Skip to content
2000
Volume 15, Issue 2
  • ISSN: 2468-1873
  • E-ISSN: 2468-1881

Abstract

This review focuses on the use of Colchicum species that have been capsuled to treat lower back pain. Low levels of physical activity produce atypical spinal loading, which increases the risk of discomfort and damage. Acetylcholine (AChE inhibitors acetylcholinesterase AChE-I) has a crucial role in the development of amyloid- plaques, one of the disease's main pathogenic processes, and in boosting psychological function. To increase the natural preservatives in food, research on the encapsulation of phytochemicals has been employed to create nanoparticle delivery systems for a combination of terpenes that have been isolated from plants. For the administration of formulations containing encapsulated plant extracts, dermal and oral routes are used. The current strategies of encapsulation should be enhanced, as well as techniques to achieve the goal.

Loading

Article metrics loading...

/content/journals/cnanom/10.2174/0124681873287041240328133414
2024-05-03
2025-06-11
Loading full text...

Full text loading...

References

  1. Intravenous colchicine for low-back pain: A double-blind study. Abstract : Europe PMC. Available from: https://europepmc.org/article/med/2145645 [cited 2023 Jun 9].
  2. SapraS. BhallaY. Nandani SharmaS. SinghG. NepaliK. BudhirajaA. DharK.L. Colchicine and its various physicochemical and biological aspects.Med. Chem. Res.201322253154710.1007/s00044‑012‑0077‑z
    [Google Scholar]
  3. DüşenO.D. SümbülH. A morphological investigation of Colchicum L. (Liliaceae) species in the Mediterranean region in Turkey.Turk. J. Bot.2007315373419
    [Google Scholar]
  4. ChrubasikC. WiesnerL. BlackA. Müller-LadnerU. ChrubasikS. A one-year survey on the use of a powder from Rosa canina lito in acute exacerbations of chronic pain.Phytother. Res.20082291141114810.1002/ptr.235218729248
    [Google Scholar]
  5. FanC. PacierC. MartirosyanD.M. MartirosyanD. Rose hip Rosa canina L): A functional food perspective.Funct Foods Health Dis201444
    [Google Scholar]
  6. PH D. Flora of Turkey and the East Aegean Islands.Edinb Univ Press196531628
    [Google Scholar]
  7. Al-MahmoudM.S. AlaliF.Q. TawahaK. QasaymehR.M. Phytochemical study and cytotoxicity evaluation of Colchicum stevenii Kunth (Colchicaceae): A Jordanian meadow saffron.Nat. Prod. Res.200620215316010.1080/1478641050004622416319009
    [Google Scholar]
  8. LarsenE. KharazmiA. ChristensenL.P. ChristensenS.B. An antiinflammatory galactolipid from rose hip Rosa canina) that inhibits chemotaxis of human peripheral blood neutrophils in vitro.J. Nat. Prod.200366799499510.1021/np030063612880322
    [Google Scholar]
  9. LattanzioF. GrecoE. CarrettaD. CervellatiR. GovoniP. SperoniE. In vivo anti-inflammatory effect of Rosa canina L.extract.J. Ethnopharmacol.2011137188088510.1016/j.jep.2011.07.00621771653
    [Google Scholar]
  10. AlizadehR. TaheriM. BeiranvandS. FereydoonniaB. Evaluation of the effectiveness of botulinum toxin injection on reducing phantom pain in patients.Interdiscip. Neurosurg.20233210171210.1016/j.inat.2022.101712
    [Google Scholar]
  11. AdamsM.A. Biomechanics of back pain.Acupunct. Med.200422417818810.1136/aim.22.4.17815628775
    [Google Scholar]
  12. HoyD. BrooksP. BlythF. BuchbinderR. The Epidemiology of low back pain.Best Pract. Res. Clin. Rheumatol.201024676978110.1016/j.berh.2010.10.00221665125
    [Google Scholar]
  13. GoetzelR.Z. D’ArcoM. ThomasJ. WangD. TabriziM.J. RoemerE.C. PrasadA. YarboroughC.M. Measuring the prevalence and incidence of low back pain disorders among american workers in the aerospace and defense industry.J. Occup. Environ. Med.2015579998100310.1097/JOM.000000000000051226340288
    [Google Scholar]
  14. Calvo-MuñozI. Gómez-ConesaA. Sánchez-MecaJ. Prevalence of low back pain in children and adolescents: A meta-analysis.BMC Pediatr.20131311410.1186/1471‑2431‑13‑1423351394
    [Google Scholar]
  15. AllenR. Chronic low back pain: evaluation and management.Am Fam Physician2009791210671074
    [Google Scholar]
  16. EhrlichG.E. Low back pain.Bull. World Heal. Org.2003112
    [Google Scholar]
  17. NachemsonA JonssonE Neck and back pain : the scientific evidence of causes, diagnosis, and treatment.Lippincott Williams & Wilkins20001495
    [Google Scholar]
  18. DeyoR.A. MirzaS.K. MartinB.I. Back pain prevalence and visit rates: Estimates from U.S. national surveys, 2002.Spine200631232724272710.1097/01.brs.0000244618.06877.cd17077742
    [Google Scholar]
  19. Musculoskeletal disorders and the workplace: Low back and upper extremities-executive summary.Theor. Issues Ergon. Sci.2001
    [Google Scholar]
  20. PalmerK.T. GriffinM.J. SyddallH.E. PannettB. CooperC. CoggonD. The relative importance of whole body vibration and occupational lifting as risk factors for low-back pain.Occup. Environ. Med.2003601071572110.1136/oem.60.10.71514504358
    [Google Scholar]
  21. SterudT. JohannessenH.A. TynesT. Work-related psychosocial and mechanical risk factors for neck/shoulder pain: A 3-year follow-up study of the general working population in Norway.Int. Arch. Occup. Environ. Health201487547148110.1007/s00420‑013‑0886‑523708752
    [Google Scholar]
  22. WalshK. VarnesN. OsmondC. StylesR. CoggonD. Occupational causes of low-back pain.Scand. J. Work Environ. Health1989151545910.5271/sjweh.18912522238
    [Google Scholar]
  23. BakkerE.W.P. VerhagenA.P. van TrijffelE. LucasC. KoesB.W. Spinal mechanical load as a risk factor for low back pain: A systematic review of prospective cohort studies.Spine2009348E281E29310.1097/BRS.0b013e318195b25719365237
    [Google Scholar]
  24. McLeanD. PearceN. WallsC.B. WigleyR.D. The “Twin Study” and the misunderstanding of epidemiology that clouds occupational associations and low back disorder.N. Z. Med. J.2011124133910911121952340
    [Google Scholar]
  25. LambeekL.C. van TulderM.W. SwinkelsI.C.S. KoppesL.L.J. AnemaJ.R. van MechelenW. The trend in total cost of back pain in The Netherlands in the period 2002 to 2007.Spine201136131050105810.1097/BRS.0b013e3181e7048821150697
    [Google Scholar]
  26. Perez-CruetM. Minimally invasive spine surgery: Advances and Innovations.intechopen2022118610.5772/intechopen.93743
    [Google Scholar]
  27. LuoX. PietrobonR. X SunS. LiuG.G. HeyL. Estimates and patterns of direct health care expenditures among individuals with back pain in the United States.Spine2004291798610.1097/01.BRS.0000105527.13866.0F14699281
    [Google Scholar]
  28. Full article: Pain management using nanotechnology approaches. Available from: https://www.tandfonline.com/doi/full/10.1080/ 21691401.2018.1553885 [cited 2023 May 29].
  29. DasA. ShankerG. NathC. PalR. SinghS. SinghH.K. A comparative study in rodents of standardized extracts of Bacopa monniera and Ginkgo biloba.Pharmacol. Biochem. Behav.200273489390010.1016/S0091‑3057(02)00940‑112213536
    [Google Scholar]
  30. PrinceM WimoA GuerchatM AliGC WuYT PrinaM World Alzheimer Report 2015Alzheimer’s Disease International- World Alzheimer Report2015
    [Google Scholar]
  31. BeiranvandS. MoradkhaniM. Bupivacaine versus liposomal bupivacaine for pain control.Drug Res.201868736536910.1055/s‑0043‑12114229108087
    [Google Scholar]
  32. FessiH. PuisieuxF. DevissaguetJ.P. AmmouryN. BenitaS. Nanocapsule formation by interfacial polymer deposition following solvent displacement.Int. J. Pharm.1989551R1R410.1016/0378‑5173(89)90281‑0
    [Google Scholar]
  33. SansonC. SchatzC. Le MeinsJ.F. SoumA. ThévenotJ. GarangerE. LecommandouxS. A simple method to achieve high doxorubicin loading in biodegradable polymersomes.J. Control. Release2010147342843510.1016/j.jconrel.2010.07.12320692308
    [Google Scholar]
  34. BarwalI. SoodA. SharmaM. SinghB. YadavS.C. Development of stevioside Pluronic-F-68 copolymer based PLA-nanoparticles as an antidiabetic nanomedicine.Colloids Surf. B Biointerfaces201310151051610.1016/j.colsurfb.2012.07.00523022553
    [Google Scholar]
  35. EidiH. JoubertO. NémosC. GrandemangeS. MograbiB. FoliguetB. TournebizeJ. MaincentP. Le FaouA. AboukhamisI. RihnB.H. Drug delivery by polymeric nanoparticles induces autophagy in macrophages.Int. J. Pharm.20124221-249550310.1016/j.ijpharm.2011.11.02022119964
    [Google Scholar]
  36. CheowW.S. HadinotoK. Enhancing encapsulation efficiency of highly water-soluble antibiotic in poly(lactic-co-glycolic acid) nanoparticles: Modifications of standard nanoparticle preparation methods.Colloids Surf Physicochem Eng Asp20103701-37986
    [Google Scholar]
  37. BilensoyE. SarisozenC. EsendağlıG. DoğanA.L. AktaşY. ŞenM. MunganN.A. Intravesical cationic nanoparticles of chitosan and polycaprolactone for the delivery of Mitomycin C to bladder tumors.Int. J. Pharm.20093711-217017610.1016/j.ijpharm.2008.12.01519135514
    [Google Scholar]
  38. LassalleV. FerreiraM.L. PLA nano- and microparticles for drug delivery: An overview of the methods of preparation.Macromol. Biosci.20077676778310.1002/mabi.20070002217541922
    [Google Scholar]
  39. KhayataN. AbdelwahedW. ChehnaM.F. CharcossetC. FessiH. Stability study and lyophilization of vitamin E-loaded nanocapsules prepared by membrane contactor.Int. J. Pharm.20124391-225425910.1016/j.ijpharm.2012.09.03223010283
    [Google Scholar]
  40. Full article: Antinociceptive synergistic interaction between Achillea millefolium and Origanum vulgare L. extract encapsulated in liposome in rat.Available from: https://www.tandfonline.com/doi/full/10.1080/21691401.2017.1354303 [cited 2023 May 29].
  41. Hasanzadeh-KiabiF. Nano-drug for Pain Medicine.Drug Res.201868524524910.1055/s‑0043‑12066129100265
    [Google Scholar]
  42. GaysinskyS. TaylorT.M. DavidsonP.M. BruceB.D. WeissJ. Antimicrobial efficacy of eugenol microemulsions in milk against Listeria monocytogenes and Escherichia coli O157:H7.J. Food Prot.200770112631263710.4315/0362‑028X‑70.11.263118044447
    [Google Scholar]
  43. Applications of drug anesthesia in control chronic pain: Journal of Investigative Surgery: Vol 32, No 3. Available from: https://www.tandfonline.com/doi/abs/10.1080/08941939.2017.1397230 [cited 2023 Jun 9].
  44. Lacaille-DuboisM.A. Mitaine-OfferA.C. Triterpene saponins from Polygalaceae.Phytochem Rev 4200513914910.1007/s11101‑005‑2606‑6
    [Google Scholar]
  45. KindscherK. Medicinal wild plants of the prairie. an ethnobotanical guide.Univ Pr of Kansas19921336
    [Google Scholar]
  46. KakoM. MiuraT. NishiyamaY. IchimaruM. MoriyasuM. KatoA. Hypoglycemic effect of the rhizomes of Polygala senega in normal and diabetic mice and its main component, the triterpenoid glycoside senegin-II.Planta Med.199662544044310.1055/s‑2006‑9579358923811
    [Google Scholar]
  47. KatselisG.S. EstradaA. GoreckiD.K.J. BarlB. Adjuvant activities of saponins from the root of Polygala senega L. This article is one of a selection of papers published in this special issue (part 2 of 2) on the Safety and Efficacy of Natural Health Products.Can. J. Physiol. Pharmacol.200785111184119410.1139/Y07‑10918066120
    [Google Scholar]
  48. SalvioliS. SikoraE. CooperE.L. FranceschiC. Curcumin in cell death processes: A challenge for CAM of age-related pathologies.Evid. Based Complement. Alternat. Med.20074218119010.1093/ecam/nem04317549234
    [Google Scholar]
  49. LeeH.S. AhnY.J. Growth-Inhibiting Effects of Cinnamomum cassia bark-derived materials on human intestinal bacteria.J. Agric. Food Chem.199846181210.1021/jf970548y10554188
    [Google Scholar]
  50. AmendolaD. De FaveriD.M. SpignoG. Grape marc phenolics: Extraction kinetics, quality and stability of extracts.J. Food Eng.201097338439210.1016/j.jfoodeng.2009.10.033
    [Google Scholar]
  51. Schmeda-HirschmannG. YesiladaE. Traditional medicine and gastroprotective crude drugs.J. Ethnopharmacol.20051001-2616610.1016/j.jep.2005.06.00215993015
    [Google Scholar]
  52. FlanaganJ. SinghH. Microemulsions: A potential delivery system for bioactives in food.Crit. Rev. Food Sci. Nutr.200646322123710.1080/1040869059095671016527754
    [Google Scholar]
  53. VanderhoffJ.W. UgelstadJ. MohamedS.E.A. Polymer emulsification process.Patent. US4177177A1979
  54. ZafarN. FessiH. ElaissariA. Cyclodextrin containing biodegradable particles: From preparation to drug delivery applications.Int. J. Pharm.20144611-235136610.1016/j.ijpharm.2013.12.00424342710
    [Google Scholar]
  55. GiriT.K. ChoudharyC. Ajazuddin AlexanderA. BadwaikH. TripathiD.K. Prospects of pharmaceuticals and biopharmaceuticals loaded microparticles prepared by double emulsion technique for controlled delivery.Saudi Pharm. J.201321212514110.1016/j.jsps.2012.05.009
    [Google Scholar]
  56. CrottsG. ParkT.G. Protein delivery from poly(lactic-co-glycolic acid) biodegradable microspheres: Release kinetics and stability issues.J. Microencapsul.199815669971310.3109/026520498090082539818948
    [Google Scholar]
  57. OkochiH. NakanoM. Preparation and evaluation of w/o/w type emulsions containing vancomycin.Adv. Drug Deliv. Rev.200045152610.1016/S0169‑409X(00)00097‑111104894
    [Google Scholar]
  58. SinhaV.R. TrehanA. Biodegradable microspheres for protein delivery.J Control Release Off J Control Release Soc.200390326128010.1016/S0168‑3659(03)00194‑9
    [Google Scholar]
  59. KhoeeS. YaghoobianM. An investigation into the role of surfactants in controlling particle size of polymeric nanocapsules containing penicillin-G in double emulsion.Eur. J. Med. Chem.20094462392239910.1016/j.ejmech.2008.09.04519010570
    [Google Scholar]
  60. TammamS. MathurS. AfifiN. Preparation and biopharmaceutical evaluation of tacrolimus loaded biodegradable nanoparticles for liver targeting.J. Biomed. Nanotechnol.20128343944910.1166/jbn.2012.140322764413
    [Google Scholar]
  61. BarrattG. Colloidal drug carriers: Achievements and perspectives.Cell. Mol. Life Sci.2003601213710.1007/s00018030000212613656
    [Google Scholar]
  62. SchultzS. WagnerG. UrbanK. UlrichJ. High-pressure homogenization as a process for emulsion formation.Chem. Eng. Technol.200427436136810.1002/ceat.200406111
    [Google Scholar]
  63. DasJ. DasS. SamadderA. BhadraK. Khuda-BukhshA.R. Poly (lactide-co-glycolide) encapsulated extract of Phytolacca decandra demonstrates better intervention against induced lung adenocarcinoma in mice and on A549 cells.Eur. J. Pharm. Sci.201247231332410.1016/j.ejps.2012.06.01822771545
    [Google Scholar]
  64. JiaD. BarwalI. ThakurS. YadavS.C. Methodology to nanoencapsulate hepatoprotective components from Picrorhiza kurroa as food supplement.Food Biosci.20159283510.1016/j.fbio.2014.10.005
    [Google Scholar]
  65. BhattacharyyaS.S. PaulS. Khuda-BukhshA.R. Encapsulated plant extract ( Gelsemium sempervirens ) poly (lactide-co-glycolide) nanoparticles enhance cellular uptake and increase bioactivity in vitro .Exp. Biol. Med.2010235667868810.1258/ebm.2010.00933820511672
    [Google Scholar]
  66. NarayananS. BinulalN.S. MonyU. ManzoorK. NairS. MenonD. Folate targeted polymeric ‘green’ nanotherapy for cancer.Nanotechnology2010212828510710.1088/0957‑4484/21/28/28510720585151
    [Google Scholar]
  67. SamadderA. DasS. DasJ. PaulA. Khuda-BukhshA.R. Ameliorative effects of Syzygium jambolanum extract and its poly (lactic- co-glycolic) acid nano-encapsulated form on arsenic-induced hyperglycemic stress: A multi-parametric evaluation.JAMS J Acupunct Meridian Stud20125631031810.1016/j.jams.2012.09.001
    [Google Scholar]
  68. StrasserM NoriegaP LöbenbergR Bou-ChacraN BacchiEM Antiulcerogenic potential activity of free and nanoencapsulated passiflora serratodigitata L. extracts.BioMed Res Int.20142014434067
    [Google Scholar]
  69. TachaprutinunA. MeinkeM.C. RichterH. Pan-inP. WanichwecharungruangS. KnorrF. LademannJ. PatzeltA. Comparison of the skin penetration of Garcinia mangostana extract in particulate and non-particulate form.Eur. J. Pharm. Biopharm.201486230731310.1016/j.ejpb.2013.12.00124321393
    [Google Scholar]
  70. Pan-InP. WanichwecharungruangS. HanesJ. KimA.J. Cellular trafficking and anticancer activity of Garcinia mangostana extract-encapsulated polymeric nanoparticles.Int. J. Nanomedicine201493677368625125977
    [Google Scholar]
  71. PaulS. BhattacharyyaS.S. BoujedainiN. Anticancer potentials of root extract of polygala senega and its plga nanoparticles-encapsulated form, anticancer potentials of root extract of polygala senega and its PLGA nanoparticles-encapsulated form.Evid-Based Complement Altern Med Evid-Based Complement Altern Med20102010517204
    [Google Scholar]
/content/journals/cnanom/10.2174/0124681873287041240328133414
Loading
/content/journals/cnanom/10.2174/0124681873287041240328133414
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): back pain; colchicum; dermal routes; Nanoencapsulation; oral routes; plant extracts; terpenes
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test