Skip to content
2000
Volume 15, Issue 1
  • ISSN: 2468-1873
  • E-ISSN: 2468-1881

Abstract

Aim

Currently, developing composite and nanocomposite materials based on natural polymers is attracting the growing attention of scientists. In particular, chitosan succinamide, a modified biopolymer, has good biocompatibility, biodegradability, and electrical conductivity, allowing it to be used as a functional material for creating various electronic devices, including sensors for use in medicine and pharmaceuticals. Composite sensors based on chitosan derivatives have found application for the recognition and determination of enantiomers of tryptophan, tyrosine, naproxen, and propranolol in human urine and blood plasma in tablet forms of drugs without a preliminary active substance.

Methods

This article discusses the studies on composite and nanocomposite thin-film structures based on chitosan succinamide obtained using various fillers, such as graphene oxide, single-walled carbon nanotubes, and carbon adsorbents.

Result

The studies used cyclic voltammetry, electrochemical impedance spectroscopy, and atomic force microscopy. The results created field-effect transistors based on the films in question as the transport layer.

Conclusion

The mobility of charge carriers was estimated, and the following values were obtained: μ(SCTS) = 0.173cm2/V·s; μ(SCTS-GO) = 0.509 cm2/V·s; μ(SCTS-CP) = 0.269 cm2/V·s; μ(SCTS-CB) = 0.351cm2/V·s; μ(SCTS-SWCNT) = 0.713 cm2/V·s.

Loading

Article metrics loading...

/content/journals/cnanom/10.2174/0124681873279865231126034248
2023-12-04
2024-12-25
Loading full text...

Full text loading...

References

  1. LiP. ZhangY. ZhengZ. Polymer assisted metal deposition (PAMD) for flexible and wearable electronics: principle, materials, printing, and devices.Adv. Mater.20193137190298710.1002/adma.20190298731304644
    [Google Scholar]
  2. AndriianovaA.N. SalikhovR.B. LatypovaL.R. MullagalievI.N. SalikhovT.R. MustafinA.G. The structural factors affecting the sensory properties of polyaniline derivatives.Sustain. Energy Fuels20226143435344510.1039/D2SE00405D
    [Google Scholar]
  3. TuktarovA.R. SalikhovR.B. KhuzinA.A. Optically controlled field effect transistors based on photochromic spiropyran and fullerene C60 films.Mendeleev Commun.201929216016210.1016/j.mencom.2019.03.014
    [Google Scholar]
  4. BunakovA. LachinovA. SalikhovR. Current‐voltage characteristics of thin poly(biphenyl‐4‐ylphthalide) films.Macromol. Symp.2004212138739210.1002/masy.200450847
    [Google Scholar]
  5. CollinsP.G. AvourisP. Nanotubes for electronics.Sci. Am.20002836626910.1038/scientificamerican1200‑6211103460
    [Google Scholar]
  6. ZhangX. LuW. ZhouG. LiQ. Understanding the mechanical and conductive properties of carbon nanotube fibers for smart electronics.Adv. Mater.2020325190202810.1002/adma.20190202831250496
    [Google Scholar]
  7. KavithaM. KalpanaA.M. Carbon Nanotubes: Properties and applications-a brief review, i-manager’s.J Electron Eng201773110.26634/jele.7.3.13558
    [Google Scholar]
  8. Abdel-KarimR. RedaY. Abdel-FattahA. Review-nanostructured materials-based nanosensors.J. Electrochem. Soc.2020167303755410.1149/1945‑7111/ab67aa
    [Google Scholar]
  9. NorizanM.N. MoklisM.H. Ngah DemonS.Z. Carbon nanotubes: Functionalisation and their application in chemical sensors.RSC Advances20201071437044373210.1039/D0RA09438B35519676
    [Google Scholar]
  10. ZilbergRA. MaistrenkoVN. ZagitovaLR. GuskovVY. DubrovskyDI. Chiral voltammetric sensor for warfarin enantiomers based on carbon black paste electrode modified by 3,4,9,10-perylenetetracarboxylic acid.J. Electroanal. Chem.202086111398610.1016/j.jelechem.2020.113986
    [Google Scholar]
  11. YarkaevaY.A. DubrovskiiD.I. Zil’bergR.A. MaistrenkoV.N. KornilovV.M. A voltammetric sensor based on a 3,4,9,10-Perylenetetracarboxylic Acid Composite for the Recognition and Determination of Tyrosine Enantiomers.J. Anal. Chem.202075121537154510.1134/S1061934820110143
    [Google Scholar]
  12. YarkaevaY. NazyrovM. AbdullinY. KovyazinP. MaistrenkoV. Enantioselective voltammetric sensor based on mesoporous graphitized carbon black Carbopack X and fulvene derivative.Chirality202335962563510.1002/chir.2356336951070
    [Google Scholar]
  13. SilvaT.A. MoraesF.C. JanegitzB.C. Fatibello-FilhoO. Electrochemical biosensors based on nanostructured carbon black: A review.J. Nanomater.20172017211410.1155/2017/4571614
    [Google Scholar]
  14. Korri-YoussoufiH. ZribiB. MiodekA. Haghiri-GosnetA.M. Carbon-based nanomaterials for electrochemical DNA sensing.Nanotechnology and Biosensors, Elsevier201811311315010.1016/B978‑0‑12‑813855‑7.00004‑0
    [Google Scholar]
  15. KennelE.B. Electrical properties of nanoparticle-filled polymers Polymer nanocomposites handbook.CRC Press200916
    [Google Scholar]
  16. WernikJ.M. MeguidS.A. Recent developments in multifunctional nanocomposites using carbon nanotubes.Appl. Mech. Rev.201063505080110.1115/1.4003503
    [Google Scholar]
  17. WineyK.I. KashiwagiT. MuM. Improving electrical conductivity and thermal properties of polymers by the addition of carbon nanotubes as fillers.MRS Bull.200732434835310.1557/mrs2007.234
    [Google Scholar]
  18. LiC. ThostensonE.T. ChouT.W. Dominant role of tunneling resistance in the electrical conductivity of carbon nanotube-based composites.Appl. Phys. Lett.2007912222311410.1063/1.2819690
    [Google Scholar]
  19. DengF. ZhengQ.S. An analytical model of effective electrical conductivity of carbon nanotube composites.Appl. Phys. Lett.200892707190210.1063/1.2857468
    [Google Scholar]
  20. MoraA. HanF. LubineauG. Estimating and understanding the efficiency of nanoparticles in enhancing the conductivity of carbon nanotube/polymer composites.Results Phys.201810819010.1016/j.rinp.2018.05.019
    [Google Scholar]
  21. SinghD.P. HerreraC.E. SinghB. SinghS. SinghR.K. KumarR. Graphene oxide: An efficient material and recent approach for biotechnological and biomedical applications.Mater. Sci. Eng. C20188617319710.1016/j.msec.2018.01.00429525091
    [Google Scholar]
  22. IchkitidzeL.P. GerasimenkoA.Yu. PodgaetskyV.M. SelishchevS.V. DudinA.A. PavlovA.A. Electrical conductivity of the nanocomposite layers for use in biomedical systems.Mater Phys Mech201810.18720/MPM.3722018_5
    [Google Scholar]
  23. SilvaS.R. BeliatisM.J. JayawardenaK.D. MillsC.A. RhodesR. RozanskiL.J. Handbook of flexible organic electronics: Materials, manufacturing and applications.2014
    [Google Scholar]
  24. BelloS.A. DurowayeS. KolawoleM.Y. Electronics, optical, and thermal management applications of nanocomposites in aeronautics.Polymeric Nanocomposites with Carbonaceous Nanofillers for Aerospace Applications202318718720910.1016/B978‑0‑323‑99657‑0.00015‑6
    [Google Scholar]
  25. DomardA DomardM. Chitosan: structure-properties relationship and biomedical applications.Polymeric biomaterials20012187212
    [Google Scholar]
  26. Abd ElsalamE.A. ShabaiekH.F. AbdelazizM.M. KhalilI.A. El-SherbinyI.M. Fortified hyperbranched PEGylated chitosan-based nano-in-micro composites for treatment of multiple bacterial infections.Int. J. Biol. Macromol.20201481201121010.1016/j.ijbiomac.2019.10.16431751691
    [Google Scholar]
  27. KolesovS.V. GurinaM.S. MudarisovaR.K. Specific features of the formation of aqueous nanodispersions of interpolyelectrolyte complexes based of chitosan and chitosan succinimide.Russ. J. Gen. Chem.20188881694169810.1134/S1070363218080224
    [Google Scholar]
  28. KolesovS.V. GurinaM.S. MudarisovaR.K. On the stability of aqueous nanodispersions of polyelectrolyte complexes based on chitosan and N-succinyl-chitosan.Polym. Sci. Ser. A201961325325910.1134/S0965545X19030076
    [Google Scholar]
  29. JonesW.E.Jr ChigumaJ. JohnsonE. PachamuthuA. SantosD. Electrically and thermally conducting nanocomposites for electronic applications.Materials2010321478149610.3390/ma3021478
    [Google Scholar]
  30. KausarA. Potential of polymer/graphene nanocomposite in electronics.J. Nanosci. Nanotechnol.2018655
    [Google Scholar]
  31. HarutyunyanL.R. HarutyunyanR.S. GabrielyanG.A. LasarevaE.V. Modification of chitosan and chitosan succinate by surfactants and investigation of their properties.Colloids Surf. A Physicochem. Eng. Asp.201957812362210.1016/j.colsurfa.2019.123622
    [Google Scholar]
  32. ShurshinaA. BazunovaM. ChernovaV. GalinaA. TitlovaA. KulishE. The impact of polymers’ supramolecular structure on water vapour sorption and drug release from films on the basis of some polysaccharide.J. Drug Deliv. Sci. Technol.20216310256010.1016/j.jddst.2021.102560
    [Google Scholar]
  33. LazdinR.Y. ChernovaV.V. BazunovaM.V. ZakharovV.P. KulishE.I. Possibility of producing semisolid dosage forms based on aqueous solutions of chitosan succinamide in the presence of modification additives.Russ. J. Appl. Chem.2020931657110.1134/S1070427220010073
    [Google Scholar]
  34. ShurshinaA.S. BazunovaM.V. ChernovaV.V. GalinaA.R. LazdinR.Y. KulishE.I. Influence of supramolecular organization on some characteristics of chitosan succinamide films produced from aqueous solutions.Polym. Sci. Ser. A202062442242910.1134/S0965545X20040100
    [Google Scholar]
  35. BurtsK. PliskoT. DmitrenkoM. Novel thin film nanocomposite membranes based on chitosan succinate modified with fe-btc for enhanced pervaporation dehydration of isopropanol.Membranes202212765310.3390/membranes1207065335877856
    [Google Scholar]
  36. ZilbergR.A. BerestovaT.V. GizatovR.R. TeresY.B. GalimovM.N. BulyshevaE.O. Chiral selectors in voltammetric sensors based on mixed phenylalanine/alanine Cu (II) and Zn (II) complexes.Inorganics202210811710.3390/inorganics10080117
    [Google Scholar]
  37. Zil’bergR.A. ZagitovaL.R. VakulinI.V. YarkaevaY.A. TeresY.B. BerestovaT.V. Enantioselective voltammetric sensors based on amino acid complexes of Cu (II), Co (III), and Zn (II).J. Anal. Chem.202176121438144810.1134/S1061934821120145
    [Google Scholar]
  38. YarkaevaY.A. DubrovskiiD.I. Zil’bergR.A. MaistrenkoV.N. Voltammetric sensors and sensor system based on gold electrodes modified with polyarylenephthalides for cysteine recognition.Russ. J. Electrochem.202056754455510.1134/S102319352007006X
    [Google Scholar]
  39. Zil’bergR.A. MaistrenkoV.N. YarkaevaY.A. DubrovskiiD.I. An enantioselective voltammetric sensor system based on glassy carbon electrodes modified by polyarylenephthalide composites with α-, β-, and γ-cyclodextrins for recognizing D-and L-tryptophans.J. Anal. Chem.201974121245125510.1134/S1061934819110133
    [Google Scholar]
  40. BardA.J. FaulknerL.R. WhiteH.S. Electrochemical Methods.Fundamentals and Application2022
    [Google Scholar]
  41. Zil’bergR.A. YarkaevaY.A. Sidel’nikovA.V. MaistrenkoV.N. KraikinV.A. GilevaN.G. Voltammetric determination of bisoprolol on a glassy carbon electrode modified by poly(arylene phthalide).J. Anal. Chem.201671992693110.1134/S1061934816090173
    [Google Scholar]
  42. SalikhovR.B. ZilbergR.A. MullagalievI.N. SalikhovT.R. TeresY.B. Nanocomposite thin film structures based on polyarylenephthalide with SWCNT and graphene oxide fillers.Mendeleev Commun.202232452052210.1016/j.mencom.2022.07.029
    [Google Scholar]
/content/journals/cnanom/10.2174/0124681873279865231126034248
Loading
/content/journals/cnanom/10.2174/0124681873279865231126034248
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test