholar]
  24. AbdolahiniaE.D. Application of nanogels as drug delivery systems in multicellular spheroid tumor model.J Drug Deliv Sci Technol20226810310910.1016/j.jddst.2022.103109
    [Google Scholar]
  25. ChaturvediV.K. SinghA. SinghV.K. SinghM.P. Cancer nanotechnology: A new revolution for cancer diagnosis and therapy.Curr. Drug Metab.201920641642910.2174/138920021966618091811152830227814
    [Google Scholar]
  26. SamieiM. Early osteogenic differentiation stimulation of dental pulp stem cells by calcitriol and curcumin.Stem Cells Int.20212021998013710.1155/2021/9980137
    [Google Scholar]
  27. SharifiS. Effect of curcumin-loaded mesoporous silica nanoparticles on the head and neck cancer cell line, HN5.Curr Issues Mol Biol.202244115247525910.3390/cimb44110357
    [Google Scholar]
  28. NoronhaV.T. PaulaA.J. DuránG. GalembeckA. Cogo-MüllerK. Franz-MontanM. DuránN. Silver nanoparticles in dentistry.Dental Materials201733101110112610.1016/j.dental.2017.07.00228779891
    [Google Scholar]
  29. ChaturvediV.K. RaiS.N. TabassumN. YadavN. SinghV. BoharaR.A. SinghM.P. Rapid eco-friendly synthesis, characterization, and cytotoxic study of trimetallic stable nanomedicine: A potential material for biomedical applications.Biochemistry and Biophysics Reports20202410081210.1016/j.bbrep.2020.10081233083576
    [Google Scholar]
  30. ChaturvediV.K. Two birds with one stone: Oyster mushroom mediated bimetallic Au-Pt nanoparticles for agro-waste management and anticancer activity.Environ Sci Pollut Res Int.20212811137611377510.1007/s11356‑020‑11435‑2
    [Google Scholar]
  31. ZhangY. GulatiK. LiZ. DiP. LiuY. Dental implant nano-engineering: Advances, limitations and future directions.Nanomaterials20211110248910.3390/nano1110248934684930
    [Google Scholar]
  32. JiaZ. XiuP. LiM. XuX. ShiY. ChengY. WeiS. ZhengY. XiT. CaiH. LiuZ. Bioinspired anchoring AgNPs onto micro-nanoporous TiO2 orthopedic coatings: Trap-killing of bacteria, surface-regulated osteoblast functions and host responses.Biomaterials20167520322210.1016/j.biomaterials.2015.10.03526513414
    [Google Scholar]
  33. KulshresthaS. KhanS. MeenaR. SinghB.R. KhanA.U. A graphene/zinc oxide nanocomposite film protects dental implant surfaces against cariogenic Streptococcus mutans.Biofouling201430101281129410.1080/08927014.2014.98309325431994
    [Google Scholar]
  34. van HengelI.A.J. PutraN.E. TierolfM.W.A.M. MinnebooM. FluitA.C. Fratila-ApachiteiL.E. ApachiteiI. ZadpoorA.A. Biofunctionalization of selective laser melted porous titanium using silver and zinc nanoparticles to prevent infections by antibiotic-resistant bacteria.Acta Biomaterialia202010732533710.1016/j.actbio.2020.02.04432145392
    [Google Scholar]
  35. ZhangX. ChenQ. MaoX. Magnesium enhances osteogenesis of BMSCs by tuning osteoimmunomodulation.Biomed Res. Int.20192019790820510.1155/2019/790820531828131
    [Google Scholar]
  36. KanafchianM. EsmaeilzadehS. MahjoubS. RahseparM. GhasemiM. Status of serum copper, magnesium, and total antioxidant capacity in patients with polycystic ovary syndrome.Biol. Trace Elem. Res.2020193111111710.1007/s12011‑019‑01705‑730941676
    [Google Scholar]
  37. TabassumN. SinghV. ChaturvediV.K. VamanuE. SinghM.P. A facile synthesis of flower-like iron oxide nanoparticles and its efficacy measurements for antibacterial, cytotoxicity and antioxidant activity.Pharmaceutics2023156172610.3390/pharmaceutics1506172637376174
    [Google Scholar]
  38. TabassumN. in vitro cytotoxicity and antioxidant efficiency of synthesized mixed phase manganese oxide nanomaterial.J. Exp. Zool. India202124195100
    [Google Scholar]
  39. Rodelo-HaadC. Pendón-Ruiz de MierM.V. Díaz-TocadosJ.M. Martin-MaloA. SantamariaR. Muñoz-CastañedaJ.R. RodríguezM. The role of disturbed mg homeostasis in chronic kidney disease comorbidities.Front. Cell Dev. Biol.2020854309910.3389/fcell.2020.54309933282857
    [Google Scholar]
  40. BaiY. WangL. ZhaoL. LinglingE. YangS. JiaS. WenN. Antibacterial and antioxidant effects of magnesium alloy on titanium dental implants.Comput. Math. Methods Med.20222022653767610.1155/2022/653767635035523
    [Google Scholar]
  41. LiX. QiM. SunX. WeirM.D. TayF.R. OatesT.W. DongB. ZhouY. WangL. XuH.H.K. Surface treatments on titanium implants via nanostructured ceria for antibacterial and anti-inflammatory capabilities.Acta Biomater.20199462764310.1016/j.actbio.2019.06.02331212111
    [Google Scholar]
  42. DongH. Surface modified techniques and emerging functional coating of dental implants.Coatings20201011101210.3390/coatings10111012
    [Google Scholar]
  43. YiQ. LiangP. LiangD. CaoL. ShaS. JiangX. ChangQ. Improvement of polydopamine-loaded salidroside on osseointegration of titanium implants.Chin. Med.20221712610.1186/s13020‑022‑00569‑935189918
    [Google Scholar]
  44. HanL. LinH. LuX. ZhiW. WangK. MengF. JiangO. BMP2-encapsulated chitosan coatings on functionalized Ti surfaces and their performance in vitro and in vivo.Mater. Sci. Eng. C Mater Biol Appl2014401810.1016/j.msec.2014.03.04324857458
    [Google Scholar]
  45. SharifiS. Phytochemicals impact on osteogenic differentiation of mesenchymal stem cells.Biofactors202046687489310.1002/biof.1682
    [Google Scholar]
  46. Gomez-FloritM. Pacha-OlivenzaM.A. Fernández-CalderónM.C. CórdobaA. González-MartínM.L. MonjoM. RamisJ.M. Quercitrin-nanocoated titanium surfaces favour gingival cells against oral bacteria.Sci. Rep.2016612244410.1038/srep2244426925553
    [Google Scholar]
  47. NegahdariR. Antibacterial effect of nanocurcumin inside the implant fixture: An in vitro study.Clin Exp Dent Res.20217216316910.1002/cre2.348
    [Google Scholar]
  48. PancheA.N. DiwanA.D. ChandraS.R. Flavonoids: An overview.J. Nutr. Sci.20165e4710.1017/jns.2016.4128620474
    [Google Scholar]
  49. AnadiotiE. 3D printed complete removable dental prostheses: A narrative review. BMC Oral Health202020119
    [Google Scholar]
  50. TeradaC. KomasaS. KusumotoT. KawazoeT. OkazakiJ. Effect of amelogenin coating of a nano-modified titanium surface on bioactivity.Int. J. Mol. Sci.2018195127410.3390/ijms1905127429695118
    [Google Scholar]
  51. LuoJ. DingX. SongW. BaiJ-Y. LiuJ. LiZ. MengF-H. ChenF-H. ZhangY-M. Inducing macrophages M2 polarization by dexamethasone laden mesoporous silica nanoparticles from titanium implant surface for enhanced osteogenesis.Acta Metallurgica Sinica201932101253126010.1007/s40195‑019‑00926‑y
    [Google Scholar]
  52. Maleki DizajS. Gelatin–curcumin nanocomposites as a coating for implant healing abutment: in vitro stability investigation.Clin Pract. 20231318810110.3390/clinpract13010009
    [Google Scholar]
  53. MahinT. Antibacterial effects of healing abutments coated with gelatincurcumin nanocomposite.Pharm Nanotechnol.2023114390395
    [Google Scholar]
  54. GhavimiM.A. Antimicrobial effects of nanocurcumin gel on reducing the microbial count of gingival fluids of implant‒abutment interface: A clinical study.J Adv Periodontol Implant Dent.202214211410.34172/japid.2022.014
    [Google Scholar]
  55. NegahdariR. Curcumin nanocrystals: Production, physicochemical assessment, and in vitro evaluation of the antimicrobial effects against bacterial loading of the implant fixture.Appl. Sci.20201023835610.3390/app10238356
    [Google Scholar]
  56. AktasB. DLP 3D printing of TiO2-doped Al2O3 bioceramics: Manufacturing, mechanical properties, and biological evaluation.Mater. Today Commun.20243810787210.1016/j.mtcomm.2023.107872
    [Google Scholar]
  57. QinH. CaoH. ZhaoY. ZhuC. ChengT. WangQ. PengX. ChengM. WangJ. JinG. JiangY. ZhangX. LiuX. ChuP.K. in vitro and in vivo anti-biofilm effects of silver nanoparticles immobilized on titanium.Biomaterials201435339114912510.1016/j.biomaterials.2014.07.04025112937
    [Google Scholar]
  58. RotmanS.G. ThompsonK. GrijpmaD.W. RichardsR.G. MoriartyT.F. EglinD. GuillaumeO. Development of bone seeker–functionalised microspheres as a targeted local antibiotic delivery system for bone infections.J. Orthop. Translat.20202113614510.1016/j.jot.2019.07.00632309139
    [Google Scholar]
  59. ZhouW. BaiT. WangL. ChengY. XiaD. YuS. ZhengY. Biomimetic AgNPs@antimicrobial peptide/silk fibroin coating for infection-trigger antibacterial capability and enhanced osseointegration.Bioactive Materials202320648010.1016/j.bioactmat.2022.05.01535633877
    [Google Scholar]
  60. YangY. AoH.Y. YangS.B. WangY.G. LinW.T. YuZ.F. TangT.T. in vivo evaluation of the anti-infection potential of gentamicin-loaded nanotubes on titania implants.Int. J. Nanomedicine2016112223223427274245
    [Google Scholar]
  61. WangM. LiH. YangY. YuanK. ZhouF. LiuH. ZhouQ. YangS. TangT. A 3D-bioprinted scaffold with doxycycline-controlled BMP2-expressing cells for inducing bone regeneration and inhibiting bacterial infection.Bioact. Mater.2021651318132910.1016/j.bioactmat.2020.10.02233210025
    [Google Scholar]
  62. ZhuangY. RenL. ZhangS. WeiX. YangK. DaiK. Antibacterial effect of a copper-containing titanium alloy against implant-associated infection induced by methicillin-resistant Staphylococcus aureus.Acta Biomater.202111947248410.1016/j.actbio.2020.10.02633091623
    [Google Scholar]
  63. SunT. HuangJ. ZhangW. ZhengX. WangH. LiuJ. LengH. YuanW. SongC. Simvastatin-hydroxyapatite coatings prevent biofilm formation and improve bone formation in implant-associated infections.Bioact. Mater.202321445610.1016/j.bioactmat.2022.07.02836017072
    [Google Scholar]
/content/journals/cnanom/10.2174/0124681873290646240418060259
Loading
/content/journals/cnanom/10.2174/0124681873290646240418060259
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test