Skip to content
2000
Volume 15, Issue 2
  • ISSN: 2468-1873
  • E-ISSN: 2468-1881

Abstract

Background

In green synthesis, metal ions are transformed into nanoparticles through a simple reaction, without the need for surfactants, specific conditions, and other stabilizing agents.

Methods

This study performed the biosynthesis of silver nanoparticles using the extract of and .

Results

Nanoparticles were characterized using the SEM, XRD, UV-visible Spectroscopy, and EDS methods. The antibacterial properties of the extracts and synthesized nanoparticles were evaluated against , , and using the agar disk-diffusion and well-diffusion. The antioxidants of the herbs were investigated using the DPPH and FRAP methods, and the IC of the extracts was determined as well. The results showed that, although no chlorinated compounds were added to the reaction medium, in addition to silver nanoparticles, silver chloride nanoparticles were also synthesized. The synthesized nanoparticles were spherical (size: 27-38 nm) and had uniform size distribution. Furthermore, the synthesized nanoparticles and extracts exhibited significant antibacterial activity.

Conclusion

Many plants have been used for the biosynthesis of silver nanoparticles, but the advantage of using the extract of and was that in addition to synthesizing silver nanoparticles, silver chloride nanoparticles were also synthesized.

Loading

Article metrics loading...

/content/journals/cnanom/10.2174/0124681873288498240408081151
2024-04-18
2025-06-23
Loading full text...

Full text loading...

References

  1. PrabhuS. PouloseE.K. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects.Int. Nano Lett.2012213210.1186/2228‑5326‑2‑32
    [Google Scholar]
  2. SlawsonR. TrevorsJ. LeeH. Silver accumulation and resistance in Pseudomonas stutzeri.Arch. Microbiol.1992158639840410.1007/BF00276299
    [Google Scholar]
  3. ZhaoG. StevensS.E.Jr Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion.Biometals1998111273210.1023/A:10092532230559450315
    [Google Scholar]
  4. Le OuayB. StellacciF. Antibacterial activity of silver nanoparticles: A surface science insight.Nano Today201510333935410.1016/j.nantod.2015.04.002
    [Google Scholar]
  5. PugazhendhiA. PrabakarD. JacobJ.M. KaruppusamyI. SarataleR.G. Synthesis and characterization of silver nanoparticles using Gelidium amansii and its antimicrobial property against various pathogenic bacteria.Microb. Pathog.2018114414510.1016/j.micpath.2017.11.01329146498
    [Google Scholar]
  6. KailasaS.K. ParkT-J. RohitJ.V. KoduruJ.R. Antimicrobial activity of silver nanoparticles.Nanoparticles in Pharmacotherapy.Elsevier2019461484
    [Google Scholar]
  7. FaureC. DerréA. NeriW. Spontaneous formation of silver nanoparticles in multilamellar vesicles.J. Phys. Chem. B2003107204738474610.1021/jp027449u
    [Google Scholar]
  8. ZhangY. ChenF. ZhuangJ. TangY. WangD. WangY. DongA. RenN. Synthesis of silver nanoparticles via electrochemical reduction on compact zeolite film modified electrodes.Chem. Commun.2002232814281510.1039/b208222e12478760
    [Google Scholar]
  9. WijnhovenS.W.P. PeijnenburgW.J.G.M. HerbertsC.A. HagensW.I. OomenA.G. HeugensE.H.W. RoszekB. BisschopsJ. GosensI. Van De MeentD. DekkersS. De JongW.H. van ZijverdenM. SipsA.J.A.M. GeertsmaR.E. Nano-silver – A review of available data and knowledge gaps in human and environmental risk assessment.Nanotoxicology20093210913810.1080/17435390902725914
    [Google Scholar]
  10. FatimahI. Green synthesis of silver nanoparticles using extract of Parkia speciosa Hassk pods assisted by microwave irradiation.J. Adv. Res.20167696196910.1016/j.jare.2016.10.00227857843
    [Google Scholar]
  11. MajdalawiehA. KananM.C. KadriE.O. KananS.M. Recent advances in gold and silver nanoparticles: synthesis and applications.J. Nanosci. Nanotechnol.20141474757478010.1166/jnn.2014.952624757945
    [Google Scholar]
  12. JayaprakashN. VijayaJ.J. KaviyarasuK. KombaiahK. KennedyL.J. RamalingamR.J. MunusamyM.A. LohedanA.H.A. Green synthesis of Ag nanoparticles using Tamarind fruit extract for the antibacterial studies.J. Photochem. Photobiol. B201716917818510.1016/j.jphotobiol.2017.03.01328347958
    [Google Scholar]
  13. KhaliliH. ShandizS.S.A. AraniB.F. Anticancer properties of phyto-synthesized silver nanoparticles from medicinal plant artemisia tschernieviana besser aerial parts extract toward HT29 human colon adenocarcinoma cells.J. Cluster Sci.20172831617163610.1007/s10876‑017‑1172‑6
    [Google Scholar]
  14. BalciunaitieneA. ViskelisP. ViskelisJ. StreimikyteP. LiaudanskasM. BartkieneE. ZavistanaviciuteP. ZokaityteE. StarkuteV. RuzauskasM. LeleV. Green synthesis of silver nanoparticles using extract of Artemisia absinthium L., Humulus lupulus L. and Thymus vulgaris L., physico-chemical characterization, antimicrobial and antioxidant activity.Processes202198130410.3390/pr9081304
    [Google Scholar]
  15. RadS.M. PohlP. Synthesis of biogenic silver nanoparticles (AgCl-NPs) using a Pulicaria vulgaris Gaertn. Aerial part extract and their application as antibacterial, antifungal and antioxidant agents.Nanomaterials202010463810.3390/nano1004063832235379
    [Google Scholar]
  16. KhanA.U. WeiY. Haq KhanZ.U. TahirK. AhmadA. KhanS.U. KhanF.U. KhanQ.U. YuanQ. Visible light-induced photodegradation of methylene blue and reduction of 4-nitrophenol to 4-aminophenol over bio-synthesized silver nanoparticles.Sep. Sci. Technol.20165161070107810.1080/01496395.2016.1140203
    [Google Scholar]
  17. KhanZ.U.H. KhanA. ChenY.M. ShahN.S. KhanA.U. MuhammadN. TahirK. ShahH.U. KhanZ.U. ShakeelM. NadeemM. ImranM. WanP. Enhanced antimicrobial, anti-oxidant applications of green synthesized AgNPs- an acute chronic toxicity study of phenolic azo dyes & study of materials surface using X-ray photoelectron spectroscopy.J. Photochem. Photobiol. B201818020821710.1016/j.jphotobiol.2018.02.01529459312
    [Google Scholar]
  18. KhanA.U. WeiY. KhanZ.U.H. TahirK. KhanS.U. AhmadA. KhanF.U. ChengL. YuanQ. Electrochemical and antioxidant properties of biogenic silver nanoparticles.Int. J. Electrochem. Sci.201510107905791610.1016/S1452‑3981(23)11064‑9
    [Google Scholar]
  19. KhanZ.U.H. ShahN.S. IqbalJ. KhanA.U. ImranM. AlshehriS.M. MuhammadN. SayedM. AhmadN. KousarA. AshfaqM. HowariF. TahirK. Biomedical and photocatalytic applications of biosynthesized silver nanoparticles: Ecotoxicology study of brilliant green dye and its mechanistic degradation pathways.J. Mol. Liq.202031911411410.1016/j.molliq.2020.114114
    [Google Scholar]
  20. AravinthanA. GovarthananM. SelvamK. PraburamanL. SelvankumarT. BalamuruganR. KannanK.S. KimJ.H. Sunroot mediated synthesis and characterization of silver nanoparticles and evaluation of its antibacterial and rat splenocyte cytotoxic effects.Int. J. Nanomedicine2015101977198325792831
    [Google Scholar]
  21. GovarthananM. ThangasamyS. KoildhasanM. Radhika ShanthiK. LeeK.J. ChoM. SeralathanK-K. TaekB.O. Biosynthesis and characterization of silver nanoparticles using panchakavya, an Indian traditional farming formulating agent.Int. J. Nanomedicine201491593159910.2147/IJN.S5893224741307
    [Google Scholar]
  22. GovarthananM. SeoY.S. LeeK.J. JungI.B. JuH.J. KimJ.S. ChoM. KannanS.K. OhB.K. Low-cost and eco-friendly synthesis of silver nanoparticles using coconut (Cocos nucifera) oil cake extract and its antibacterial activity.Artif. Cells Nanomed. Biotechnol.20164418781882
    [Google Scholar]
  23. GovarthananM. ChoM. ParkJ.H. JangJ.S. YiY.J. KannanS.K. OhB.K. Cotton seed oil cake extract mediated green synthesis of silver nanoparticles and its antibacterial and cytotoxic activity.J. Nanomater.2016201616
    [Google Scholar]
  24. AmeenF. SrinivasanP. SelvankumarT. KannanK.S. NadhariA.S. AlmansobA. DawoudT. GovarthananM. Phytosynthesis of silver nanoparticles using Mangifera indica flower extract as bioreductant and their broad-spectrum antibacterial activity.Bioorg. Chem.20198810297010.1016/j.bioorg.2019.102970
    [Google Scholar]
  25. Utilization of market vegetables waste for silver nanoparticles synthesis and its antibacterial activity.Mater. Lett.201822510110410.1016/j.matlet.2018.04.111
    [Google Scholar]
  26. ChaturvediV.K. YadavN. RaiN.K. EllahN.H.A. BoharaR.A. RehanI.F. MarraikiN. BatihaG.E.S. HettaH.F. SinghM.P. Pleurotus sajor-caju-Mediated synthesis of silver and gold nanoparticles active against colon cancer cell lines: A new era of herbonanoceutics.Molecules20202513309110.3390/molecules2513309132645899
    [Google Scholar]
  27. ChaturvediV.K. SinghA. SinghV.K. SinghM.P. Cancer nanotechnology: A new revolution for cancer diagnosis and therapy.Curr. Drug Metab.201920641642910.2174/138920021966618091811152830227814
    [Google Scholar]
  28. ChaturvediV.K. RaiS.N. TabassumN. YadavN. SinghV. BoharaR.A. SinghM.P. Rapid eco-friendly synthesis, characterization, and cytotoxic study of trimetallic stable nanomedicine: A potential material for biomedical applications.Biochem. Biophys. Rep.20202410081210.1016/j.bbrep.2020.10081233083576
    [Google Scholar]
  29. ChaturvediV. K. SharmaB. TripathiA. D. YadavD. P. SinghK. RB SinghJ. SinghR. P. Biosynthesized nanoparticles: A novel approach for cancer therapeutics.Front Med Technol.20235123610710.3389/fmedt.2023.1236107
    [Google Scholar]
  30. TabassumN. SinghV. ChaturvediV.K. VamanuE. SinghM.P. A facile synthesis of flower-like iron oxide nanoparticles and its efficacy measurements for antibacterial, cytotoxicity and antioxidant activity.Pharmaceutics2023156172610.3390/pharmaceutics1506172637376174
    [Google Scholar]
  31. LeeK.J. ParkS.H. GovarthananM. Synthesis of silver nanoparticles using cow milk and their antifungal activity against phytopathogens.Mater. Lett.2013105128131
    [Google Scholar]
  32. MuthusamyG. ThangasamyS. RajaM. ChinnappanS. KandasamyS. Biosynthesis of silver nanoparticles from Spirulina microalgae and its antibacterial activity.Environ. Sci. Pollut. Res. Int.20172423194591946410.1007/s11356‑017‑9772‑028730357
    [Google Scholar]
  33. ValarmathiN. Fuad AmeenA. Govarthanan, utilization of marine sea weed spyridia filamentosa for silver nanoparticles synthesis and its clinical applications.Mater. Lett.202026312724410.1016/j.matlet.2019.127244
    [Google Scholar]
  34. AmeenF. AlYahyaS. GovarthananM. ALjahdaliN. EnaziA.N. AlsamharyK. AlshehriW.A. AlwakeelS.S. AlharbiS.A. Soil bacteria Cupriavidus sp. mediates the extracellular synthesis of antibacterial silver nanoparticles.J. Mol. Struct.2020120212723310.1016/j.molstruc.2019.127233
    [Google Scholar]
  35. SeyedA.S.S. MontazeriA. AbdolhosseiniM. ShahrestanS.H. HedayatiM. ShoeiliM..Z. SalehzadehA. Functionalization of ag nanoparticles by glutamic acid and conjugation of Ag@Glu by thiosemicarbazide enhances the apoptosis of human breast cancer MCF-7 cells.J. Cluster Sci.20182911071114
    [Google Scholar]
  36. MittalA.K. ChistiY. BanerjeeU.C. Synthesis of metallic nanoparticles using plant extracts.Biotechnol. Adv.201331234635610.1016/j.biotechadv.2013.01.00323318667
    [Google Scholar]
  37. DuhanJ. GahlawatS. Biogenesis of nanoparticles: A review.Afr. J. Biotechnol.20141328
    [Google Scholar]
  38. BaruaS. KonwarhR. BhattacharyaS.S. DasP. DeviK.S.P. MaitiT.K. MandalM. KarakN. Non-hazardous anticancerous and antibacterial colloidal ‘green’ silver nanoparticles.Colloids Surf. B Biointerfaces2013105374210.1016/j.colsurfb.2012.12.01523352940
    [Google Scholar]
  39. MozafarianV. A Dictionary of Iranin Plant Names: Latin-English-Persian3rd edTehranContemporary Culture Publications1996594596
    [Google Scholar]
  40. SinghalG. BhaveshR. KasariyaK. SharmaA.R. SinghR.P. Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity.J. Nanopart. Res.20111372981298810.1007/s11051‑010‑0193‑y
    [Google Scholar]
  41. PokornyJ. YanishlievaN. GordonM.H. Antioxidants In Food: Practical ApplicationsCRC press2001
    [Google Scholar]
  42. MauJ. LaiE.Y. WangN-P. ChenC-C. ChangC-H. ChyauC-C. Composition and antioxidant activity of the essential oil from Curcuma zedoaria.Food Chem.200382458359110.1016/S0308‑8146(03)00014‑1
    [Google Scholar]
  43. SahaK. LajisN.H. IsrafD.A. HamzahA.S. KhozirahS. KhamisS. SyahidaA. Evaluation of antioxidant and nitric oxide inhibitory activities of selected Malaysian medicinal plants.J. Ethnopharmacol.2004922-326326710.1016/j.jep.2004.03.00715138010
    [Google Scholar]
  44. BenzieI.F.F. StrainJ.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay.Anal. Biochem.19962391707610.1006/abio.1996.02928660627
    [Google Scholar]
  45. KuK.M. JuvikJ.A. Environmental stress and methyl jasmonate-mediated changes in flavonoid concentrations and antioxidant activity in Broccoli Florets and Kale Leaf tissues. HortScience2013488996100210.21273/HORTSCI.48.8.996
    [Google Scholar]
  46. JegadeeswaranP. ShivarajR. VenckateshR. Green synthesis of silver nanoparticles from extracts of Padina tetrastromatica leaf.Dig. J. Nanomater. Biostruct.201273991998
    [Google Scholar]
  47. GopinathV. PriyadarshiniS. PriyadharsshiniM.N. PandianK. VelusamyP. Biogenic synthesis of antibacterial silver chloride nanoparticles using leaf extracts of Cissus quadrangularis Linn.Mater. Lett.20139122422710.1016/j.matlet.2012.09.102
    [Google Scholar]
  48. CelebiogluA. TopuzF. YildizZ.I. UyarT. One-step green synthesis of antibacterial silver nanoparticles embedded in electrospun cyclodextrin nanofibers.Carbohydr. Polym.201920747147910.1016/j.carbpol.2018.12.00830600030
    [Google Scholar]
  49. AlishahH. PourseyediS. MahaniS.E. EbrahimipourS.Y. Extract- mediated synthesis of Ag@AgCl nanoparticles using Conium maculatum seeds: characterization, antibacterial activity and cytotoxicity effect against MCF-7 cell line.RSC Adv.2016677731977320210.1039/C6RA16127H
    [Google Scholar]
  50. JansenW. VanderbruggenJ. VerhoefJ. FluitA. Bacterial resistance: A sensitive issueComplexity of the challenge and containment strategy in Europe.Drug Resist. Updat.20069312313310.1016/j.drup.2006.06.00216807066
    [Google Scholar]
  51. MostaderM SalariH MozafariH FarahmandA Evaluation the qualitative and quantitative essential oil of Calendula officinalis and its antibacterial effects.J Cellul. Molecul. Res.201629291301
    [Google Scholar]
  52. ManosalvaN. TortellaG. DiezC.M. SchalchliH. SeabraA.B. DuránN. RubilarO. Green synthesis of silver nanoparticles: Effect of synthesis reaction parameters on antimicrobial activity.World J. Microbiol. Biotechnol.20193568810.1007/s11274‑019‑2664‑331134435
    [Google Scholar]
  53. BergendiL. BenešL. ĎuračkováZ. FerenčikM. Chemistry, physiology and pathology of free radicals.Life Sci.19996518-191865187410.1016/S0024‑3205(99)00439‑710576429
    [Google Scholar]
  54. RiddleJ.M. Contraception And Abortion From The Ancient World To The RenaissanceHarvard University Press1994
    [Google Scholar]
  55. TelG. ÖztürkM. DuruM.E. DoğanB. HarmandarM. Fatty acid composition, antioxidant, anticholinesterase and tyrosinase inhibitory activities of four Serratula species from anatolia.Rec. Nat. Prod.201372
    [Google Scholar]
  56. NowakG. NawrotJ. LatowskiK. Arbutin in serratula quinquefolia MB.Acta Soc. Bot. Pol.201178213714010.5586/asbp.2009.018
    [Google Scholar]
  57. RustaiyanA. FaramarziS. Sesquiterpene lactones from Serratula latifolia.Phytochemistry198827247948110.1016/0031‑9422(88)83124‑8
    [Google Scholar]
  58. BáthoriM. ZupkóI. HunyadiA. Gácsné-BaitzE. DinyaZ. ForgóP. Monitoring the antioxidant activity of extracts originated from various Serratula species and isolation of flavonoids from Serratula coronata.Fitoterapia200475216216710.1016/j.fitote.2003.12.00915030920
    [Google Scholar]
  59. ChinnappanS. KandasamyS. ArumugamS. SeralathanK.K. ThangaswamyS. MuthusamyG. Biomimetic synthesis of silver nanoparticles using flower extract of Bauhinia purpurea and its antibacterial activity against clinical pathogens.Environ. Sci. Pollut. Res. Int.201825196396910.1007/s11356‑017‑0841‑129218578
    [Google Scholar]
/content/journals/cnanom/10.2174/0124681873288498240408081151
Loading
/content/journals/cnanom/10.2174/0124681873288498240408081151
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test