Skip to content
2000
Volume 15, Issue 2
  • ISSN: 2468-1873
  • E-ISSN: 2468-1881

Abstract

Background

Acute lung injury (ALI) is a life-threatening condition characterized by severe invasion of inflammatory cells, lung edema, and the development of intestinal fibrosis. The activation of proinflammatory cytokines like TNF-α, IL-6, and others results in the development of several risk factors for ALI. It has been observed that no viable therapies for lung injuries exist. Therefore, there is a significant need for healthcare requirements. However, few effective non-pharmacological and pharmacological treatments are available, which may have assisted doctors in reducing the likelihood of illness development. Still, not much progress has been made in illness management.

Objective

This review aimed to briefly discuss pharmacological and non-pharmacological approaches for treating ALI.

Methods

Nowadays, drug delivery and illness diagnosis are the most advanced areas of modern nanotechnology research, particularly concerning the lungs. So, we focused on various novel approaches, ., organic nanoparticles, inorganic nanoparticles, metal nanoparticles, and bio nanoparticles, that combat ALI and improve lung functions. This review discussed many studies and the advancement of different nanomaterials as novel drug carriers in the lungs that can influence the immune system, suppressing proinflammatory cytokines and improving lung functions.

Results

Another aspect of studying nanotechnology is the release kinetics of nanoparticles and safety when administered to a targeted tissue.

Conclusion

The higher uptake of nanomaterials and, thus, the drugs is another advancement in nanotechnology. Herein, we explored different approaches to improving and curing acute lung injury.

Loading

Article metrics loading...

/content/journals/cnanom/10.2174/0124681873285123240206094443
2024-02-28
2025-05-29
Loading full text...

Full text loading...

References

  1. ChakravarthyK.V. BoehmF.J. ChristoP.J. Nanotechnology: A promising new paradigm for the control of pain.Pain Med.201819223224310.1093/pm/pnx13129036629
    [Google Scholar]
  2. EmerichD.F. ThanosC.G. Nanotechnology and medicine.Expert Opin. Biol. Ther.20033465566310.1517/14712598.3.4.65512831370
    [Google Scholar]
  3. FarokhzadO.C. LangerR. Impact of nanotechnology on drug delivery.ACS Nano200931162010.1021/nn900002m19206243
    [Google Scholar]
  4. LuoM.X. HuaS. ShangQ.Y. Application of nanotechnology in drug delivery systems for respiratory diseases (Review).Mol. Med. Rep.202123532510.3892/mmr.2021.1196433760125
    [Google Scholar]
  5. DoroudianM. MacLoughlinR. PoyntonF. Prina-MelloA. DonnellyS.C. Nanotechnology based therapeutics for lung disease.Thorax2019741096597610.1136/thoraxjnl‑2019‑21303731285360
    [Google Scholar]
  6. SadikotR.T. KolanjiyilA.V. KleinstreuerC. Nanomedicine for treatment of acute lung injury and acute respiratory distress syndrome.Biomed Hub.201727211210.1159/000477086
    [Google Scholar]
  7. QiaoQ. LiuX. YangT. CuiK. KongL. YangC. ZhangZ. Nanomedicine for acute respiratory distress syndrome: The latest application, targeting strategy, and rational design.Acta Pharm. Sin. B202111103060309110.1016/j.apsb.2021.04.02333977080
    [Google Scholar]
  8. FröhlichE Salar-BehzadiS Toxicological assessment of inhaled nanoparticles: Role of in vivo, ex-vivo, in vitro, and in silico studies.Int J Mol Sci.2014153479582210.3390/ijms15034795
    [Google Scholar]
  9. OmlorAJ NguyenJ BalsR Nanotechnology in respiratory medicine.Respir. Res.2015166410.1186/s12931‑015‑0223‑5
    [Google Scholar]
  10. MyersonJ.W. PatelP.N. RubeyK.M. ZamoraM.E. ZaleskiM.H. HabibiN. WalshL.R. LeeY.W. LutherD.C. FergusonL.T. Marcos-ContrerasO.A. GlassmanP.M. MazaleuskayaL.L. JohnstonI. HoodE.D. ShuvaevaT. WuJ. ZhangH.Y. GregoryJ.V. KiselevaR.Y. NongJ. GrosserT. GreinederC.F. MitragotriS. WorthenG.S. RotelloV.M. LahannJ. MuzykantovV.R. BrennerJ.S. Supramolecular arrangement of protein in nanoparticle structures predicts nanoparticle tropism for neutrophils in acute lung inflammation.Nat. Nanotechnol.2022171869710.1038/s41565‑021‑00997‑y34795440
    [Google Scholar]
  11. BianS CaiH CuiY Nanomedicine-based therapeutics to combat acute lung injury.Int J Nanomedicine.2021162247226910.2147/IJN.S300594
    [Google Scholar]
  12. BormP.J.A. KreylingW. Toxicological hazards of inhaled nanoparticles--potential implications for drug delivery.J. Nanosci. Nanotechnol.20044552153110.1166/jnn.2004.08115503438
    [Google Scholar]
  13. NganC.L. AsmawiA.A. Lipid-based pulmonary delivery system: A review and future considerations of formulation strategies and limitations.Drug Deliv. Transl. Res.2018851527154410.1007/s13346‑018‑0550‑429881970
    [Google Scholar]
  14. PatraJK DasG FracetoLF Nano based drug delivery systems: Recent developments and future prospects.J Nanobiotechnology20181617110.1186/s12951‑018‑0392‑8
    [Google Scholar]
  15. MokráD. Acute lung injury - from pathophysiology to treatment.Physiol. Res.2021694S353S36610.33549/physiolres.93460233464919
    [Google Scholar]
  16. BellaniG. LaffeyJ.G. PhamT. FanE. BrochardL. EstebanA. GattinoniL. van HarenF. LarssonA. McAuleyD.F. RanieriM. RubenfeldG. ThompsonB.T. WriggeH. SlutskyA.S. PesentiA. Epidemiology, Patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries.JAMA2016315878880010.1001/jama.2016.029126903337
    [Google Scholar]
  17. RagallerM RichterT Acute lung injury and acute respiratory distress syndrome.J Emerg Trauma Shock.201031435110.4103/0974‑2700.58663
    [Google Scholar]
  18. WangY. ZhuC. LiP. LiuQ. LiH. YuC. DengX. WangJ. The role of G protein-coupled receptor in neutrophil dysfunction during sepsis-induced acute respiratory distress syndrome.Front. Immunol.202314111219610.3389/fimmu.2023.111219636891309
    [Google Scholar]
  19. MeadeM.O. CookD.J. GuyattG.H. SlutskyA.S. ArabiY.M. CooperD.J. DaviesA.R. HandL.E. ZhouQ. ThabaneL. AustinP. LapinskyS. BaxterA. RussellJ. SkrobikY. RoncoJ.J. StewartT.E. Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: A randomized controlled trial.JAMA2008299663764510.1001/jama.299.6.63718270352
    [Google Scholar]
  20. BrowerR.G. MatthayM.A. MorrisA. SchoenfeldD. ThompsonB.T. WheelerA. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome.N. Engl. J. Med.2000342181301130810.1056/NEJM20000504342180110793162
    [Google Scholar]
  21. BernardG.R. Acute respiratory distress syndrome: A historical perspective.Am. J. Respir. Crit. Care Med.2005172779880610.1164/rccm.200504‑663OE16020801
    [Google Scholar]
  22. BrowerR.G. WareL.B. BerthiaumeY. MatthayM.A. Treatment of ARDS.Chest200112041347136710.1378/chest.120.4.134711591581
    [Google Scholar]
  23. PetrucciN. IacovelliW. Lung protective ventilation strategy for the acute respiratory distress syndrome.Cochrane Database Syst. Rev.20073CD00384410.1002/14651858.CD003844.pub317636739
    [Google Scholar]
  24. PlötzF.B. SlutskyA.S. van VughtA.J. HeijnenC.J. Ventilator-induced lung injury and multiple system organ failure: A critical review of facts and hypotheses.Intensive Care Med.200430101865187210.1007/s00134‑004‑2363‑915221129
    [Google Scholar]
  25. JohnsonER MatthayMA Acute lung injury: Epidemiology, pathogenesis, and treatmentJ Aerosol Med Pulm Drug Deliv.20102342435210.1089/jamp.2009.0775
    [Google Scholar]
  26. GuérinC. ManceboJ. Prone positioning and neuromuscular blocking agents are part of standard care in severe ARDS patients: Yes.Intensive Care Med.201541122195219710.1007/s00134‑015‑3918‑726399890
    [Google Scholar]
  27. SweeneyR.M. McAuleyD.F. Acute respiratory distress syndrome.Lancet2016388100582416243010.1016/S0140‑6736(16)00578‑X27133972
    [Google Scholar]
  28. NetoA.S. PereiraV.G. EspósitoD.C. Neuromuscular blocking agents in patients with acute respiratory distress syndrome: A summary of the current evidence from three randomized controlled trials.Ann Intensive Care.2012213310.1186/2110‑5820‑2‑33
    [Google Scholar]
  29. MokraD MikolkaP KosutovaP Corticosteroids in acute lung injury: The dilemma continues.Int J Mol Sci.20192019276510.3390/ijms20194765
    [Google Scholar]
  30. MeduriG.U. AnnaneD. ChrousosG.P. MarikP.E. SinclairS.E. Activation and regulation of systemic inflammation in ARDS: Rationale for prolonged glucocorticoid therapy.Chest200913661631164310.1378/chest.08‑240819801579
    [Google Scholar]
  31. RossaintR. FalkeK.J. LópezF. SlamaK. PisonU. ZapolW.M. Inhaled nitric oxide for the adult respiratory distress syndrome.N. Engl. J. Med.1993328639940510.1056/NEJM1993021132806058357359
    [Google Scholar]
  32. MikolkaP. KopincováJ. KošútováP. ČiernyD. ČalkovskáA. MokráD. Lung inflammatory and oxidative alterations after exogenous surfactant therapy fortified with budesonide in rabbit model of meconium aspiration syndrome.Physiol. Res.201665Suppl. 5S653S66210.33549/physiolres.93352928006947
    [Google Scholar]
  33. FesticE. CarrG.E. Cartin-CebaR. HindsR.F. Banner-GoodspeedV. BansalV. AsuniA.T. TalmorD. RajagopalanG. FrankR.D. GajicO. MatthayM.A. LevittJ.E. Randomized clinical trial of a combination of an inhaled corticosteroid and beta agonist in patients at risk of developing the acute respiratory distress syndrome.Crit. Care Med.201745579880510.1097/CCM.000000000000228428240689
    [Google Scholar]
  34. MokraD. DrgovaA. PullmannR.Sr CalkovskaA. Selective phosphodiesterase 3 inhibitor olprinone attenuates meconium-induced oxidative lung injury.Pulm. Pharmacol. Ther.201225321622210.1016/j.pupt.2012.02.00722387424
    [Google Scholar]
  35. KosutovaP. MikolkaP. KolomaznikM. BalentovaS. AdamkovM. CalkovskaA. MokraD. Reduction of lung inflammation, oxidative stress and apoptosis by the PDE4 inhibitor roflumilast in experimental model of acute lung injury.Physiol. Res.2018674S645S65410.33549/physiolres.93404730607971
    [Google Scholar]
  36. ZielińskaA CarreiróF OliveiraAM Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology.Molecules20202516373110.3390/molecules25163731
    [Google Scholar]
  37. ZhangCY LinW GaoJ pH-Responsive nanoparticles targeted to lungs for improved therapy of acute lung inflammation/injury.ACS Appl Mater Interfaces.20191118163801639010.1021/acsami.9b04051
    [Google Scholar]
  38. OlivierK.N. GriffithD.E. EagleG. Randomized trial of liposomal amikacin for inhalation in nontuberculous mycobacterial lung disease.Am J Respir Crit Care Med.2017195681482310.1164/rccm.201604‑0700OC
    [Google Scholar]
  39. LiuD. LongM. GaoL. ChenY. LiF. ShiY. GuN. Nanomedicines targeting respiratory injuries for pulmonary disease management.Adv. Funct. Mater.20223222211225810.1002/adfm.202112258
    [Google Scholar]
  40. Karimi ZarchiA.A. FaramarziM.A. GilaniK. Ghazi-KhansariM. GhamamiG. AmaniA. N -acetylcysteine-loaded PLGA nanoparticles outperform conventional N -acetylcysteine in acute lung injuries in vivo.Int. J. Polym. Mater.201766944345410.1080/00914037.2016.1236339
    [Google Scholar]
  41. PhamD.T. ChokamonsirikunA. PhattaravorakarnV. TiyaboonchaiW. Polymeric micelles for pulmonary drug delivery: A comprehensive review.J. Mater. Sci.20215632016203610.1007/s10853‑020‑05361‑4
    [Google Scholar]
  42. LimS.B. RubinsteinI. SadikotR.T. ArtwohlJ.E. ÖnyükselH. A novel peptide nanomedicine against acute lung injury: GLP-1 in phospholipid micelles.Pharm. Res.201128366267210.1007/s11095‑010‑0322‑421108040
    [Google Scholar]
  43. ZhuT. WuX. ZhangW. XiaoM. Glucagon like peptide-1 (GLP-1) modulates OVA-induced airway inflammation and mucus secretion involving a protein kinase A (PKA)-dependent nuclear factor-κB (NF-κB) signaling pathway in mice.Int. J. Mol. Sci.2015169201952021110.3390/ijms16092019526343632
    [Google Scholar]
  44. NasrM. NajlahM. D’EmanueleA. ElhissiA. PAMAM dendrimers as aerosol drug nanocarriers for pulmonary delivery via nebulization.Int. J. Pharm.20144611-224225010.1016/j.ijpharm.2013.11.02324275446
    [Google Scholar]
  45. BohrA. TsapisN. AndreanaI. ChamaratA. FogedC. DelomenieC. NoirayM. El BrahmiN. MajoralJ.P. MignaniS. FattalE. Anti-inflammatory effect of anti-TNF-α SiRNA cationic phosphorus dendrimer nanocomplexes administered intranasally in a murine acute lung injury model.Biomacromolecules20171882379238810.1021/acs.biomac.7b0057228639789
    [Google Scholar]
  46. RyttingE. NguyenJ. WangX. KisselT. Biodegradable polymeric nanocarriers for pulmonary drug delivery.Expert Opin. Drug Deliv.20085662963910.1517/17425247.5.6.62918532919
    [Google Scholar]
  47. KulikovO.A. AgeevV.P. MarochkinaE.E. DolgachevaI.S. MinayevaO.V. InchinaV.I. Efficacy of liposomal dosage forms and hyperosmolar salines in experimental pharmacotherapy of acute lung injury.Res Results Pharmacol201952234110.3897/rrpharmacology.5.35529
    [Google Scholar]
  48. RideauE. DimovaR. SchwilleP. WurmF.R. LandfesterK. Liposomes and polymersomes: A comparative review towards cell mimicking.Chem. Soc. Rev.201847238572861010.1039/C8CS00162F30177983
    [Google Scholar]
  49. DuanY DharA PatelC A brief review on solid lipid nanoparticles: Part and parcel of contemporary drug delivery systems.RSC Adv.20201047267779110.1039/D0RA03491F
    [Google Scholar]
  50. ZuglianelloC. Lemos-SennaE. The nanotechnological approach for nasal delivery of peptide drugs: A comprehensive review.J. Microencapsul.202239215617510.1080/02652048.2022.205162635262455
    [Google Scholar]
  51. JiangS. LiS. HuJ. XuX. WangX. KangX. QiJ. LuX. WuJ. DuY. XiaoY. Combined delivery of angiopoietin-1 gene and simvastatin mediated by anti-intercellular adhesion molecule-1 antibody-conjugated ternary nanoparticles for acute lung injury therapy.Nanomedicine2019151253610.1016/j.nano.2018.08.00930193816
    [Google Scholar]
  52. LiS.J. WangX.J. HuJ.B. KangX.Q. ChenL. XuX.L. YingX.Y. JiangS.P. DuY.Z. Targeting delivery of simvastatin using ICAM-1 antibody-conjugated nanostructured lipid carriers for acute lung injury therapy.Drug Deliv.201724140241310.1080/10717544.2016.125936928165814
    [Google Scholar]
  53. OuL SongB LiangH Toxicity of graphene-family nanoparticles: A general review of the origins and mechanisms.Part Fibre Toxicol.201613112410.1186/s12989‑016‑0168‑y
    [Google Scholar]
  54. ZhangY. DengJ. ZhangY. GuoF. LiC. ZouZ. XiW. TangJ. SunY. YangP. HanZ. LiD. JiangC. Functionalized single-walled carbon nanotubes cause reversible acute lung injury and induce fibrosis in mice.J. Mol. Med. (Berl.)201391111712810.1007/s00109‑012‑0940‑x22878607
    [Google Scholar]
  55. HeisterE. NevesV. TîlmaciuC. LipertK. BeltránV.S. ColeyH.M. SilvaS.R.P. McFaddenJ. Triple functionalisation of single-walled carbon nanotubes with doxorubicin, a monoclonal antibody, and a fluorescent marker for targeted cancer therapy.Carbon20094792152216010.1016/j.carbon.2009.03.057
    [Google Scholar]
  56. YanJ. TangZ. LiY. WangH. HsuJ.C. ShiM. FuZ. JiX. CaiW. NiD. QuJ. Molybdenum nanodots for acute lung injury therapy.ACS Nano20231723238722388810.1021/acsnano.3c0814738084420
    [Google Scholar]
  57. CortajarenaAL OrtegaD OcampoSM Engineering iron oxide nanoparticles for clinical settings.Nanobiomedicine (Rij)20141210.5772/58841
    [Google Scholar]
  58. NishimotoK. MimuraA. AokiM. BanuraN. MuraseK. Application of magnetic particle imaging to pulmonary imaging using nebulized magnetic nanoparticles.Open J Med Imag201552495510.4236/ojmi.2015.52008
    [Google Scholar]
  59. BrzoskaM. LangerK. CoesterC. LoitschS. WagnerT.O.F. MallinckrodtC. Incorporation of biodegradable nanoparticles into human airway epithelium cells—in vitro study of the suitability as a vehicle for drug or gene delivery in pulmonary diseases.Biochem. Biophys. Res. Commun.2004318256257010.1016/j.bbrc.2004.04.06715120637
    [Google Scholar]
  60. WileyJ.A. RichertL.E. SwainS.D. HarmsenA. BarnardD.L. RandallT.D. JutilaM. DouglasT. BroomellC. YoungM. HarmsenA. Inducible bronchus-associated lymphoid tissue elicited by a protein cage nanoparticle enhances protection in mice against diverse respiratory viruses.PLoS One200949e714210.1371/journal.pone.000714219774076
    [Google Scholar]
  61. ZhangL. LaugL. MünchgesangW. PippelE. GöseleU. BrandschM. KnezM. Reducing stress on cells with apoferritin-encapsulated platinum nanoparticles.Nano Lett.201010121922310.1021/nl903313r20017497
    [Google Scholar]
  62. SerebrovskaZ. SwansonR.J. PortnichenkoV. ShyshA. PavlovichS. TumanovskaL. DorovskychA. LysenkoV. TertykhV. BolbukhY. DosenkoV. Anti-inflammatory and antioxidant effect of cerium dioxide nanoparticles immobilized on the surface of silica nanoparticles in rat experimental pneumonia.Biomed. Pharmacother.201792697710.1016/j.biopha.2017.05.06428531802
    [Google Scholar]
  63. ZhuY. DengG. JiA. YaoJ. MengX. WangJ. WangQ. WangQ. WangR. Porous Se@SiO2 nanospheres treated paraquat-induced acute lung injury by resisting oxidative stress.Int. J. Nanomedicine2017127143715210.2147/IJN.S14319229026307
    [Google Scholar]
  64. StoehrLC GonzalezE StampflA Shape matters: Effects of silver nanospheres and wires on human alveolar epithelial cells.Part Fibre Toxicol.2011811510.1186/1743‑8977‑8‑36
    [Google Scholar]
  65. ValodkarM. JadejaR.N. ThounaojamM.C. DevkarR.V. ThakoreS. in vitro toxicity study of plant latex capped silver nanoparticles in human lung carcinoma cells.Mater. Sci. Eng. C20113181723172810.1016/j.msec.2011.08.001
    [Google Scholar]
  66. DykmanL.A. KhlebtsovN.G. Immunological properties of gold nanoparticles.Chem Sci.2017831719173510.1201/b22465‑5
    [Google Scholar]
  67. Caballero-DíazE. ValcárcelM. Toxicity of gold nanoparticles.Gold nanoparticles in analytical chemistry. ValcárcelM. López-LorenteÁ.I. Elsevier20146620725410.1016/B978‑0‑444‑63285‑2.00005‑5
    [Google Scholar]
  68. JiaY.P. MaB.Y. WeiX.W. The in vitro and in vivo toxicity of gold nanoparticles.Chin Chem Lett.201728469170210.1016/j.cclet.2017.01.021
    [Google Scholar]
  69. ZhangJ MouL JiangX Surface chemistry of gold nanoparticles for health-related applications.Chem Sci.202011492393610.1039/C9SC06497D
    [Google Scholar]
  70. (a XiongY. GaoW. XiaF. SunY. SunL. WangL. BenS. TurveyS.E. YangH. LiQ. Peptide–Gold nanoparticle hybrids as promising anti-inflammatory nanotherapeutics for acute lung injury: in vivo efficacy, biodistribution, and clearance.Adv. Healthc. Mater.2018719180051010.1002/adhm.20180051030101578
    [Google Scholar]
  71. (b CodulloV CovaE PandolfiL Imatinib-loaded gold nanoparticles inhibit proliferation of fibroblasts and macrophages from systemic sclerosis patients and ameliorate experimental bleomycin-induced lung fibrosis.J Control Release201931019820810.1016/j.jconrel.2019.08.01531430501
    [Google Scholar]
  72. DrazM.S. ShafieeH. Applications of gold nanoparticles in virus detection.Theranostics2018871985201710.7150/thno.2385629556369
    [Google Scholar]
  73. MadlA.K. PlummerL.E. CarosinoC. PinkertonK.E. Nanoparticles, lung injury, and the role of oxidant stress.Annu. Rev. Physiol.201476144746510.1146/annurev‑physiol‑030212‑18373524215442
    [Google Scholar]
  74. WangD. PuJ. LiaoY. LiuJ. HuG. Pulmonary protective effects of ultrasonic green synthesis of gold nanoparticles mediated by pectin on Methotrexate-induced acute lung injury in lung BEAS-2B, WI-38, CCD-19Lu, IMR-90, MRC-5, and HEL 299 cell lines.Arab. J. Chem.202215110353310.1016/j.arabjc.2021.103533
    [Google Scholar]
  75. SadhuP.K. RajputA. SethA.K. A Combined approach of gold nanoparticles with cannabinoids for the treatment of cancer – a review.Int J Pharmaceut Res202012SP139340510.31838/ijpr/2020.SP1.077
    [Google Scholar]
  76. WangL ZhangH SunL Manipulation of macrophage polarization by peptide-coated gold nanoparticles and its protective effects on acute lung injury.J Nanobiotechnology20201811610.1186/s12951‑020‑00593‑7
    [Google Scholar]
  77. GriffithsG NyströmB SableSB Nanobead-based interventions for the treatment and prevention of tuberculosis.Nat Rev Microbiol.20108118273410.1038/nrmicro2437
    [Google Scholar]
  78. MuralidharanP HayesD BlackSM Microparticulate/nanoparticulate powders of a novel Nrf2 activator and an aerosol performance enhancer for pulmonary delivery targeting the lung Nrf2/Keap-1 pathway.Mol Syst Des Eng.201611486510.1039/C5ME00004A
    [Google Scholar]
  79. KonduriK.S. NandedkarS. DüzgünesN. SuzaraV. ArtwohlJ. BunteR. GangadharamP.R.J. Efficacy of liposomal budesonide in experimental asthma.J. Allergy Clin. Immunol.2003111232132710.1067/mai.2003.10412589352
    [Google Scholar]
  80. NgZY WongJY PanneerselvamJ Assessing the potential of liposomes loaded with curcumin as a therapeutic intervention in asthma.Colloids Surf B Biointerfaces.2018172515910.1016/j.colsurfb.2018.08.027
    [Google Scholar]
  81. ChenX HuangW WongBC Liposomes prolong the therapeutic effect of anti-asthmatic medication via pulmonary delivery.Int J Nanomedicine2012711394810.2147/IJN.S28011
    [Google Scholar]
  82. JiW.J. MaY.Q. ZhangX. ZhangL. ZhangY.D. SuC.C. XiangG.A. ZhangM.P. LinZ.C. WeiL.Q. WangP.P. ZhangZ. LiY.M. ZhouX. Inflammatory monocyte/macrophage modulation by liposome-entrapped spironolactone ameliorates acute lung injury in mice.Nanomedicine (Lond.)201611111393140610.2217/nnm‑2016‑000627221077
    [Google Scholar]
  83. LiN. WengD. WangS.M. ZhangY. ChenS.S. YinZ.F. ZhaiJ. ScobleJ. WilliamsC.C. ChenT. QiuH. WuQ. ZhaoM.M. LuL.Q. MuletX. LiH.P. Surfactant protein-A nanobody-conjugated liposomes loaded with methylprednisolone increase lung-targeting specificity and therapeutic effect for acute lung injury.Drug Deliv.20172411770178110.1080/10717544.2017.140221729160134
    [Google Scholar]
  84. LiS ChenL WangG Anti-ICAM-1 antibody-modified nanostructured lipid carriers: A pulmonary vascular endothelium-targeted device for acute lung injury therapy.J Nanobiotechnology201816111410.1186/s12951‑018‑0431‑5
    [Google Scholar]
  85. KardaraM. HatziantoniouS. SfikaA. VassiliouA.G. MourelatouE. ΜagkouC. ArmaganidisA. RoussosC. OrfanosS.E. KotanidouA. ManiatisN.A. Caveolar uptake and endothelial-protective effects of nanostructured lipid carriers in acid aspiration murine acute lung injury.Pharm. Res.20133071836184710.1007/s11095‑013‑1027‑223549752
    [Google Scholar]
  86. D’AlmeidaAPL de OliveiraMTP de SouzaÉT α-bisabolol-loaded lipid-core nanocapsules reduce lipopolysaccharide-induced pulmonary inflammation in mice.Int J Nanomedicine20171244799110.2147/IJN.S130798
    [Google Scholar]
  87. EsmaeiliM. AghajaniM. AbbasalipourkabirR. AmaniA. Budesonide-loaded solid lipid nanoparticles for pulmonary delivery: Preparation, optimization, and aerodynamic behavior.Artif. Cells Nanomed. Biotechnol.20164481964197110.3109/21691401.2015.112961426758698
    [Google Scholar]
  88. LiuF.C. YuH.P. LinC.Y. ElzoghbyA.O. HwangT.L. FangJ.Y. Use of cilomilast-loaded phosphatiosomes to suppress neutrophilic inflammation for attenuating acute lung injury: The effect of nanovesicular surface charge.J. Nanobiotechnology20181613510.1186/s12951‑018‑0364‑z29602314
    [Google Scholar]
  89. InapagollaR. GuruB.R. KurtogluY.E. GaoX. Lieh-LaiM. BassettD.J.P. KannanR.M. In vivo efficacy of dendrimer–methylprednisolone conjugate formulation for the treatment of lung inflammation.Int. J. Pharm.20103991-214014710.1016/j.ijpharm.2010.07.03020667503
    [Google Scholar]
  90. JinF. LiuD. YuH. QiJ. YouY. XuX. KangX. WangX. LuK. YingX. YouJ. DuY. JiJ. Sialic acid-functionalized PEG–PLGA microspheres loading mitochondrial-targeting-modified curcumin for acute lung injury therapy.Mol. Pharm.2019161718510.1021/acs.molpharmaceut.8b0086130431285
    [Google Scholar]
  91. ZhuL. LiM. DongJ. JinY. Dimethyl silicone dry nanoemulsion inhalations: Formulation study and anti-acute lung injury effect.Int. J. Pharm.20154911-229229810.1016/j.ijpharm.2015.06.04126142249
    [Google Scholar]
  92. MichailidouG. AinaliN.M. XanthopoulouE. NanakiS. KostoglouM. KoukarasE.N. BikiarisD.N. Effect of poly(vinyl alcohol) on nanoencapsulation of budesonide in chitosan nanoparticles via ionic gelation and its improved bioavailability.Polymers (Basel)2020125110110.3390/polym1205110132408557
    [Google Scholar]
  93. DingY. LvB. ZhengJ. LuC. LiuJ. LeiY. YangM. WangY. LiZ. YangY. GongW. HanJ. GaoC. RBC-hitchhiking chitosan nanoparticles loading methylprednisolone for lung-targeting delivery.J. Control. Release202234170271510.1016/j.jconrel.2021.12.01834933051
    [Google Scholar]
  94. YangH. FungS.Y. XuS. SutherlandD.P. KollmannT.R. LiuM. TurveyS.E. Amino acid-dependent attenuation of toll-like receptor signaling by peptide-gold nanoparticle hybrids.ACS Nano2015976774678410.1021/nn505634h26083966
    [Google Scholar]
  95. MuralidharanP. JonesB. AllawayG. BiswalS.S. MansourH.M. Design and development of innovative microparticulate/nanoparticulate inhalable dry powders of a novel synthetic trifluorinated chalcone derivative and Nrf2 agonist.Sci. Rep.20201011977110.1038/s41598‑020‑76585‑233188247
    [Google Scholar]
  96. MelinaR. The University of North Carolina at Chapel Hill, assignee. Nanomaterials for targeted treatment of pulmonary tissue.WIPO patent 2021155355A12021
  97. WangZ. Compositions and methods for diagnosing or treating neutrophil-mediated inflammatory disease.US patent 20230048872A12023
  98. QinS. LingC. LiuX. Application method of nanoparticle-based targeted Piezo1 protein in acute lung injury.CN patent 113975376A2022
  99. HsiaC. HongY. MoeO.W. Nanoparticles containing extracellular matrix for drug delivery.US patent 11491115B22022
  100. ChenQuan.J. MalininF. Compositions and methods for treating lung disease and lung injury.JP Patent 6884714B22021
  101. GoswamiN. FarheenF. KeshammaE. Polymer based nano-carriers for treating lung cancer using drug delivery system.IN Patent 2022210532822022
/content/journals/cnanom/10.2174/0124681873285123240206094443
Loading
/content/journals/cnanom/10.2174/0124681873285123240206094443
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test