Skip to content
2000
Volume 15, Issue 1
  • ISSN: 2468-1873
  • E-ISSN: 2468-1881

Abstract

Background

Triple-Negative Breast Cancer (TNBC) presents a significant challenge due to its aggressive nature and lack of responsive hormone receptors, predominantly affecting younger premenopausal women. Ethyl ferulate (EF), a notable phytochemical, has demonstrated promising anti-cancer properties. This study aimed to enhance the efficacy of EF by synthesizing and characterizing ethyl ferulate gold nanoparticles (EF-AuNps) to passively target TNBC cells the enhanced permeability and retention (EPR) effect.

Methods

We synthesized EF-AuNps using a direct reduction method and characterized the NPs by employing various techniques, including UV-visible spectroscopy, DLS, XRD, EDX, TEM, and FT-IR. The anti-proliferative activity against MDA-MB-231 cells was assessed using MTT and colony formation assays, alongside evaluating cell viability with PI-FACS and live/dead assays. Furthermore, a Western blot was performed to determine the mechanism of action of EF-AuNps in TNBC cells.

Result

We successfully synthesized triangular EF-AuNps (<100nm) and observed a substantial inhibition of cell proliferation (IC 18µg/ml). Compared to EF alone, EF-AuNps significantly enhanced cell death in TNBC cells, as confirmed by flow cytometry and viability assays. Besides, Western blot analysis verified that the expression of apoptotic-related signal proteins, such as survivin, caspase 3, and caspase 9, were modulated by EF-AuNps.

Conclusion

EF-AuNps showed higher anti-cancer efficacy than EF in the MDA-MB-231 cell line. These findings suggest the therapeutic potential of EF-AuNps for TNBC treatment, advocating for further preclinical and clinical investigations into this promising anti-cancer formulation.

Loading

Article metrics loading...

/content/journals/cnanom/10.2174/0124681873280022240130062923
2024-02-06
2024-12-25
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  2. KumarL.D. GolaniA. KumarL.D. EMT in breast cancer metastasis an interplay of microRNAs signaling pathways and circulating tumor cells.Front. Biosci.2020255979101010.2741/484432114421
    [Google Scholar]
  3. ThakurV. KuttyR.V. Recent advances in nanotheranostics for triple negative breast cancer treatment.J. Exp. Clin. Cancer Res.201938143010.1186/s13046‑019‑1443‑131661003
    [Google Scholar]
  4. ShenM. PanH. ChenY. XuY.H. YangW. WuZ. A review of current progress in triple-negative breast cancer therapy.Open Med.20201511143114910.1515/med‑2020‑013833336070
    [Google Scholar]
  5. VagiaE. MahalingamD. CristofanilliM. The landscape of targeted therapies in TNBC.Cancers202012491610.3390/cancers1204091632276534
    [Google Scholar]
  6. ThakurK.K. KumarA. BanikK. VermaE. KhatoonE. HarshaC. SethiG. GuptaS.C. KunnumakkaraA.B. Long noncoding RNAs in triple-negative breast cancer: A new frontier in the regulation of tumorigenesis.J. Cell. Physiol.2021236127938796510.1002/jcp.3046334105151
    [Google Scholar]
  7. JainV. KumarH. AnodH.V. ChandP. GuptaN.V. DeyS. KesharwaniS.S. A review of nanotechnology-based approaches for breast cancer and triple-negative breast cancer.J. Control. Release202032662864710.1016/j.jconrel.2020.07.00332653502
    [Google Scholar]
  8. BerginA.R.T. LoiS. Triple-negative breast cancer: Recent treatment advances.F1000 Res.20198134210.12688/f1000research.18888.131448088
    [Google Scholar]
  9. CaoL. NiuY. Triple negative breast cancer: Special histological types and emerging therapeutic methods.Cancer Biol. Med.202017229330610.20892/j.issn.2095‑3941.2019.046532587770
    [Google Scholar]
  10. AhmedS.A. ParamaD. DaimariE. GirisaS. BanikK. HarshaC. DuttaU. KunnumakkaraA.B. Rationalizing the therapeutic potential of apigenin against cancer.Life Sci.202126711881410.1016/j.lfs.2020.11881433333052
    [Google Scholar]
  11. AmalrajA. VarmaK. JacobJ. DivyaC. KunnumakkaraA.B. StohsS.J. GopiS. A novel highly bioavailable curcumin formulation improves symptoms and diagnostic indicators in rheumatoid arthritis patients: A randomized, double-blind, placebo-controlled, two-dose, three-arm, and parallel-group study.J. Med. Food201720101022103010.1089/jmf.2017.393028850308
    [Google Scholar]
  12. BuhrmannC. KunnumakkaraA.B. KumarA. SamecM. KubatkaP. AggarwalB.B. ShakibaeiM. Multitargeting effects of calebin A on malignancy of CRC cells in multicellular tumor microenvironment.Front. Oncol.20211165060310.3389/fonc.2021.65060334660256
    [Google Scholar]
  13. DaimaryU.D. ParamaD. RanaV. BanikK. KumarA. HarshaC. KunnumakkaraA.B. Emerging roles of cardamonin, a multitargeted nutraceutical in the prevention and treatment of chronic diseases.Curr. Res. Pharmacol. Drug Discov.2021210000810.1016/j.crphar.2020.10000834909644
    [Google Scholar]
  14. GirisaS. ShabnamB. MonishaJ. FanL. HalimC. ArfusoF. AhnK. SethiG. KunnumakkaraA. Potential of zerumbone as an anti-cancer agent.Molecules201924473410.3390/molecules2404073430781671
    [Google Scholar]
  15. GuptaS.C. PrasadS. TyagiA.K. KunnumakkaraA.B. AggarwalB.B. Neem (Azadirachta indica): An indian traditional panacea with modern molecular basis.Phytomedicine201734142010.1016/j.phymed.2017.07.00128899496
    [Google Scholar]
  16. KunnumakkaraA.B. BordoloiD. PadmavathiG. MonishaJ. RoyN.K. PrasadS. AggarwalB.B. Curcumin, the golden nutraceutical: Multitargeting for multiple chronic diseases.Br. J. Pharmacol.2017174111325134810.1111/bph.1362127638428
    [Google Scholar]
  17. RoyN.K. ParamaD. BanikK. BordoloiD. DeviA.K. ThakurK.K. PadmavathiG. ShakibaeiM. FanL. SethiG. KunnumakkaraA.B. An update on pharmacological potential of boswellic acids against chronic diseases.Int. J. Mol. Sci.20192017410110.3390/ijms2017410131443458
    [Google Scholar]
  18. GirisaS. KumarA. RanaV. ParamaD. DaimaryU.D. WarnakulasuriyaS. KumarA.P. KunnumakkaraA.B. From simple mouth cavities to complex oral mucosal disorders-curcuminoids as a promising therapeutic approach.ACS Pharmacol. Transl. Sci.20214264766510.1021/acsptsci.1c0001733860191
    [Google Scholar]
  19. KumarA. HarshaC. ParamaD. GirisaS. DaimaryU.D. MaoX. KunnumakkaraA.B. Current clinical developments in curcumin-based therapeutics for cancer and chronic diseases.Phytother. Res.202135126768680110.1002/ptr.726434498308
    [Google Scholar]
  20. VermaE. KumarA. Devi DaimaryU. ParamaD. GirisaS. SethiG. KunnumakkaraA.B. Potential of baicalein in the prevention and treatment of cancer: A scientometric analyses based review.J. Funct. Foods20218610466010.1016/j.jff.2021.104660
    [Google Scholar]
  21. KunnumakkaraA.B. RanaV. ParamaD. BanikK. GirisaS. HenamayeeS. ThakurK.K. DuttaU. GarodiaP. GuptaS.C. AggarwalB.B. COVID-19, cytokines, inflammation, and spices: How are they related?Life Sci.202128411920110.1016/j.lfs.2021.11920133607159
    [Google Scholar]
  22. GirisaS. SaikiaQ. BordoloiD. BanikK. MonishaJ. DaimaryU.D. VermaE. AhnK.S. KunnumakkaraA.B. Xanthohumol from Hop: Hope for cancer prevention and treatment.IUBMB Life20217381016104410.1002/iub.252234170599
    [Google Scholar]
  23. ChoudhuryB. KandimallaR. BharaliR. MonishaJ. KunnumakaraA.B. KalitaK. KotokyJ. Anticancer activity of Garcinia morella on T-cell murine lymphoma via apoptotic induction.Front. Pharmacol.20167310.3389/fphar.2016.0000326858645
    [Google Scholar]
  24. NairA. AmalrajA. JacobJ. KunnumakkaraA.B. GopiS. Non-curcuminoids from turmeric and their potential in cancer therapy and anticancer drug delivery formulations.Biomolecules2019911310.3390/biom901001330609771
    [Google Scholar]
  25. ChoiR. KimB.H. NaowabootJ. LeeM.Y. HyunM.R. ChoE.J. LeeE.S. LeeE.Y. YangY.C. ChungC.H. Effects of ferulic acid on diabetic nephropathy in a rat model of type 2 diabetes.Exp. Mol. Med.2011431267668310.3858/emm.2011.43.12.07821975281
    [Google Scholar]
  26. MancusoC. SantangeloR. Ferulic acid: Pharmacological and toxicological aspects.Food Chem. Toxicol.20146518519510.1016/j.fct.2013.12.02424373826
    [Google Scholar]
  27. PiazzonA. VrhovsekU. MasueroD. MattiviF. MandojF. NardiniM. Antioxidant activity of phenolic acids and their metabolites: Synthesis and antioxidant properties of the sulfate derivatives of ferulic and caffeic acids and of the acyl glucuronide of ferulic acid.J. Agric. Food Chem.20126050123121232310.1021/jf304076z23157164
    [Google Scholar]
  28. CunhaF.V.M. CoelhoA.G. AzevedoP. da SilvaA.A.J. OliveiraF.A. NunesL.C.C. Systematic review and technological prospection: Ethyl ferulate, a phenylpropanoid with antioxidant and neuroprotective actions.Expert Opin Ther Pat2019292738310.1080/13543776.2019.1568410
    [Google Scholar]
  29. CunhaF.V.M. do Nascimento Caldas TrindadeG. da Silva AzevedoP.S. CoêlhoA.G. BrazE.M. Pereira de Sousa NetoB. de RezendeD.C. de SousaD.P. de Assis OliveiraF. NunesL.C.C. Ethyl ferulate/β-cyclodextrin inclusion complex inhibits edema formation.Mater. Sci. Eng. C202011511105710.1016/j.msec.2020.11105732600687
    [Google Scholar]
  30. KaikiniA.A. MukeS. PeshattiwarV. BagleS. DigheV. SathayeS. Ethyl ferulate, a lipophilic phenylpropanoid, prevents diabetes-associated renal injury in rats by amelioration of hyperglycemia-induced oxidative stress via activation of nuclear factor erythroid 2-related factor 2.J. Food Biochem.2021454e1360710.1111/jfbc.1360733587296
    [Google Scholar]
  31. ChenX. WuX. LiuG. WangQ. OuyangW. SongM. CaoY. XiaoH. Identification of ethyl ferulate from rubus corchorifolius L.F. leaves and its inhibitory effects on HepG2 liver cancer cells.Curr. Dev. Nutr.20215Suppl. 230510.1093/cdn/nzab037_015
    [Google Scholar]
  32. XieJ. YangZ. ZhouC. ZhuJ. LeeR.J. TengL. Nanotechnology for the delivery of phytochemicals in cancer therapy.Biotechnol. Adv.201634434335310.1016/j.biotechadv.2016.04.00227071534
    [Google Scholar]
  33. ChaturvediV.K. SinghA. SinghV.K. SinghM.P. Cancer nanotechnology: A new revolution for cancer diagnosis and therapy.Curr. Drug Metab.201920641642910.2174/138920021966618091811152830227814
    [Google Scholar]
  34. ShiJ. KantoffP.W. WoosterR. FarokhzadO.C. Cancer nanomedicine: Progress, challenges and opportunities.Nat. Rev. Cancer2017171203710.1038/nrc.2016.10827834398
    [Google Scholar]
  35. DingZ. SigdelK. YangL. LiuY. XuanM. WangX. GuZ. WuJ. XieH. Nanotechnology-based drug delivery systems for enhanced diagnosis and therapy of oral cancer.J. Mater. Chem. B Mater. Biol. Med.20208388781879310.1039/D0TB00957A33026383
    [Google Scholar]
  36. KouraniK. JainP. KumarA. JangidA.K. SwaminathanG. DurgempudiV.R. JoseJ. ReddyR. PoojaD. KulhariH. KumarL.D. Inulin coated Mn3O4 nanocuboids coupled with RNA interference reverse intestinal tumorigenesis in Apc knockout murine colon cancer models.Nanomedicine20224010250410.1016/j.nano.2021.10250434890821
    [Google Scholar]
  37. KumarA. SingamA. SwaminathanG. KilliN. TanguduN.K. JoseJ. Gundloori VNR. Dinesh KumarL. Combinatorial therapy using RNAi and curcumin nano-architectures regresses tumors in breast and colon cancer models.Nanoscale202214249250510.1039/D1NR04411G34913453
    [Google Scholar]
  38. SwaminathanG. ShignaA. KumarA. ByrojuV.V. DurgempudiV.R. Dinesh KumarL. RNA interference and nanotechnology: A promising alliance for next generation cancer therapeutics.Front. Nanotechnol.2021369483810.3389/fnano.2021.694838
    [Google Scholar]
  39. LeeKX, Shameli K, Yew YP. Recent Developments in the facile bio-synthesis of gold nanoparticles (AuNPs) and their biomedical applications.Int J Nanomedicine20201527530010.1016/j.addr.2018.07.00730009886
    [Google Scholar]
  40. LeeJ. ChatterjeeD.K. LeeM.H. KrishnanS. Gold nanoparticles in breast cancer treatment: Promise and potential pitfalls.Cancer Lett.20143471465310.1016/j.canlet.2014.02.00624556077
    [Google Scholar]
  41. ChenD, Ganesh S, Wang W, Amiji M. Protein corona-enabled systemic delivery and targeting of nanoparticles.AAPS J20202248310.1002/anie.20070046517591736
    [Google Scholar]
  42. ConnorE.E. MwamukaJ. GoleA. MurphyC.J. WyattM.D. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity.Small20051332532710.1002/smll.20040009317193451
    [Google Scholar]
  43. JainS. HirstD.G. O’SullivanJ.M. Gold nanoparticles as novel agents for cancer therapy.Br. J. Radiol.201285101010111310.1259/bjr/5944883322010024
    [Google Scholar]
  44. LimZ.Z.J. LiJ.E.J. NgC.T. YungL.Y.L. BayB.H. Gold nanoparticles in cancer therapy.Acta Pharmacol. Sin.201132898399010.1038/aps.2011.8221743485
    [Google Scholar]
  45. LongN.N. KiemC.D. DoanhS.C. Synthesis and optical properties of colloidal gold nanoparticles.J. Phys.: Conf. Series.2009
    [Google Scholar]
  46. ShaabaniE. AminiS.M. KharraziS. TajerianR. Curcumin coated gold nanoparticles: Synthesis, characterization, cytotoxicity, antioxidant activity and its comparison with citrate coated gold nanoparticles.Nanomed. J.201742115125
    [Google Scholar]
  47. SinghD.K. JagannathanR. KhandelwalP. AbrahamP.M. PoddarP. In situ synthesis and surface functionalization of gold nanoparticles with curcumin and their antioxidant properties: An experimental and density functional theory investigation.Nanoscale2013551882189310.1039/c2nr33776b23348618
    [Google Scholar]
  48. Khaleel BashaS. GovindarajuK. ManikandanR. AhnJ.S. BaeE.Y. SingaraveluG. Phytochemical mediated gold nanoparticles and their PTP 1B inhibitory activity.Colloids Surf. B Biointerfaces201075240540910.1016/j.colsurfb.2009.09.00819815393
    [Google Scholar]
  49. DasR.K. GogoiN. BoraU. Green synthesis of gold nanoparticles using Nyctanthes arbortristis flower extract.Bioprocess Biosyst. Eng.201134561561910.1007/s00449‑010‑0510‑y21229266
    [Google Scholar]
  50. AlkilanyA.M. MurphyC.J. Toxicity and cellular uptake of gold nanoparticles: What we have learned so far?J. Nanopart. Res.20101272313233310.1007/s11051‑010‑9911‑821170131
    [Google Scholar]
  51. EustisS. El-SayedM.A. Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes.Chem. Soc. Rev.200635320921710.1039/B514191E16505915
    [Google Scholar]
  52. KellyK.L. CoronadoE. ZhaoL.L. SchatzG.C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment.ACS Publications2003668677
    [Google Scholar]
  53. BordoloiD. BanikK. VikkurthiR. ThakurK.K. PadmavathiG. SailoB.L. GirisaS. ChinnathambiA. AlahmadiT.A. AlharbiS.A. BuhrmannC. ShakibaeiM. KunnumakkaraA.B. Inflection of Akt/mTOR/STAT-3 cascade in TNF-α induced protein 8 mediated human lung carcinogenesis.Life Sci.202026211847510.1016/j.lfs.2020.11847532976884
    [Google Scholar]
  54. AswathyM. BanikK. ParamaD. SasikumarP. HarshaC. JosephA.G. SherinD.R. ThanathuM.K. KunnumakkaraA.B. VasuR.K. Exploring the cytotoxic effects of the extracts and bioactive triterpenoids from dillenia indica against oral squamous cell carcinoma: A scientific interpretation and validation of indigenous knowledge.ACS Pharmacol. Transl. Sci.20214283484710.1021/acsptsci.1c0001133860206
    [Google Scholar]
  55. JuibariM.M. YeganehL.P. AbbasalizadehS. AzarbaijaniR. MousaviS.H. TabatabaeiM. JouzaniG.S. SalekdehG.H. Investigation of a hot-spring extremophilic Ureibacillus thermosphaericus strain Thermo-BF for extracellular biosynthesis of functionalized Gold nanoparticles.Bionanoscience20155423324110.1007/s12668‑015‑0185‑6
    [Google Scholar]
  56. Meena KumariM. PhilipD. Facile one-pot synthesis of gold and silver nanocatalysts using edible coconut oil.Spectrochim. Acta A Mol. Biomol. Spectrosc.201311115416010.1016/j.saa.2013.03.07623624042
    [Google Scholar]
  57. KasthuriJ. VeerapandianS. RajendiranN. Biological synthesis of silver and gold nanoparticles using apiin as reducing agent.Colloids Surf. B Biointerfaces2009681556010.1016/j.colsurfb.2008.09.02118977643
    [Google Scholar]
  58. SreelakshmiC. GoelN. DattaK.K.R. AddlagattaA. UmmanniR. ReddyB.V.S. Green synthesis of curcumin capped gold nanoparticles and evaluation of their cytotoxicity.Nanosci. Nanotechnol. Lett.20135121258126510.1166/nnl.2013.1678
    [Google Scholar]
  59. ThakurK.K. BordoloiD. KunnumakkaraA.B. Alarming burden of triple-negative breast cancer in India.Clin. Breast Cancer2018183e393e39910.1016/j.clbc.2017.07.01328801156
    [Google Scholar]
  60. KunnumakkaraA.B. NairA.S. AhnK.S. PandeyM.K. YiZ. LiuM. AggarwalB.B. Gossypin, a pentahydroxy glucosyl flavone, inhibits the transforming growth factor beta-activated kinase-1-mediated NF-κB activation pathway, leading to potentiation of apoptosis, suppression of invasion, and abrogation of osteoclastogenesis.Blood2007109125112512110.1182/blood‑2007‑01‑06725617332240
    [Google Scholar]
  61. PadmavathiG. RoyN.K. BordoloiD. ArfusoF. MishraS. SethiG. BishayeeA. KunnumakkaraA.B. Butein in health and disease: A comprehensive review.Phytomedicine20172511812710.1016/j.phymed.2016.12.00228190465
    [Google Scholar]
  62. PadmavathiG. RathnakaramS.R. MonishaJ. BordoloiD. RoyN.K. KunnumakkaraA.B. Potential of butein, a tetrahydroxychalcone to obliterate cancer.Phytomedicine201522131163117110.1016/j.phymed.2015.08.01526598915
    [Google Scholar]
  63. KunnumakkaraA.B. BanikK. BordoloiD. HarshaC. SailoB.L. PadmavathiG. RoyN.K. GuptaS.C. AggarwalB.B. Googling the Guggul (Commiphora and Boswellia) for prevention of chronic diseases.Front. Pharmacol.2018968610.3389/fphar.2018.0068630127736
    [Google Scholar]
  64. SinghY.P. GirisaS. BanikK. GhoshS. SwathiP. DekaM. PadmavathiG. KotokyJ. SethiG. FanL. MaoX. HalimC.E. ArfusoF. KunnumakkaraA.B. Potential application of zerumbone in the prevention and therapy of chronic human diseases.J. Funct. Foods20195324825810.1016/j.jff.2018.12.020
    [Google Scholar]
  65. BabuB. JayramH. NairM. AjaikumarK. PadikkalaJ. Free radical scavenging, antitumor and anticarcinogenic activity of gossypin.J. Experim. Clin. Cancer Res.2003224581589
    [Google Scholar]
  66. MonishaJ. PadmavathiG. RoyN.K. DekaA. BordoloiD. AnipA. KunnumakkaraA.B. NF-κB blockers gifted by mother nature: Prospectives in cancer cell chemosensitization.Curr. Pharm. Des.201622274173420010.2174/138161282266616060911023127291284
    [Google Scholar]
  67. BanikK. RanawareA.M. HarshaC. NiteshT. GirisaS. DeshpandeV. FanL. NalawadeS.P. SethiG. KunnumakkaraA.B. Piceatannol: A natural stilbene for the prevention and treatment of cancer.Pharmacol. Res.202015310463510.1016/j.phrs.2020.10463531926274
    [Google Scholar]
  68. HenamayeeS. BanikK. SailoB.L. ShabnamB. HarshaC. SrilakshmiS. VgmN. BaekS.H. AhnK.S. KunnumakkaraA.B. Therapeutic emergence of rhein as a potential anticancer drug: A review of its molecular targets and anticancer properties.Molecules20202510227810.3390/molecules2510227832408623
    [Google Scholar]
  69. KhatoonE. BanikK. HarshaC. SailoB.L. ThakurK.K. KhwairakpamA.D. Phytochemicals in cancer cell chemosensitization: Current knowledge and future perspectives.Seminars in Cancer Biology.Elsevier2020
    [Google Scholar]
  70. ParamaD. BoruahM. YachnaK. RanaV. BanikK. HarshaC. ThakurK.K. DuttaU. AryaA. MaoX. AhnK.S. KunnumakkaraA.B. Diosgenin, a steroidal saponin, and its analogs: Effective therapies against different chronic diseases.Life Sci.202026011818210.1016/j.lfs.2020.11818232781063
    [Google Scholar]
  71. MuralimanoharanS.B. KunnumakkaraA.B. ShyleshB. KulkarniK.H. HaiyanX. MingH. AggarwalB.B. RitaG. KumarA.P. Butanol fraction containing berberine or related compound from nexrutine® inhibits NFκB signaling and induces apoptosis in prostate cancer cells.Prostate200969549450410.1002/pros.2089919107816
    [Google Scholar]
  72. BordoloiD. RoyN.K. MonishaJ. PadmavathiG. KunnumakkaraA.B. Multi-targeted agents in cancer cell chemosensitization: What we learnt from curcumin thus far.Recent Pat. Anticancer Drug Discov.2016111679710.2174/157489281066615102010170626537958
    [Google Scholar]
  73. BordoloiD. MonishaJ. RoyN.K. PadmavathiG. BanikK. HarshaC. WangH. KumarA.P. ArfusoF. KunnumakkaraA. An investigation on the therapeutic potential of butein, a tretrahydroxychalcone against human oral squamous cell carcinoma.Asian Pac. J. Cancer Prev.201920113437344610.31557/APJCP.2019.20.11.343731759370
    [Google Scholar]
  74. BishayeeK. PaulA. GhoshS. SikdarS. MukherjeeA. BiswasR. BoujedainiN. Khuda-BukhshA.R. Condurango-glycoside-A fraction of Gonolobus condurango induces DNA damage associated senescence and apoptosis via ROS-dependent p53 signalling pathway in HeLa cells.Mol. Cell. Biochem.20133821-217318310.1007/s11010‑013‑1732‑523807740
    [Google Scholar]
  75. PatraS. PradhanB. NayakR. BeheraC. PandaK.C. DasS. JenaM. BhutiaS.K. Apoptosis and autophagy modulating dietary phytochemicals in cancer therapeutics: Current evidences and future perspectives.Phytother. Res.20213584194421410.1002/ptr.708233749909
    [Google Scholar]
  76. SahaS.K. SikdarS. MukherjeeA. BhadraK. BoujedainiN. Khuda-BukhshA.R. Ethanolic extract of the Goldenseal, Hydrastis canadensis, has demonstrable chemopreventive effects on HeLa cells in vitro: Drug-DNA interaction with calf thymus DNA as target.Environ. Toxicol. Pharmacol.201336120221410.1016/j.etap.2013.03.02323628949
    [Google Scholar]
  77. SikdarS. MukherjeeA. GhoshS. Khuda-BukhshA.R. Condurango glycoside-rich components stimulate DNA damage-induced cell cycle arrest and ROS-mediated caspase-3 dependent apoptosis through inhibition of cell-proliferation in lung cancer, in vitro and in vivo.Environ. Toxicol. Pharmacol.201437130031410.1016/j.etap.2013.12.00424384279
    [Google Scholar]
  78. BordoloiD. KunnumakkaraA.B. The potential of curcumin: A multitargeting agent in cancer cell chemosensitization.Role of nutraceuticals in cancer chemosensitization.Elsevier20183160
    [Google Scholar]
  79. KorkinaL. KostyukV. De LucaC. PastoreS. Plant phenylpropanoids as emerging anti-inflammatory agents.Mini Rev. Med. Chem.2011111082383510.2174/13895571179657548921762105
    [Google Scholar]
  80. KfouryM. LandyD. AuezovaL. Greige-GergesH. FourmentinS. Effect of cyclodextrin complexation on phenylpropanoids’ solubility and antioxidant activity.Beilstein J. Org. Chem.2014102322233110.3762/bjoc.10.24125298799
    [Google Scholar]
  81. AshajyothiC, Chandrakanth RK. Biological synthesis and characterization of gold nanoparticles from Enterococcus faecalis.J. Bionanoscience201484255910.1038/nmat115215208703
    [Google Scholar]
  82. PrathnaT.C. ChandrasekaranN. RaichurA.M. MukherjeeA. Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle size.Colloids Surf. B Biointerfaces201182115215910.1016/j.colsurfb.2010.08.03620833002
    [Google Scholar]
  83. SujithaM.V. KannanS. Green synthesis of gold nanoparticles using Citrus fruits (Citrus limon, Citrus reticulata and Citrus sinensis) aqueous extract and its characterization.Spectrochim. Acta A Mol. Biomol. Spectrosc.2013102152310.1016/j.saa.2012.09.04223211617
    [Google Scholar]
  84. ChoT.J. HackleyV.A. Assessing the chemical and colloidal stability of functionalized gold nanoparticles.NIST Special Publication.201812002610.6028/NIST.SP.1200‑26
    [Google Scholar]
  85. KrishnamurthyS. EsterleA. SharmaN.C. SahiS.V. Yucca-derived synthesis of gold nanomaterial and their catalytic potential.Nanoscale Res. Lett.20149162710.1186/1556‑276X‑9‑62725489281
    [Google Scholar]
  86. MittalR.D. JaiswalP.K. GoelA. Survivin: A molecular biomarker in cancer.Indian J. Med. Res.2015141438939710.4103/0971‑5916.15925026112839
    [Google Scholar]
  87. ChenX. WuX. LiuG. WangQ. ItenbergS.A. OuyangW. SongM. DixonW.R. CaoY. XiaoH. Structure analysis of ethyl ferulate from Rubus corchorifolius L.f. leaves and its inhibitory effects on HepG2 liver cancer cells.Food Biosci.20224510134010.1016/j.fbio.2021.101340
    [Google Scholar]
  88. El-SendunyF.F. AltouhamyM. ZayedG. HarshaC. JalajaR. SomappaS.B. NairM.S. KunnumakkaraA.B. AlsharifF.M. BadriaF.A. Azadiradione-loaded liposomes with improved bioavailability and anticancer efficacy against triple negative breast cancer.J. Drug Deliv. Sci. Technol.20216510266510.1016/j.jddst.2021.102665
    [Google Scholar]
/content/journals/cnanom/10.2174/0124681873280022240130062923
Loading
/content/journals/cnanom/10.2174/0124681873280022240130062923
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): ethyl ferulate; Gold nanoparticles; phytochemicals; triple-negative breast cancer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test