Skip to content
2000
Volume 18, Issue 2
  • ISSN: 2666-1454
  • E-ISSN: 2666-1462

Abstract

Background

Two-dimensional (2D) nanosheets have been widely explored for sensing toxic gases by investigating structural and electronic properties. However, the optical investigation could be an alternative approach to address the sensing capability of the nanosheets. In the present work, the electronic and optical investigation is performed using density functional theory (DFT) to find out the sensitivity of boron-nitride nanosheet (BNNS) towards NH and NO gas molecules. Electronic investigation suggests a weak binding of NH and NO with the 2D sheet, with appreciable changes in the BNNS electronic density of state (DOS) on NO interaction. NH interaction could not affect the BNNS DOS except for lowering of band dispersion graph across the Fermi level. NO interaction brings a noticeable change in spectra, primarily red-shift. Based on this information, tuning is also observed in different optical descriptors, ., dielectric constant, refractive index, and extinction coefficient of NO interacted BNNS. All these findings advocate sensitivity toward the gas molecule of the 2D sheet could be realized from the optical frame.

Objective

Finding NH and NO affinity of Boron-Nitride Nanosheet Through Optical Spectrum: A DFT Study.

Methods

The calculations are performed in the framework of density functional theory (DFT) using Troullier Martins’s norm-conserving pseudo-potential.

Results

The NO interacted BNNS shows the optical spectra get red-shifted, and the primary reason is the available NO molecular state below the fermi level as shown in PDOS analysis.

Conclusion

The present investigation predicted an almost similar ε spectra pattern of BNNS and NH-BNNS except in shallow region 7 eV-10 eV; a weak absorption band appeared in this region after NH absorption. The main concern for this deviation is the electronic transitions taken from the valance N-p-state of NH to the conduction band (primarily π* in nature) of BNNS.

Loading

Article metrics loading...

/content/journals/cms/10.2174/2666145416666230512115255
2023-07-13
2025-04-23
Loading full text...

Full text loading...

References

  1. ElmøeT.D. SørensenR.Z. QuaadeU. ChristensenC.H. NørskovJ.K. JohannessenT. A high-density ammonia storage/] delivery system based on Mg(NH3)6Cl2 for SCR - DeNOx in vehicles.Chem. Eng. Sci.20066182618262510.1016/j.ces.2005.11.038
    [Google Scholar]
  2. LicyayoD.C.M. SuzukiA. MatsumotoM. Interactions among ammonia fungi on MY agar medium with varying pH.Mycoscience2007481202810.47371/mycosci.MYC48020
    [Google Scholar]
  3. ChristensenC.H. JohannessenT. SørensenR.Z. NørskovJ.K. Towards an ammonia-mediated hydrogen economy?Catal. Today20061111-214014410.1016/j.cattod.2005.10.011
    [Google Scholar]
  4. ChakrabortyD. PetersenH.N. ElkjærC. CaguladaA. JohannessenT. Solid ammonia as energy carrier: Current status and future prospects.Fuel Cells Bull.2009200910121510.1016/S1464‑2859(09)70336‑0
    [Google Scholar]
  5. LanR. IrvineJ.T.S. TaoS. Ammonia and related chemicals as potential indirect hydrogen storage materials.Int. J. Hydrogen Energy20123721482149410.1016/j.ijhydene.2011.10.004
    [Google Scholar]
  6. SchüthF. PalkovitsR. SchlöglR. SuD.S. Ammonia as a possible element in an energy infrastructure: catalysts for ammonia decomposition.Energy Environ. Sci.2012546278628910.1039/C2EE02865D
    [Google Scholar]
  7. ShuJ.H. WikleH.C. ChinB.A. Passive chemiresistor sensor based on iron (II) phthalocyanine thin films for monitoring of nitrogen dioxide.Sens. Actuators B Chem.2010148249850310.1016/j.snb.2010.05.017
    [Google Scholar]
  8. GuarnieriM. BalmesJ.R. Outdoor air pollution and asthma.Lancet201438399281581159210.1016/S0140‑6736(14)60617‑6 24792855
    [Google Scholar]
  9. ChoudhuriI. BhauriyalP. PathakB. Recent advances in graphene-like 2D materials for spintronics applications.Chem. Mater.201931208260828510.1021/acs.chemmater.9b02243
    [Google Scholar]
  10. ZhangP. WangF. YuM. ZhuangX. FengX. Two-dimensional materials for miniaturized energy storage devices: from individual devices to smart integrated systems.Chem. Soc. Rev.201847197426745110.1039/C8CS00561C 30206606
    [Google Scholar]
  11. WangY. ZhangY. ChengQ. Large area uniform PtSx synthesis on sapphire substrate for performance improved photodetectors.Appl. Mater. Today20212510117610.1016/j.apmt.2021.101176
    [Google Scholar]
  12. ChenY. GaoC. YangT. LiW. XuH. SunZ. Research advances of ferroelectric semiconductors of 2D hybrid perovskites toward photoelectronic applications.Chinese Journal of Structural Chemsitry2022414131341323
    [Google Scholar]
  13. PangJ. WangY. YangX. A wafer-scale two-dimensional platinum monosulfide ultrathin film via metal sulfurization for high performance photoelectronics.Mater. Adv.2022331497150510.1039/D1MA00757B
    [Google Scholar]
  14. ZhangX.L. LiJ. LengB. High-performance ultraviolet-visible photodetector with high sensitivity and fast response speed based on MoS2-on-ZnO photogating heterojunction.Tungsten202351919910.1007/s42864‑022‑00139‑4
    [Google Scholar]
  15. GongC. ZhangY. ChenW. Electronic and optoelectronic applications based on 2D novel anisotropic transition metal dichalcogenides.Adv. Sci. (Weinh.)2017412170023110.1002/advs.201700231 29270337
    [Google Scholar]
  16. SunB. PangJ. ChengQ. Synthesis of Wafer‐Scale Graphene with Chemical Vapor Deposition for Electronic Device Applications.Adv. Mater. Technol.202167200074410.1002/admt.202000744
    [Google Scholar]
  17. HuangT DingJ LiuZ Insight into the underlying competitive mechanism for the shift of the charge neutrality point in a trilayer-graphene field-effect transistor. eScience20222331928
    [Google Scholar]
  18. ZhengS. ZhaoM. SunL. YangH. Classical and quantum phases in hexagonal boron nitride‐combined van der Waals heterostructures.InfoMat20213325227010.1002/inf2.12121
    [Google Scholar]
  19. PangJ. ChangB. LiuH. ZhouW. Potential of MXene-based heterostructures for energy conversion and storage.ACS Energy Lett.202271789610.1021/acsenergylett.1c02132
    [Google Scholar]
  20. MaL. ZhangJ.M. XuK.W. JiV. A first-principles study on gas sensing properties of graphene and Pd-doped graphene.Appl. Surf. Sci.201534312112710.1016/j.apsusc.2015.03.068
    [Google Scholar]
  21. FanY. ZhangJ. QiuY. ZhuJ. ZhangY. HuG. A DFT study of transition metal (Fe, Co, Ni, Cu, Ag, Au, Rh, Pd, Pt and Ir)-embedded monolayer MoS2 for gas adsorption.Comput. Mater. Sci.201713825526610.1016/j.commatsci.2017.06.029
    [Google Scholar]
  22. LiY. ZhangX. ChenD. XiaoS. TangJ. Adsorption behavior of COF2 and CF4 gas on the MoS2 monolayer doped with Ni: A first-principles study.Appl. Surf. Sci.201844327427910.1016/j.apsusc.2018.02.252
    [Google Scholar]
  23. AbbasiA. SardroodiJ.J. Adsorption of O3, SO2 and SO3 gas molecules on MoS2 monolayers: A computational investigation.Appl. Surf. Sci.201946978179110.1016/j.apsusc.2018.11.039
    [Google Scholar]
  24. PangJ. PengS. HouC. Applications of MXenes in human-like sensors and actuators.Nano Res.20221610.1007/s12274‑022‑5272‑8
    [Google Scholar]
  25. LiY HuangS PengS Toward smart sensing by MXene.Small2023Apr; 1914Epub 2022 Dec 14. 10.1002/smll.20220612636517115
    [Google Scholar]
  26. PangJ. PengS. HouC. Applications of Graphene in Five Senses, Nervous System, and Artificial Muscles.ACS Sens.20238248251410.1021/acssensors.2c02790 36656873
    [Google Scholar]
  27. ParkJ.H. ParkJ.C. YunS.J. Large-area monolayer hexagonal boron nitride on Pt foil.ACS Nano2014888520852810.1021/nn503140y 25094030
    [Google Scholar]
  28. Galicia HernándezJ.M. CocoletziG.H. AnotaE.C. DFT studies of the phenol adsorption on boron nitride sheets.J. Mol. Model.201218113714410.1007/s00894‑011‑1046‑z
    [Google Scholar]
  29. KouL. ChenC. SmithS.C. Phosphorene: fabrication, properties, and applications.J. Phys. Chem. Lett.20156142794280510.1021/acs.jpclett.5b01094 26266865
    [Google Scholar]
  30. AcunA. ZhangL. BampoulisP. Germanene: the germanium analogue of graphene.J. Phys. Condens. Matter2015274444300210.1088/0953‑8984/27/44/443002 26466359
    [Google Scholar]
  31. KamalC. EzawaM. Arsenene: Two-dimensional buckled and puckered honeycomb arsenic systems.Phys. Rev. B Condens. Matter Mater. Phys.201591808542310.1103/PhysRevB.91.085423
    [Google Scholar]
  32. ZhuF. ChenW. XuY. Epitaxial growth of two-dimensional stanene.Nat. Mater.201514101020102510.1038/nmat4384 26237127
    [Google Scholar]
  33. KhanM.S. SrivastavaA. PandeyR. Electronic properties of a pristine and NH3/NO2 adsorbed buckled arsenene monolayer.RSC Advances2016676726347264210.1039/C6RA15005E
    [Google Scholar]
  34. Fortin-DeschênesM. WallerO. MenteşT.O. Synthesis of Antimonene on Germanium.Nano Lett.20171784970497510.1021/acs.nanolett.7b02111 28678509
    [Google Scholar]
  35. ZhangS. GuoS. ChenZ. Recent progress in 2D group-VA semiconductors: from theory to experiment.Chem. Soc. Rev.2018473982102110.1039/C7CS00125H 29210397
    [Google Scholar]
  36. LiL.H. SantosE.J.G. XingT. Dielectric screening in atomically thin boron nitride nanosheets.Nano Lett.201515121822310.1021/nl503411a 25457561
    [Google Scholar]
  37. IrfanA. ChaudhryA.R. Al-SehemiA.G. AssiriM.A. HussainA. Charge carrier and optoelectronic properties of phenylimidazo[1,5-a]pyridine-containing small molecules at molecular and solid-state bulk scales.Comput. Mater. Sci.201917010917910.1016/j.commatsci.2019.109179
    [Google Scholar]
  38. IrfanA. Rasool ChaudhryA. Al-SehemiA.G. Electron donating effect of amine groups on charge transfer and photophysical properties of 1,3-diphenyl-1H-pyrazolo[3,4-b]quinolone at molecular and solid state bulk levels.Optik202020816400910.1016/j.ijleo.2019.164009
    [Google Scholar]
  39. IrfanA. Al-SehemiA.G. AssiriM.A. UllahS. Exploration the effect of metal and electron withdrawing groups on charge transport and optoelectronic nature of schiff base Ni(II), Cu(II) and Zn(II) complexes at molecular and solid-state bulk scales.Mater. Sci. Semicond. Process.202010710485510.1016/j.mssp.2019.104855
    [Google Scholar]
  40. ZaierR. AyachiS. DFT molecular modeling studies of D-π-A-π-D type cyclopentadithiophene-diketopyrrolopyrrole based small molecules donor materials for organic photovoltaic cells.Optik202123916678710.1016/j.ijleo.2021.166787
    [Google Scholar]
  41. DivyaV.V. SureshC.H. Design and DFT study of nitrogen-rich donor systems for improved photovoltaic performance in dye-sensitized solar cells.New J. Chem.20214526115851159510.1039/D1NJ00881A
    [Google Scholar]
  42. TroullierN. MartinsJ.L. Efficient pseudopotentials for plane-wave calculations.Phys. Rev. B Condens. Matter19914331993200610.1103/PhysRevB.43.1993 9997467
    [Google Scholar]
  43. PerdewJ.P. BurkeK. ErnzerhofM. Generalized gradient approximation made simple.Phys. Rev. Lett.199677183865386810.1103/PhysRevLett.77.3865 10062328
    [Google Scholar]
  44. MonkhorstH.J. PackJ.D. Special points for Brillouin-zone integrations.Phys. Rev., B, Solid State197613125188519210.1103/PhysRevB.13.5188
    [Google Scholar]
  45. SolerJ.M. ArtachoE. GaleJ.D. The SIESTA method for ab initio order- N materials simulation.J. Phys. Condens. Matter200214112745277910.1088/0953‑8984/14/11/302
    [Google Scholar]
  46. ZhouZ. GaoX. YanJ. SongD. Doping effects of B and N on hydrogen adsorption in single-walled carbon nanotubes through density functional calculations.Carbon200644593994710.1016/j.carbon.2005.10.016
    [Google Scholar]
  47. LucariniV. SaarinenJ.J. PeiponenK.E. VartiainenE.M. Kramers-Kronig relations in optical materials research.Springer Science & Business Media2005
    [Google Scholar]
  48. XiaoH. Tahir-KheliJ. GoddardW.A.III Accurate band gaps for semiconductors from density functional theory.J. Phys. Chem. Lett.20112321221710.1021/jz101565j
    [Google Scholar]
  49. MamounS. MeradA.E. GuilbertL. Energy band gap and optical properties of lithium niobate from ab initio calculations.Comput. Mater. Sci.20137912513110.1016/j.commatsci.2013.06.017
    [Google Scholar]
/content/journals/cms/10.2174/2666145416666230512115255
Loading
/content/journals/cms/10.2174/2666145416666230512115255
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test