Skip to content
2000
Volume 17, Issue 5
  • ISSN: 2666-1454
  • E-ISSN: 2666-1462

Abstract

In the current study, nanocrystalline LaMnO perovskite was prepared by combustion method and annealed at different annealing temperatures. The X-ray diffraction (XRD) patterns provided evidence that the structure formed has a Rhombohedral structure with R3 ̅c space group. The remarkable growth in the crystallite size, reduction in microstrain, and dislocation density were observed with annealing temperature. Ultraviolet-visible spectroscopy was used to determine the optical band gap by the Tauc-plot method. The optical band gap was found to be 3.5 ± 0.4eV and 2.9 ± 0.5eV for 600°C and 1200°C annealed samples, respectively. The observed results were influenced by crystallite size. Raman spectra of the LaMnO nanocrystallites revealed five Raman-active modes, like out-of-phase rotation modes and bending mode of MnO octahedra. Moreover, the intensity of vibrational modes also varied significantly with annealing temperature.

Loading

Article metrics loading...

/content/journals/cms/10.2174/0126661454260630231221062043
2024-12-01
2024-11-22
Loading full text...

Full text loading...

References

  1. Kugel’K.I. KhomskiĭD.I. The Jahn-Teller effect and magnetism: Transition metal compounds.Sov. Phys. Usp.198225423125610.1070/PU1982v025n04ABEH004537
    [Google Scholar]
  2. GehringG.A. GehringK.A. Co-operative Jahn-Teller effects.Rep. Prog. Phys.197538118910.1088/0034‑4885/38/1/001
    [Google Scholar]
  3. TangF.L. HuangM. LuW.J. YuW.Y. Structural relaxation and Jahn-Teller distortion of LaMnO3 (001) surface.Surf. Sci.2009603694995410.1016/j.susc.2009.02.017
    [Google Scholar]
  4. MarkovichV. JungG. FitaI. Magnetotransport in granular LaMnO3+δ manganite with nano-sized particles.J. Phys. D Appl. Phys.2008411818500110.1088/0022‑3727/41/18/185001
    [Google Scholar]
  5. HuJ. MenJ. MaJ. HuangH. Preparation of LaMnO3/graphene thin films and their photocatalytic activity.J. Rare Earths201432121126113410.1016/S1002‑0721(14)60193‑9
    [Google Scholar]
  6. HuJ. LiuY. MenJ. ZhangL. HuangH. Ag modified LaMnO3 nanorods-reduced graphene oxide composite applied in the photocatalytic discoloration of direct green.Solid State Sci.20166123924510.1016/j.solidstatesciences.2016.10.008
    [Google Scholar]
  7. GaoP. LiN. WangA. WangX. ZhangT. Perovskite LaMnO3 hollow nanospheres: The synthesis and the application in catalytic wet air oxidation of phenol.Mater. Lett.20139217317610.1016/j.matlet.2012.10.091
    [Google Scholar]
  8. WollanE.O. KoehlerW.C. Neutron diffraction study of the magnetic properties of the series of perovskite-type compounds [(1-x) La, xCa] MnO3.Phys. Rev.1955100254556310.1103/PhysRev.100.545
    [Google Scholar]
  9. ManhD.H. PhongP.T. ThanhT.D. NamD.N.H. HongL.V. PhucN.X. Size effects and interactions in La0.7Ca0.3] MnO3 nanoparticles.J. Alloys Compd.201150951373137710.1016/j.jallcom.2010.10.104
    [Google Scholar]
  10. NavinK. KurchaniaR. The effect of particle size on structural, magnetic and transport properties of La0.7Sr0.3] MnO3 nanoparticles.Ceram. Int.20184454973498010.1016/j.ceramint.2017.12.091
    [Google Scholar]
  11. DediuVV FerdeghiniC MatacottaFC NozarP RuaniG Jahn-Teller dynamics in charge-ordered manganites from Raman spectroscopy. Phys Rev Lett.2000May 8; 841944899210.1103/PhysRevLett.84.448910990718
    [Google Scholar]
  12. Martin-CarronL. AndresA. Martínez-LopeM. CasaisM. AlonsoJ. Raman phonons as a probe of disorder, fluctuations and local structure in doped and undoped orthorhombic and rhombohedral manganites.Phys. Rev. B20026617430310.1103/PhysRevB.66.174303
    [Google Scholar]
  13. HoshinaT. Size effect of barium titanate: Fine particles and ceramics.J. Ceram. Soc. Jpn.2013121141015616110.2109/jcersj2.121.156
    [Google Scholar]
  14. ShellaiahM. SunK.W. Review on sensing applications of perovskite nanomaterials.Chemosensors2020835510.3390/chemosensors8030055
    [Google Scholar]
  15. BokovD. Turki JalilA. ChupraditS. Nanomaterial by sol-gel method: Synthesis and application.Adv. Mater. Sci. Eng.2021202112110.1155/2021/5102014
    [Google Scholar]
  16. OumezzineM. PeñaO. GuizouarnT. LebullengerR. OumezzineM. Impact of the sintering temperature on the structural, magnetic and electrical transport properties of doped La0,67Ba0,33Mn0,9Cr0,1O3 manganite.J. Magn. Magn. Mater.2012324182821282810.1016/j.jmmm.2012.04.017
    [Google Scholar]
  17. RosićM. KljaljevićL. JordanovD. Effects of sintering on the structural, microstructural and magnetic properties of nanoparticle manganite Ca1−Gd MnO3 (x=0.05, 0.1, 0.15, 0.2).Ceram. Int.20154110149641497210.1016/j.ceramint.2015.08.041
    [Google Scholar]
  18. LiphamN.D. TsoiG.M. WengerL.E. Synthesis and characterization of sr-doped lanthanum manganite nanoparticles.IEEE Trans. Magn.20074363088309010.1109/TMAG.2007.893850
    [Google Scholar]
  19. PawarD.K. PawarS.M. PatilP.S. KolekarS.S. Synthesis of nanocrystalline nickel–zinc ferrite (Ni0.8Zn0.2Fe2O4) thin films by chemical bath deposition method.J. Alloys Compd.201150983587359110.1016/j.jallcom.2010.12.079
    [Google Scholar]
  20. D Souza A, Babu PD, Rayaprol S, Murari MS, Mendonca LD, Daivajna M. Size control on the magnetism of La0.7Sr0.3MnO3.J. Alloys Compd.201979787488210.1016/j.jallcom.2019.05.004
    [Google Scholar]
  21. ArrarA. BenhalilibaM. BoukhachemA. AyeshamariamA. The green emission from nanospheres based on La1-x Srx MnO2.75 perovskites.J Nanoelectron Optoelectron201914216917610.1166/jno.2019.2465
    [Google Scholar]
/content/journals/cms/10.2174/0126661454260630231221062043
Loading
/content/journals/cms/10.2174/0126661454260630231221062043
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test