Skip to content
2000
Volume 17, Issue 5
  • ISSN: 2666-1454
  • E-ISSN: 2666-1462

Abstract

Aims

In this paper, we aimed to prepare SiC-CDC with porous structure from SiC precursor by using simple molten salt electrochemical etching method at 900 ºC in argon at an applied constant voltage of 3.0 V.

Background

Nanoporous materials include carbon materials, silica or alumina, gel, and zeolite, which have been known since ancient times. Among all these materials, carbon materials are particularly outstanding. In recent years, carbide-derived carbon (CDC), a type of unconventional carbon material produced by selectively extracting metal elements from the lattice of carbides, has attracted increasing attention from researchers. Many different methods have now been proposed to prepare CDC, among these methods, currently the preparation of mesoporous carbide-derived carbon (CDCs) materials mainly relies on chlorination. The main problems with chlorination are the corrosion of chlorine gas and the treatment of secondary products (MCl). Therefore, the search for environmentally friendly strategies for the production of CDC is still ongoing.

Objective

This article proves that we can successfully prepare SiC-CDC with porous structure from SiC precursor by using simple molten salt electrochemical etching method at 900ºC in argon at an applied constant voltage of 3.0 V.

Methods

The SiC-CDC with porous structure has been prepared from SiC precursor by using simple molten salt electrochemical etching method at 900ºC in argon at an applied constant voltage of 3.0 V.

Results

The results show that the nanoporous SiC-CDC was successfully synthesized from the silicon carbide microspheres powder by electrolysis in molten CaCl at 3.0 V, 900°C for 15 h.

Conclusions

The nanoporous SiC-CDC was successfully synthesized from the silicon carbide microspheres powder by electrolysis in molten CaCl at 3.0 V, 900°C for 15 h and their microstructure, specifc surface area, and pore size were analyzed. The SiC-CDC obtained in this experiment mainly consisted of amorphous carbon and maintained the shape of SiC particles. The SiC-CDC is a mixture of amorphous carbon and ordered graphite phase with a highly degree of graphitization. The SiC-CDC displays a BET specific surface area of 561.39 m2/g and a total pore volume of 0.39 cm3/g. This method to produce SiC-CDC is very attractive because it will not only pave a new way for the preparation of SiC-CDC but also for mass production of high-quality carbon material.

Loading

Article metrics loading...

/content/journals/cms/10.2174/2666145417666230905150410
2023-09-19
2025-01-31
Loading full text...

Full text loading...

References

  1. PolarzS. SmarslyB. Nanoporous materials.J. Nanosci. Nanotechnol.20022658161210.1166/jnn.2002.151 12908422
    [Google Scholar]
  2. ZhangS. PanN. Supercapacitors performance evaluation.Adv. Energy Mater.201556140140110.1002/aenm.201401401
    [Google Scholar]
  3. ZhangL. ChenH. LuX. Fabrication of N, S co-doped graphene aerogel for high-performance supercapacitors: π-conjugated planar molecules as efficient dopants and pillared agents.Appl. Surf. Sci.202052914702210.1016/j.apsusc.2020.147022
    [Google Scholar]
  4. YoungC. LinJ. WangJ. Significant effect of pore sizes on energy storage in nanoporous carbon supercapacitors.Chemistry201824236127613210.1002/chem.201705465 29624740
    [Google Scholar]
  5. PresserV. HeonM. GogotsiY. Carbide-derived carbons-from porous networks to nanotubes and graphene.Adv. Funct. Mater.201121581083310.1002/adfm.201002094
    [Google Scholar]
  6. ZhangH. HuC. LvJ. Microstructure and adsorption property of nanocarbide-derived carbon (CDC) synthesized at ambient temperature.Mater. Lett.201413018819110.1016/j.matlet.2014.05.106
    [Google Scholar]
  7. GogotsiY. NikitinA. YeH. Nanoporous carbide-derived carbon with tunable pore size.Nat. Mater.20032959159410.1038/nmat957 12907942
    [Google Scholar]
  8. DashR. ChmiolaJ. YushinG. Titanium carbide derived nanoporous carbon for energy-related applications.Carbon200644122489249710.1016/j.carbon.2006.04.035
    [Google Scholar]
  9. YangZ. XiaY. MokayaR. Enhanced hydrogen storage capacity of high surface area zeolite-like carbon materials.J. Am. Chem. Soc.200712961673167910.1021/ja067149g 17243684
    [Google Scholar]
  10. XiaK. GaoQ. WuC. SongS. RuanM. Activation, characterization and hydrogen storage properties of the mesoporous carbon CMK-3.Carbon200745101989199610.1016/j.carbon.2007.06.002
    [Google Scholar]
  11. ErsoyD.A. McNallanM.J. GogotsiY. Platinum reactions with carbon coatings produced by high temperature chlorination of silicon carbide.J. Electrochem. Soc.200114812C774C77910.1149/1.1415033
    [Google Scholar]
  12. YushinG. HoffmanE.N. BarsoumM.W. Mesoporous carbide-derived carbon with porosity tuned for efficient adsorption of cytokines.Biomaterials200627345755576210.1016/j.biomaterials.2006.07.019 16914195
    [Google Scholar]
  13. SimonP. GogotsiY. Materials for electrochemical capacitors.Nat. Mater.200871184585410.1038/nmat2297 18956000
    [Google Scholar]
  14. InagakiM. KonnoH. TanaikeO. Carbon materials for electrochemical capacitors.J. Power Sources2010195247880790310.1016/j.jpowsour.2010.06.036
    [Google Scholar]
  15. KotinaI.M. LebedevV.M. IlvesA.G. Study of the lithium diffusion in nanoporous carbon materials produced from carbides.J. Non-Cryst. Solids2002299-30281581910.1016/S0022‑3093(01)01124‑3
    [Google Scholar]
  16. CambazZ.G. YushinG.N. GogotsiY. VyshnyakovaK.L. PereselentsevaL.N. Formation of carbide-derived carbon on β-silicon carbide whiskers.J. Am. Ceram. Soc.200689250951410.1111/j.1551‑2916.2005.00780.x
    [Google Scholar]
  17. MazeratS. LacroixJ. PaillerR. Carbide derived carbon obtained from SiC-based fibers by phosphating-NaOH bath process.Microporous Mesoporous Mater.201928611012410.1016/j.micromeso.2019.05.029
    [Google Scholar]
  18. TalloI. ThombergT. KontturiK. JänesA. LustE. Nanostructured carbide-derived carbon synthesized by chlorination of tungsten carbide.Carbon201149134427443310.1016/j.carbon.2011.06.033
    [Google Scholar]
  19. ChunY.S. LimD.S. Carbide derived carbon: From growth to tribological application.J. Ceram. Soc. Jpn.2014122142857758510.2109/jcersj2.122.577
    [Google Scholar]
  20. JänesA. ThombergT. KurigH. LustE. Nanoscale fine-tuning of porosity of carbide-derived carbon prepared from molybdenum carbide.Carbon2009471232910.1016/j.carbon.2008.07.010
    [Google Scholar]
  21. TsaiW.Y. GaoP.C. DaffosB. Ordered mesoporous silicon carbide-derived carbon for high-power supercapacitors.Electrochem. Commun.20133410911210.1016/j.elecom.2013.05.031
    [Google Scholar]
  22. ZeigerM. AriyantoT. KrünerB. Vanadium pentoxide/carbide-derived carbon core–shell hybrid particles for high performance electrochemical energy storage.J. Mater. Chem. A Mater. Energy Sustain.2016448188991890910.1039/C6TA08900C
    [Google Scholar]
  23. PangZ. ZouX. TangW. Electrosynthesis of Ti3AlC2-derived porous carbon in molten salt.J. Miner. Met. Mater. Soc.202072113887389410.1007/s11837‑020‑04335‑w
    [Google Scholar]
  24. WengW. JiangB. WangZ. XiaoW. In situ electrochemical conversion of CO 2 in molten salts to advanced energy materials with reduced carbon emissions.Sci. Adv.202069eaay927810.1126/sciadv.aay9278 32158949
    [Google Scholar]
  25. ZhengK. ZouX. XieX. LuC. LiS. LuX. Electrosynthesis of two-dimensional TiC and C materials from Ti3SiC2 in molten salt.J. Electrochem. Soc.20181655D190D19510.1149/2.0651805jes
    [Google Scholar]
  26. ChenG.Z. FrayD.J. FarthingT.W. Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride.Nature2000407680236136410.1038/35030069 11014188
    [Google Scholar]
  27. LiJ. WangM. TuJ. JiaoS. Facile electrochemical preparation of Al-Sm alloys in molten calcium chloride.J. Electrochem. Soc.201816511E616E62110.1149/2.0161813jes
    [Google Scholar]
  28. WengW. TangL. XiaoW. Capture and electro-splitting of CO2 in molten salts.Journal of Energy Chemistry20192812814310.1016/j.jechem.2018.06.012
    [Google Scholar]
  29. RezaeiA. KamaliA.R. Green production of carbon nanomaterials in molten salts, mechanisms and applications.Diamond Related Materials20188314616110.1016/j.diamond.2018.02.003
    [Google Scholar]
  30. MaoY. XieH. ChenX. A combined leaching and electrochemical activation approach to converting coal to capacitive carbon in molten carbonates.J. Clean. Prod.202024811921810.1016/j.jclepro.2019.119218
    [Google Scholar]
  31. ZhengK. ZouX. XieX. LuC. LiS. LuX. Electrosynthesis of SiC derived porous carbon nanospheres for supercapacitors.Mater. Lett.201821626526810.1016/j.matlet.2018.01.120
    [Google Scholar]
  32. SchwandtC. DimitrovA.T. FrayD.J. The preparation of nano-structured carbon materials by electrolysis of molten lithium chloride at graphite electrodes.J. Electroanal. Chem. (Lausanne)2010647215015810.1016/j.jelechem.2010.06.008
    [Google Scholar]
  33. HultebergC. Sulphur-tolerant catalysts in small-scale hydrogen production, a review.Int. J. Hydrogen Energy20123753978399210.1016/j.ijhydene.2011.12.001
    [Google Scholar]
  34. YangJ. WengW. XiaoW. Electrochemical synthesis of ammonia in molten salts.Journal of Energy Chemistry20204319520710.1016/j.jechem.2019.09.006
    [Google Scholar]
  35. ZhangL. QinX. ShaoG. MaZ. LiuS. HeC. A new route for preparation of titanium carbide derived carbon and its performance for supercapacitors.Mater. Lett.2014122788110.1016/j.matlet.2014.02.007
    [Google Scholar]
  36. DouglasA. MuralidharanN. CarterR. PintC.L. Sustainable capture and conversion of carbon dioxide into valuable multiwalled carbon nanotubes using metal scrap materials.ACS Sustain. Chem.& Eng.2017587104711010.1021/acssuschemeng.7b01314
    [Google Scholar]
  37. NovoselovaI.A. KuleshovS.V. VolkovS.V. BykovV.N. Electrochemical synthesis, morphological and structural characteristics of carbon nanomaterials produced in molten salts.Electrochim. Acta201621134335510.1016/j.electacta.2016.05.160
    [Google Scholar]
  38. LukatskayaM.R. HalimJ. DyatkinB. Room-temperature carbide-derived carbon synthesis by electrochemical etching of MAX phases.Angew. Chem. Int. Ed.201453194877488010.1002/anie.201402513 24692047
    [Google Scholar]
  39. ZhaoM.Q. SedranM. LingZ. Synthesis of carbon/sulfur nanolaminates by electrochemical extraction of titanium from Ti2SC.Angew. Chem. Int. Ed.201554164810481410.1002/anie.201500110 25714491
    [Google Scholar]
  40. BaiS. TanG. LiX. Pumpkin-derived porous carbon for supercapacitors with high performance.Chem. Asian J.201611121828183610.1002/asia.201600303 27124360
    [Google Scholar]
  41. XuJ. ZhangR. WuC. ZhaoY. YeX. GeS. Electrochemical performance of graphitized carbide-derived-carbon with hierarchical micro- and meso-pores in alkaline electrolyte.Carbon20147422623610.1016/j.carbon.2014.03.026
    [Google Scholar]
  42. SunT. LevinB.D.A. GuzmanJ.J.L. Rapid electron transfer by the carbon matrix in natural pyrogenic carbon.Nat. Commun.2017811487310.1038/ncomms14873 28361882
    [Google Scholar]
  43. AbdelkaderA.M. Electrochemical synthesis of highly corrugated graphene sheets for high performance supercapacitors.J. Mater. Chem. A Mater. Energy Sustain.20153168519852510.1039/C5TA00545K
    [Google Scholar]
  44. HsuY.H. LaiC.C. HoC.L. LoC-T. Preparation of interconnected carbon nanofibers as electrodes for supercapacitors.Electrochim. Acta201412736937610.1016/j.electacta.2014.02.060
    [Google Scholar]
/content/journals/cms/10.2174/2666145417666230905150410
Loading
/content/journals/cms/10.2174/2666145417666230905150410
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test