Skip to content
2000
Volume 18, Issue 1
  • ISSN: 2666-1454
  • E-ISSN: 2666-1462

Abstract

Background

Benzoic acid is widely applied in the food field, including beverages as the antimicrobial preservative due to its strong inhabitation role to bacteria and yeasts. However, excessive intake of benzoic acid can easily cause abdominal pain and diarrhea and can even result in metabolic diseases. Hence, it is important to seek simple, accurate and sensitive strategies to detect low-trace benzoic acid.

Objective

The aim of this study is to synthesize dysprosium oxide/bismuth oxide nanocomposites using dysprosium sulphate and sodium bismuthate as the raw materials and research the electrochemical sensing properties for the detection of benzoic acid.

Methods

Dysprosium oxide/bismuth oxide nanocomposites were synthesized by a facile hydrothermal route. The dysprosium oxide/bismuth oxide nanocomposites were characterized by X-ray diffraction, electron microscopy, X-ray photoelectron spectroscopy and electrochemical impedance spectroscopy.

Results

The dysprosium oxide/bismuth oxide nanocomposites are composed of nearly circular-shaped particles with polycrystalline cubic DyO and triclinic BiO phases. The size of the nearly circular-shaped particles is about 50 to 200 nm. The electrons are easier to transfer by the dysprosium oxide/bismuth oxide nanocomposite-modified electrode than the bare electrode. A pair of quasi-reversible cyclic voltammetry (CV) peaks located at -0.155 V and -0.582 V exist in the CV curve of 0.1 M KCl buffer solution containing 2 mM benzoic acid. The nanocomposite-modified electrode shows a linear detection range and detection limit of 0.001-2 mM and 0.18 μM, respectively, for benzoic acid detection.

Conclusion

The dysprosium oxide/bismuth oxide nanocomposite-modified electrode reveals superior electro-catalytic activity towards benzoic acid.

Loading

Article metrics loading...

/content/journals/cms/10.2174/2666145417666230831114021
2023-09-08
2025-07-05
Loading full text...

Full text loading...

References

  1. qi P, Hong H, Liang X, Liu D. Assessment of benzoic acid levels in milk in China.Food Control200920441441810.1016/j.foodcont.2008.07.013
    [Google Scholar]
  2. SuhrK.I. NielsenP.V. Effect of weak acid preservatives on growth of bakery product spoilage fungi at different water activities and pH values.Int. J. Food Microbiol.2004951677810.1016/j.ijfoodmicro.2004.02.004 15240076
    [Google Scholar]
  3. OhtsukiT. SatoK. SugimotoN. AkiyamaH. KawamuraY. Absolute quantification for benzoic acid in processed foods using quantitative proton nuclear magnetic resonance spectroscopy.Talanta20129934234810.1016/j.talanta.2012.05.062 22967562
    [Google Scholar]
  4. ShanD. ShiQ. ZhuD. XueH. Inhibitive detection of benzoic acid using a novel phenols biosensor based on polyaniline–polyacrylonitrile composite matrix.Talanta20077251767177210.1016/j.talanta.2007.02.007 19071830
    [Google Scholar]
  5. WoidichH. GnauerH. GalinovskyE. Thin-layer-chromatographic separation of some food preservatives.Z Lebensm Unters F A196713331732210.1007/BF01074570
    [Google Scholar]
  6. LinJ.Y. HuangW. Simultaneous determination of benzoyl peroxide and benzoic acid content in flour by ultraviolet spectrophotometry.Guangdong Trace Elem Sci200815525510.1016/B978‑012374173‑8.50015‑6
    [Google Scholar]
  7. HamzahH.H. YusofN.A. SallehA.B. BakarF.A. An optical test strip for the detection of benzoic acid in food.Sensors20111187302731310.3390/s110807302 22164018
    [Google Scholar]
  8. GonzálezM. GallegoM. ValcárcelM. Simultaneous gas chromatographic determination of food preservatives following solid-phase extraction.J. Chromatogr. A19988231-232132910.1016/S0021‑9673(98)00182‑4
    [Google Scholar]
  9. ChenY.C. JiaC.F. WangJ.Y. GaoH.L. Detection and resource analysis of benzoic acids in milk by HPLC.Sci Technol Food Ind201031949510.3724/SP.J.1011.2010.01351
    [Google Scholar]
  10. WangZ.H. XiaJ.F. ZhaoF.Y. Determination of benzoic acid in milk by solid-phase extraction and ion chromatography with conductivity detection.Chin. Chem. Lett.201324324324510.1016/j.cclet.2013.01.048
    [Google Scholar]
  11. YangY. XuW. WuM. MaoJ. ShaR. Application of E-nose combined with ANN modelling for qualitative and quantitative analysis of benzoic acid in cola-type beverages.J. Food Meas. Charact.20211565131513810.1007/s11694‑021‑01083‑6
    [Google Scholar]
  12. CaiL. DongJ. WangY. ChenX. Thin-film microextraction coupled to surface enhanced Raman scattering for the rapid detection of benzoic acid in carbonated beverages.Talanta201817826827310.1016/j.talanta.2017.09.040 29136821
    [Google Scholar]
  13. PrapainopK. MekseriwattanaW. SiangprohW. ChailapakulO. SongsriroteK. Successive detection of benzoic acid and total parabens in foodstuffs using mercaptosuccinic acid capped cadmium telluride quantum dots.Food Control20199650851610.1016/j.foodcont.2018.10.009
    [Google Scholar]
  14. HassanM.H. KhanR. AndreescuS. Advances in electrochemical detection methods for measuring contaminants of emerging concerns.Electrochem. Sci. Adv.202226e210018410.1002/elsa.202100184
    [Google Scholar]
  15. HongS.P. Mohd-NaimN.F. KeasberryN.A. AhmedM.U. Electrochemical detection of β-lactoglobulin allergen using titanium dioxide/carbon nanochips/gold nanocomposite-based biosensor.Electroanalysis202234468469110.1002/elan.202100207
    [Google Scholar]
  16. PeiL. LinN. WeiT. LiuH. YuH. Formation of copper vanadate nanobelts and their electrochemical behaviors for the determination of ascorbic acid.J. Mater. Chem. A Mater. Energy Sustain.2015362690270010.1039/C4TA05946H
    [Google Scholar]
  17. HuangJ. TaoF. SunZ. A facile synthesis route to BiPr composite nanosheets and sensitive electrochemical detection of l-cysteine.Microchem. J.202218210791510.1016/j.microc.2022.107915
    [Google Scholar]
  18. YanikS. KurtS.B. AriB. DemirciS. YilmazS. Development of electrochemical sensors for quantitative analysis of methyldopa at modified-GCE and PGE electrodes by voltammetry.J Sci Perspect2020422323610.26900/jsp.4.019
    [Google Scholar]
  19. LópezM.S-P. López-RuizB. Inhibition biosensor based on calcium phosphate materials for detection of benzoic acid in aqueous and organic media.Electroanalysis201123126427110.1002/elan.201000488
    [Google Scholar]
  20. LinN. PeiL. WeiT. LiuH. CaiZ. Electrochemical sensor based on glassy carbon electrode modified with copper vanadate nanobelts for detection of benzoic acid.IET Sci. Measur. Technol.201610424725210.1049/iet‑smt.2015.0089
    [Google Scholar]
  21. CaiZ.Y. PeiL.Z. XieY.K. FanC.G. FuD.G. Electrochemical determination of benzoic acid using CuGeO 3 nanowire modified glassy carbon electrode.Meas. Sci. Technol.201324909570110.1088/0957‑0233/24/9/095701
    [Google Scholar]
  22. MangalasseriA.S. MaheshV. MukundaS. Vibration based energy harvesting performance of magneto-electro-elastic beams reinforced with carbon nanotubes.Adv. Nano Res.202314274310.12989/anr.2023.14.1.027
    [Google Scholar]
  23. ArshidE. KhorasaniM. Soleimani-JavidZ. AmirS. TounsiA. Porosity-dependent vibration analysis of FG microplates embedded by polymeric nanocomposite patches considering hygrothermal effect via an innovative plate theory.Eng. Comput.202238S54051407210.1007/s00366‑021‑01382‑y
    [Google Scholar]
  24. GargA. AggarwalP. AggarwalY. Machine learning models for predicting the compressive strength of concrete containing nano silica.Comput. Concr.202230334210.12989/cac.2022.30.1.033
    [Google Scholar]
  25. DjilaliN. BousahlaA.A. KaciA. Large cylindrical deflection analysis of FG carbon nanotube-reinforced plates in thermal environment using a simple integral HSDT.Steel Compos. Struct.20224277978910.12989/scs.2022.42.6.779
    [Google Scholar]
  26. HuangY. KaramiB. ShahsavariD. TounsiA. Static stability analysis of carbon nanotube reinforced polymeric composite doubly curved micro-shell panels.Arch. Civ. Mech. Eng.202121413910.1007/s43452‑021‑00291‑7
    [Google Scholar]
  27. ZerroukiR. KarasA. ZidourM. Effect of nonlinear FG-CNT distribution on mechanical properties of functionally graded nano-composite beam.Struct. Eng. Mech.20217811712410.12989/SEM.2021.78.2.117
    [Google Scholar]
  28. HeidariF. TaheriK. SheybaniM. JanghorbanM. TounsiA. On the mechanics of nanocomposites reinforced by wavy/defected/aggregated nanotubes.Steel Compos. Struct.20213853354510.12989/scs.2021.38.5.533
    [Google Scholar]
  29. BendeniaN. ZidourM. BousahlaA.A. Deflections, stresses and free vibration studies of FG-CNT reinforced sandwich plates resting on Pasternak elastic foundation.Comput. Concr.20202621322610.12989/cac.2020.26.3.213
    [Google Scholar]
  30. BouradaF. BousahlaA.A. TounsiA. Stability and dynamic analyses of SW-CNT reinforced concrete beam resting on elastic-foundation.Comput. Concr.20202548549510.12989/CAC.2020.25.6.485
    [Google Scholar]
  31. XiaL.Q. WangR.Q. ChenG. AsemiK. TounsiA. The finite element method for dynamics of FG porous truncated conical panels reinforced with graphene platelets based on the 3-D elasticity.Adv. Nano Res.20231437538910.12989/.2023.14.4.375
    [Google Scholar]
  32. KokulnathanT. VishnurajR. WangT.J. KumarE.A. PullithadathilB. Heterostructured bismuth oxide/hexagonal-boron nitride nanocomposite: A disposable electrochemical sensor for detection of flutamide.Ecotoxicol. Environ. Saf.202120711127610.1016/j.ecoenv.2020.111276 32931965
    [Google Scholar]
  33. FarsiH. MoghiminiaS. RoohiA. HosseiniS.A. Preparation, characterization and electrochemical behaviors of Bi 2 O 3 nanoparticles dispersed in silica matrix.Electrochim. Acta20141489310310.1016/j.electacta.2014.10.040
    [Google Scholar]
  34. HuQ. ChengX. ZhangX. One–step solvothermal synthesis of 3D tube–globular Dy2O3 nanostructure for ultra–fast response to humidity.Sens. Actuators B Chem.202030512743410.1016/j.snb.2019.127434
    [Google Scholar]
  35. RajendranV. MekalaR. Effect of pure and REM: (Nd, Ce)-doped Dy2O3 NPs via hydrothermal method and their magnetic, optical, electrochemical, antibacterial and photocatalytic activities.J. Alloys Compd.20187411055106910.1016/j.jallcom.2018.01.086
    [Google Scholar]
  36. GopinathK. ChinnaduraiM. DeviN.P. One-pot synthesis of dysprosium oxide nano-sheets: Antimicrobial potential and cyotoxicity on A549 lung cancer cells.J. Cluster Sci.201728162163510.1007/s10876‑016‑1150‑4
    [Google Scholar]
  37. Krishna ChandarN. JayavelR. Wet chemical synthesis and characterization of pure and cerium doped Dy2O3 nanoparticles.J. Phys. Chem. Solids20127391164116910.1016/j.jpcs.2012.05.009
    [Google Scholar]
  38. HuangJ. CaiZ. ZhangY. PeiL. A simple route to synthesize mixed BiPr oxide nanoparticles and polyaniline composites with enhanced L-cysteine sensing properties.J. Electron. Mater.202352161362710.1007/s11664‑022‑10033‑x
    [Google Scholar]
  39. HuangJ. TaoF. LiF. Controllable synthesis of BiPr composite oxide nanowires electrocatalyst for sensitive L-cysteine sensing properties.Nanotechnology2022333434570410.1088/1361‑6528/ac7244 35605596
    [Google Scholar]
  40. TaoF. YuC. HuangJ. Synthesis and properties of BiDy composite electrode materials in electrochemical sensors.Mater. Chem. Front.20226192880289310.1039/D2QM00298A
    [Google Scholar]
  41. WangX.Y. HuangJ.F. YuC.H. A facile route to synthesize DyF3/Bi2O3 nanowires and sensitive L-cysteine sensing properties.J. Electrochem. Soc.2022169707650410.1149/1945‑7111/ac7c3e
    [Google Scholar]
  42. LeeJ.H. ChoE.B. High hydrothermal stability of mesoporous Ni-phyllosilicate spherical particles.Appl. Surf. Sci.202259015311410.1016/j.apsusc.2022.153114
    [Google Scholar]
  43. MikhlinY.L. BorisovR.V. VorobyevS.A. Synthesis and characterization of nanoscale composite particles formed by 2D layers of Cu–Fe sulfide and Mg-based hydroxide.J. Mater. Chem. A Mater. Energy Sustain.202210179621963410.1039/D2TA00877G
    [Google Scholar]
  44. MonsefR. Salavati-NiasariM. Masjedi-AraniM. Hydrothermal synthesis of spinel-perovskite Li–Mn–Fe–Si nanocomposites for electrochemical hydrogen storage.Inorg. Chem.202261186750676310.1021/acs.inorgchem.1c03605 35465668
    [Google Scholar]
  45. ZhengJ. ZhangL. Designing 3D magnetic peony flower-like cobalt oxides/g-C3N4 dual Z-scheme photocatalyst for remarkably enhanced sunlight driven photocatalytic redox activity.Chem. Eng. J.201936994795610.1016/j.cej.2019.03.131
    [Google Scholar]
  46. KannanV. ArredondoM. JohannF. Strain dependent microstructural modifications of BiCrO3 epitaxial thin films.Thin Solid Films201354513013910.1016/j.tsf.2013.07.053
    [Google Scholar]
  47. GokhaleS. AhmedN. MahamuniS. RaoV.J. NigavekarA.S. KulkarniS.K. XPS and XRD investigations of Dy/Si interface.Surf. Sci.19892101-2859810.1016/0039‑6028(89)90104‑0
    [Google Scholar]
  48. RasouliH. NajiL. HosseiniM.G. 3D structured polypyrrole/reduced graphene oxide (PPy/rGO)-based electrode ionic soft actuators with improved actuation performance.New J. Chem.20184214121041211810.1039/C8NJ00936H
    [Google Scholar]
  49. PeiL. MaY. QiuF. LinF. FanC. LingX. Synthesis of polyaniline/graphene nanocomposites and electrochemical sensing performance for formaldehyde.Curr. Anal. Chem.202016449349810.2174/1573411014666181115125050
    [Google Scholar]
  50. UnmüssigT. WeltinA. UrbanS. DaubingerP. UrbanG.A. KieningerJ. Non-enzymatic glucose sensing based on hierarchical platinum micro-/nanostructures.J. Electroanal. Chem. 201881621522210.1016/j.jelechem.2018.03.061
    [Google Scholar]
  51. ZiyatdinovaG. KozlovaE. BudnikovH. Selective electrochemical sensor based on the electropolymerized p-coumaric acid for the direct determination of l-cysteine.Electrochim. Acta201827036937710.1016/j.electacta.2018.03.102
    [Google Scholar]
  52. LouhichiB. BensalashN. GadriA. Electrochemical oxidation of benzoic acid derivatives on boron doped diamond: voltammetric study and galvanostatic electrolyses.Chem. Eng. Technol.200629894495010.1002/ceat.200500342
    [Google Scholar]
  53. MontillaF. MichaudP.A. MorallónE. VázquezJ.L. ComninellisC. Electrochemical oxidation of benzoic acid at boron-doped diamond electrodes.Electrochim. Acta200247213509351310.1016/S0013‑4686(02)00318‑3
    [Google Scholar]
  54. SoutoR.M. RodríguezJ.L. Fernández-MéridaL. PastorE. Electrochemical reactions of benzoic acid on platinum and palladium studied by DEMS. Comparison with benzyl alcohol.J. Electroanal. Chem.2000494212713510.1016/S0022‑0728(00)00354‑5
    [Google Scholar]
  55. PeiL.Z. MaY. QiuF.L. LinF.F. FanC.G. LingX.Z. In-situ synthesis of polynaphthylamine/graphene composites for the electrochemical sensing of benzoic acid.Mater. Res. Express20186101505310.1088/2053‑1591/aae96e
    [Google Scholar]
  56. Nosal-WiercińskaA. Electrochemical and thermodynamic study of the electroreduction of Bi(III) ions in the presence of cysteine in solutions of different water activity.J. Electroanal. Chem.201268110310810.1016/j.jelechem.2012.06.005
    [Google Scholar]
  57. BaiY.H. XuJ.J. ChenH.Y. Selective sensing of cysteine on manganese dioxide nanowires and chitosan modified glassy carbon electrodes.Biosens. Bioelectron.200924102985299010.1016/j.bios.2009.03.008 19345085
    [Google Scholar]
  58. PeiL. PeiY. XieY. FanC. LiD. ZhangQ. Formation process of calcium vanadate nanorods and their electrochemical sensing properties.J. Mater. Res.201227182391240010.1557/jmr.2012.254
    [Google Scholar]
/content/journals/cms/10.2174/2666145417666230831114021
Loading
/content/journals/cms/10.2174/2666145417666230831114021
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test