Skip to content
2000
image of Himalayan Sheep Wool Reinforced Composite- A Novel Sustainable Material for Future

Abstract

Background

Sheep wool-reinforced composites offer a sustainable alternative with diverse applications. This study explores their properties, focusing on water absorption behavior and contact angle measurements.

Objective

To investigate the properties of sheep wool-reinforced composites and evaluate their suitability for moisture-sensitive environments, with potential for patent protection.

Methods

Wool fibres, known for their hydrophilic nature, were modified to be hydrophobic and incorporated into epoxy resin matrices. Different weaving patterns were utilized to create fibre mats reinforcing epoxy composites.

Results

2D plane weaving reinforcements exhibited superior in-plane properties compared to other reinforcements. Utilizing environmental sources like sheep wool in epoxy composites offers advantages such as low density, cost-effectiveness, and sustainability, potentially patentable innovations.

Conclusion

The study demonstrates the developed composites' excellent resistance to water absorption, making them viable for moisture-sensitive applications. Contact angle measurements suggest strong interfacial adhesion between wool fibres and the epoxy matrix, highlighting patent-worthy advancements. These findings underscore the potential of sheep wool-reinforced composites in sustainable and moisture-resistant applications across various industries, including automotive, construction, and consumer goods, emphasizing the importance of patent protection for innovative technologies.

Loading

Article metrics loading...

/content/journals/cms/10.2174/0126661454330432241003090151
2024-10-28
2024-11-22
Loading full text...

Full text loading...

References

  1. Agarwal BD Broutman LJ Chandrashekhara K Analysis and performance of fiber composites. 4th ed Wiley 2006
    [Google Scholar]
  2. Rohit K Dixit S A review - Future aspect of natural fiber reinforced composite. Polymers Renew. Res. 2016 7 2 43 59 10.1177/204124791600700202
    [Google Scholar]
  3. Bharath KN Manjunatha GB Santhosh K Failure analysis and the optimal toughness design of sheep–wool reinforced epoxy composites. Failure Analysis in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites Woodhead Publishing 2019 97 107 10.1016/B978‑0‑08‑102293‑1.00005‑X
    [Google Scholar]
  4. Tasgin Y. Demircan G. Kandemir S. Acikgoz A. Mechanical, wear and thermal properties of natural fiber-reinforced epoxy composite: Cotton, sisal, coir and wool fibers. J. Mater. Sci. 2024 59 24 10844 10857 10.1007/s10853‑024‑09810‑2
    [Google Scholar]
  5. Ali Mianehro Wool in composites: Wool fiber as a component in biocomposites. The Wool Handbook Woodhead Publishing 2024 467 486 10.1016/B978‑0‑323‑99598‑6.00009‑8
    [Google Scholar]
  6. Nilesh C. Surface modification and different recycling techniques of natural fibre reinforced polymer matrix composites to overcome current & future challenges. Compos. Sci. Technol. 2024 10.1007/978‑981‑99‑8327‑8_13
    [Google Scholar]
  7. Hossein Abdollahiparsa A review of recent developments in structural applications of natural fiber-Reinforced composites (NFRCs). Composites Adv. Mater. 2023 10.1177/26349833221147540
    [Google Scholar]
  8. Dev B. Rahman A. Alam R. Repon R. Nawab Y. Mapping the progress in natural fiber reinforced composites: Preparation, mechanical properties, and applications. Polym. Compos. 2023 44 7 3748 3788 10.1002/pc.27376
    [Google Scholar]
  9. Stig F. Hallström S. Assessment of the mechanical properties of a new 3D woven fibre composite material. Compos. Sci. Technol. 2009 69 11-12 1686 1692 10.1016/j.compscitech.2008.04.047
    [Google Scholar]
  10. Dilip Raja N. Anand Kumar K.V. Effect of weaving pattern on the mechanical properties of 2D interwoven Kevlar-jute hybrid laminates. J. Nat. Fibers 2022 19 16 13076 13087 10.1080/15440478.2022.2085226
    [Google Scholar]
  11. Shariful I. Influence of Plain, Twill, and Satin Weave Structures on the Optimum Colorfastness Properties of Reactive Dyes. TRENDS IN THE SCIENCES 2021 10.48048/tis.2021.83
    [Google Scholar]
  12. Erol O. Powers B.M. Keefe M. Effects of weave architecture and mesoscale material properties on the macroscale mechanical response of advanced woven fabrics. Compos., Part A Appl. Sci. Manuf. 2017 101 554 566 10.1016/j.compositesa.2017.07.016
    [Google Scholar]
  13. Hani A.R.A. Hashim M.S. Lim T.Y. Mariatti M. Ahmad R. Impact behaviour of woven coir-epoxy composite: Effects of woven density and woven fabric treatment. Proc. Inst. Mech. Eng. L J. Mater. Des. Appl. 2016 230 240 251 10.1177/1464420714567744
    [Google Scholar]
  14. Ahn H. Yu W.R. Mechanical analysis of 3D braided and woven composites using fiber-based continuum analysis. Compos. Struct. 2017 160 1105 1118 10.1016/j.compstruct.2016.11.003
    [Google Scholar]
  15. Abu Bakar I.A. Kramer O. Bordas S. Rabczuk T. Optimization of elastic properties and weaving patterns of woven composites. Compos. Struct. 2013 100 575 591 10.1016/j.compstruct.2012.12.043
    [Google Scholar]
  16. Fuentes C.A. Tran L.Q.N. Dupont-Gillain C. Vanderlinden W. De Feyter S. Van Vuure A.W. Verpoest I. Wetting behaviour and surface properties of technical bamboo fibres. Colloids Surf. A Physicochem. Eng. Asp. 2011 380 1-3 89 99 10.1016/j.colsurfa.2011.02.032
    [Google Scholar]
  17. Abdul Khalil H.P.S. Bhat I.U.H. Jawaid M. Zaidon A. Hermawan D. Hadi Y.S. Bamboo fibre reinforced biocomposites: A review. Mater. Des. 2012 42 353 368 10.1016/j.matdes.2012.06.015
    [Google Scholar]
  18. Ayrilmis N. Benthien J.T. Thoemen H. White R.H. Effects of fire retardants on physical, mechanical, and fire properties of flat-pressed WPCs. Holz Roh- Werkst. 2012 70 1-3 215 224 10.1007/s00107‑011‑0541‑3
    [Google Scholar]
  19. Liang Y. Wang H. Soutis C. Lowe T. Cernik R. Progressive damage in satin weave carbon/epoxy composites under quasi-static punch-shear loading. Polym. Test. 2015 41 82 91 10.1016/j.polymertesting.2014.10.013
    [Google Scholar]
  20. Iulianelli G. Tavares M.B. Luetkmeyer L. Water absorption behavior and impact strength of pvc/wood flour composites. Chemistry & Chemical Technology 2010 4 3 225 229 10.23939/chcht04.03.225
    [Google Scholar]
  21. Munthoub D.I. Rahman W.A.W.A. Tensile and water absorption properties of biodegradable composites derived from cassava skin/ polyvinyl alcohol with glycerol as plasticizer. Sains Malays. 2011 40 713 718
    [Google Scholar]
  22. Fu Y. Yu H. Sun Q. Li G. Liu Y. Testing of the superhydrophobicity of a zinc oxide nanorod array coating on wood surface prepared by hydrothermal treatment. hfsg 2012 66 6 739 744 10.1515/hf‑2011‑0261
    [Google Scholar]
  23. Ayrilmis N. Benthien J.T. Thoemen H. Effects of formulation variables on surface properties of wood plastic composites. Compos., Part B Eng. 2012 43 2 325 331 10.1016/j.compositesb.2011.07.011
    [Google Scholar]
  24. Wang C. Zhang H. Wang Y. Chen C. Zhang Z. Wang Y. Effect of hardener stoichiometry on the dielectric properties of epoxy resin/liquid nitrile rubber composite materials. IEEE Trans. Dielectr. Electr. Insul. 2023 30 3 1178 1187 10.1109/TDEI.2022.3232586
    [Google Scholar]
  25. Chao Zhang Mechanical properties of mo fiber-reinforced resin mineral composites with different mass ratio of resin and hardener. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2019 10.1007/s11595‑019‑2063‑5
    [Google Scholar]
  26. Mohamad Shafiq Aswan Hissam Influence of hardener/resin ratio towards frictional properties of fibre-reinforced epoxy composite laminates. J. Transport Syst. Eng. 2020 7 1 6 12
    [Google Scholar]
  27. Ajay P. Handbook of Sustainable Materials: Modelling, Characterization, and Optimization. CRC Press eBooks 2023 10.1201/9781003297772
    [Google Scholar]
  28. Kumar A. Kumar P. Srivastava A.K. Goyat V. Modeling, Characterization, and Processing of Smart Materials. IGI Global 2023 10.4018/978‑1‑6684‑9224‑6
    [Google Scholar]
  29. Kumar A. Singh H. Kumar P. Al Mangour B. Handbook of Smart Manufacturing: Forecasting the Future of Industry 4.0. CRC Press 2023 10.1201/9781003333760
    [Google Scholar]
  30. Kumar A. Kumar P. Mittal R.K. Gambhir V. Materials processed by additive manufacturing techniques. Advances in Additive Manufacturing Artificial Intelligence, Nature-Inspired, and Biomanufacturing Elsevier 2023 217 233 10.1016/B978‑0‑323‑91834‑3.00014‑4
    [Google Scholar]
  31. Kumar A. Mittal R.K. Haleem A. Advances in Additive Manufacturing: Artificial Intelligence, Nature-Inspired, and Biomanufacturing. Elsevier 2022 10.1016/C2020‑0‑03877‑6
    [Google Scholar]
  32. Ajay P. Waste Recovery and Management: An Approach Toward Sustainable Development Goals. 1st ed CRC Press. 2023 10.1201/9781003359784
    [Google Scholar]
  33. Kumar A. Handbook of Intelligent and Sustainable Manufacturing: Tools, Principles, and Strategies. 1st ed CRC Press. 2024 10.1201/9781003405870
    [Google Scholar]
  34. Kumar A. Dogra N. Handbook of Intelligent and Sustainable Smart Dentistry: Nature and Bio-Inspired Approaches, Processes, Materials, and Manufacturing. 1st ed CRC Press. 2024 10.1201/9781003404934
    [Google Scholar]
  35. Singh A. Srivastava A. K. Kumar A. Gautam P. Design for low thermal conductivity and low vibrational impact without efflorescence of the composite bricks developed by waste plastic resin/fly ash/glass powder/gypsum. Int. J. Interact. Des. Manuf. 2023 10.1007/s12008‑023‑01582‑4
    [Google Scholar]
  36. Singh A. Srivastava A. K. Kumar A. Bajaj R. Singh G. K. Design and development of plentiful fly ash-based glass powder-reinforced plastic composite bricks for low water absorption and high compressive and flexural strength. Int. J. Interact. Des. Manuf. 2023 10.1007/s12008‑023‑01580‑6
    [Google Scholar]
  37. Wagih A. Junaedi H. Mahmoud H.A. Lubineau G. Kumar A. Sebaey T.A. Enhanced damage tolerance and fracture toughness of lightweight carbon-Kevlar fiber hybrid laminate. J. Compos. Mater. 2024 b 58 9 1109 1121 10.1177/00219983241235853
    [Google Scholar]
  38. Tripathi A. Jha N.K. Hota R.N. Kumar A. Tyagi R. Green sound-absorbing material prepared by using natural fiber for building acoustics. Proc. Inst. Mech. Eng. E J. Process Mech. Eng. 2024 10.1177/09544089241253973
    [Google Scholar]
/content/journals/cms/10.2174/0126661454330432241003090151
Loading
/content/journals/cms/10.2174/0126661454330432241003090151
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: epoxy ; Natural fibre ; weave pattern ; sustainability ; sheep wool
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test