Skip to content
2000
Volume 18, Issue 2
  • ISSN: 2666-1454
  • E-ISSN: 2666-1462

Abstract

Background

The present work deals with DFT-based theoretical investigations on pristine and metal (M = Na, Mg, and Al) substituted zinc oxide nanotube (M-ZnONT). The investigation advocates a change in the electronic bandgap of ZnONT on the respective substitution of Zn with Na, Mg, and Al. The forbidden energy gap vanishes on Na incorporation, while Al substitution brings the gap to 0.08eV. The formation energy calculations suggest the feasibility of these metallic substitutions, of which Na incorporation is most favorable. Partial density of state (PDOS) analysis is well correlated with band structures. A localized state above the Fermi level contributed from Al-3p in Al-ZnONT suggests the electronic affinity of Al-ZnONT for incoming nucleophiles. Our optical investigation shows large ε(ω) values in far-infrared (IR) and visible (Vis) regions for M-ZnONT. Hence, suggests a high refractive index for the metal-substituted ZnONTs in the prescribed range. The study suggests that photonic energy loss due to attenuation, bending, and absorption are weak in ultra-violet (UV) and far UV regions , (3eV to 8eV). However, for the respective energy range, high reflectivity is predicted. This indicates the nanotubes as a good reflector for the purpose of coating material surfaces where high reflection is demanded.

Objective

Finding electronic and optical properties of functionalized ZnONT using DFT method.

Methods

All calculations have been performed in the framework of density functional theory (DFT) using Troullier Martins’s norm-conserving pseudo-potential.

Results

Metal incorporation at the surface of ZnONT consequent intense ε(ω) values in far infra-red and visible regions for M-ZnONT.

Conclusion

The investigation suggests that the metal-substituted nanotube is a good reflector for coating material surfaces where high reflection is demanded.

Loading

Article metrics loading...

/content/journals/cms/10.2174/2666145416666230406083223
2023-05-26
2025-04-21
Loading full text...

Full text loading...

References

  1. MichelottiF. BelardiniA. RousseauA. RatsimihetyA. SchoerG. MuellerJ. Use of sandwich structures with ZnO: Al transparent electrodes for the measurement of the electro-optic properties of standard and fluorinated poled copolymers at λ= 1.55 μm.J. Non-Cryst. Solid200635223392342
    [Google Scholar]
  2. SucheaM. ChristoulakisS. MoschovisK. KatsarakisN. KiriakidisG. ZnO transparent thin films for gas sensor applications.Thin Solid Films2006515255155410.1016/j.tsf.2005.12.295
    [Google Scholar]
  3. KimJ.B. ByunD. IeS.Y. Cu-doped ZnO-based p–n hetero-junction light emitting diode.Semicond. Sci. Technol.200823909500410.1088/0268‑1242/23/9/095004
    [Google Scholar]
  4. HongsithN. WongratE. KerdcharoenT. ChoopunS. Sensor response formula for sensor based on ZnO nanostructures.Sens. Actuators B Chem.20101441677210.1016/j.snb.2009.10.037
    [Google Scholar]
  5. XuJ. PanQ. ShunY. TianZ. Grain size control and gas sensing properties of ZnO gas sensor.Sens. Actuators B Chem.2000661-327727910.1016/S0925‑4005(00)00381‑6
    [Google Scholar]
  6. ÖzgürÜ. AlivovY.I. LiuC. A comprehensive review of ZnO materials and devices.J. Appl. Phys.200598404130110.1063/1.1992666
    [Google Scholar]
  7. AlbrechtJ.D. RudenP.P. LimpijumnongS. LambrechtW.R.L. BrennanK.F. High field electron transport properties of bulk ZnO.J. Appl. Phys.199986126864686710.1063/1.371764
    [Google Scholar]
  8. CongC.J. HongJ.H. ZhangK.L. Effect of atmosphere on the magnetic properties of the Co-doped ZnO magnetic semiconductors.Mater. Chem. Phys.2009113143544010.1016/j.matchemphys.2008.06.062
    [Google Scholar]
  9. ZhangY.B. AssadiM.H.N. LiS. Structural and magnetic stability of dopants in ZnO-based dilute magnetic semiconductors.J. Phys. Condens. Matter201123606600410.1088/0953‑8984/23/6/066004 21406939
    [Google Scholar]
  10. PhamA. ZhangY.B. AssadiM.H.N. YuA.B. LiS. Ferromagnetism in ZnO:Co originating from a hydrogenated Co–O–Co complex.J. Phys. Condens. Matter2013251111600210.1088/0953‑8984/25/11/116002 23406681
    [Google Scholar]
  11. KirkwoodN. SinghB. MulvaneyP. Enhancing quantum dot LED efficiency by tuning electron mobility in the ZnO electron transport layer.Adv. Mater. Interfaces2016322160086810.1002/admi.201600868
    [Google Scholar]
  12. HewlettR.M. McLachlanM.A. Surface structure modification of ZnO and the impact on electronic properties.Adv. Mater.201628203893392110.1002/adma.201503404 26936217
    [Google Scholar]
  13. AssadiM.H.N. ZhangY.B. LiS. Predominant role of defects in magnetic interactions in codoped ZnO:Co.J. Phys. Condens. Matter2010222929600410.1088/0953‑8984/22/29/296004 21399321
    [Google Scholar]
  14. MeulenkampE.A. Synthesis and growth of ZnO nanoparticles.J. Phys. Chem. B1998102295566557210.1021/jp980730h
    [Google Scholar]
  15. HongR. PanT. QianJ. LiH. Synthesis and surface modification of ZnO nanoparticles.Chem. Eng. J.20061192-3718110.1016/j.cej.2006.03.003
    [Google Scholar]
  16. ZhuC. LuB. SuQ. XieE. LanW. A simple method for the preparation of hollow ZnO nanospheres for use as a high performance photocatalyst.Nanoscale20124103060306410.1039/c2nr12010k 22481491
    [Google Scholar]
  17. SalehS.M. ZnO nanospheres based simple hydrothermal route for photocatalytic degradation of azo dye.Spectrochim. Acta A Mol. Biomol. Spectrosc.201921114114710.1016/j.saa.2018.11.065 30530067
    [Google Scholar]
  18. ParkJ.H. ChoiH.J. ChoiY.J. SohnS.H. ParkJ.G. Ultrawide ZnO nanosheets.J. Mater. Chem.2004141353610.1039/b312821k
    [Google Scholar]
  19. ChenS.J. LiuY.C. ShaoC.L. Structural and optical properties of uniform ZnO nanosheets.Adv. Mater.200517558659010.1002/adma.200401263
    [Google Scholar]
  20. LiY. MengG.W. ZhangL.D. PhillippF. Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties.Appl. Phys. Lett.200076152011201310.1063/1.126238
    [Google Scholar]
  21. GreeneL.E. LawM. GoldbergerJ. Low‐temperature wafer‐scale production of ZnO nanowire arrays.Angew. Chem.2003115263139314210.1002/ange.200351461
    [Google Scholar]
  22. KongX. SunX. LiX. LiY. Catalytic growth of ZnO nanotubes.Mater. Chem. Phys.2003823997100110.1016/j.matchemphys.2003.09.004
    [Google Scholar]
  23. XingY.J. XiZ.H. XueZ.Q. Optical properties of the ZnO nanotubes synthesized via vapor phase growth.Appl. Phys. Lett.20038316891691
    [Google Scholar]
  24. SunY. RileyD.J. AshfoldM.N.R. Mechanism of ZnO nanotube growth by hydrothermal methods on ZnO film-coated Si substrates.J. Phys. Chem. B200611031151861519210.1021/jp062299z 16884233
    [Google Scholar]
  25. Hamed MashhadzadehA. FathalianM. Ghorbanzadeh AhangariM. ShahaviM.H. DFT study of Ni, Cu, Cd and Ag heavy metal atom adsorption onto the surface of the zinc-oxide nanotube and zinc-oxide graphene-like structure.Mater. Chem. Phys.201822036637310.1016/j.matchemphys.2018.09.016
    [Google Scholar]
  26. FarmanzadehD TabariL. DFT study of electric field effect on the adsorption of some nitroaromatic compounds on the surface of zinc oxide nanotube.Nashrieh Shimi va Mohandesi Shimi Iran20173642018
    [Google Scholar]
  27. MohammadnejadS. AhadzadehS. RezaieM.N. Tunable band gap energy of single-walled zigzag ZnO nanotubes as a potential application in photodetection.Curr. Appl. Phys.20212913814710.1016/j.cap.2021.06.012
    [Google Scholar]
  28. ZhangJ. GaoD. XuK. The structural, electronic and magnetic properties of the 3d TM (V, Cr, Mn, Fe, Co, Ni and Cu) doped ZnO nanotubes: A first-principles study.Sci. China Phys. Mech. Astron.201255342843510.1007/s11433‑012‑4657‑1
    [Google Scholar]
  29. TanX. LiQ. ZhuY. First-principles study of p-type ZnO by S–Na co-doping.J. Semicond.201738808300110.1088/1674‑4926/38/8/083001
    [Google Scholar]
  30. Pradeev raj K, Sadaiyandi K, Kennedy A, et al. Influence of Mg doping on ZnO nanoparticles for enhanced photocatalytic evaluation and antibacterial analysis.Nanoscale Res Lett201813122910.1186/s11671‑018‑2643‑x30076473
    [Google Scholar]
  31. ElsayedM.H. AbdellahM. HungY.H. Hydrophobic and hydrophilic conjugated polymer dots as binary photocatalysts for enhanced visible-light-driven hydrogen evolution through förster resonance energy transfer.ACS Appl. Mater. Interfaces20211347565545656510.1021/acsami.1c15812 34783531
    [Google Scholar]
  32. FreyJ.T. DorenD.J. University of Delaware, Newark DE.2011 Available from: http://turin.nss.udel.edu/research/tubegenonline.html
  33. ZhouZ. GaoX. YanJ. SongD. Doping effects of B and N on hydrogen adsorption in single-walled carbon nanotubes through density functional calculations.Carbon200644593994710.1016/j.carbon.2005.10.016
    [Google Scholar]
  34. MommaK. IzumiF. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data.J. Appl. Cryst.20114461272127610.1107/S0021889811038970
    [Google Scholar]
  35. TroullierN. MartinsJ.L. Efficient pseudopotentials for plane-wave calculations.Phys. Rev. B Condens. Matter19914331993200610.1103/PhysRevB.43.1993 9997467
    [Google Scholar]
  36. PerdewJ.P. BurkeK. ErnzerhofM. Generalized gradient approximation made simple.Phys. Rev. Lett.199677183865386810.1103/PhysRevLett.77.3865 10062328
    [Google Scholar]
  37. MonkhorstH.J. PackJ.D. Special points for Brillouin-zone integrations.Phys. Rev., B, Solid State197613125188519210.1103/PhysRevB.13.5188
    [Google Scholar]
  38. LucariniV. SaarinenJ.J. PeiponenK.E. VartiainenE.M. Kramers-Kronig relations in optical materials research.Springer Science & Business Media2005Vol. 110
    [Google Scholar]
  39. XuH. ZhangR.Q. ZhangX. RosaA.L. FrauenheimT. Structural and electronic properties of ZnO nanotubes from density functional calculations.Nanotechnology2007184848571310.1088/0957‑4484/18/48/485713
    [Google Scholar]
  40. ZhaoJ.X. DaiB.Q. DFT studies of electro-conductivity of carbon-doped boron nitride nanotube.Mater. Chem. Phys.2004882-324424910.1016/j.matchemphys.2003.10.018
    [Google Scholar]
  41. ZhaoJ. DingY. Silicon carbide nanotubes functionalized by transition metal atoms: A density-functional study.J. Phys. Chem. C200811272558256410.1021/jp073722m
    [Google Scholar]
  42. QuA. LinY. Potential application of Al-doped ZnO nanotube as an electronic sensor for β-keto-amphetamine drug.Phys. Lett. A20203842712672610.1016/j.physleta.2020.126726
    [Google Scholar]
  43. MendiR.T. SarmazdehM.M. BoochaniA. ElahiS.M. NaderiS. Optical properties of pure and TM-doped single-walled ZnO nanotubes (8,0) (TM = V and Co) by first principles calculations.Mod. Phys. Lett. B2016301155025510.1142/S0217984915502553
    [Google Scholar]
  44. MadlolR.A.A. Structural and optical properties of ZnO nanotube synthesis via novel method.Results Phys.201771498150310.1016/j.rinp.2017.04.018
    [Google Scholar]
/content/journals/cms/10.2174/2666145416666230406083223
Loading
/content/journals/cms/10.2174/2666145416666230406083223
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test