Skip to content
2000
image of 3-Dimensional Printing in Healthcare: Manufacturing Techniques and Applications

Abstract

3D printing and additive manufacturing are interchangeable terms. Additive manufacturing builds models layer by layer using a variety of laser-based or sophisticated printing processes. While this was one of the earliest techniques for 3D printing, the field now widely uses a number of other patented methods. The objective is to analyze the success rate of 3D printing in healthcare. The medical industry has found 3D printing to be highly beneficial in recent years. The application of 3D printing technology allows for greater customization of the therapeutic process, which enhances treatment safety, accuracy, and precision. On the other hand, the disclosure of new materials for 3D printing occurs frequently. For some producers, the right materials might just be a few months or years away. However, printing certain materials may be difficult or impossible. Excellent results are not always possible with 3D printers. We can conclude that 3D printing represents one of the most advanced techniques in healthcare.

Loading

Article metrics loading...

/content/journals/cms/10.2174/0126661454329211241015103118
2024-10-22
2025-01-19
Loading full text...

Full text loading...

References

  1. 3D printing and the future of manufacturing. 2012
  2. Chinese Dr. creates 3D printed skull implant. 2013 Available from: https://www.engineering.com/chinese-dr-creates-3d-printed-skull-implant/
  3. 3D printed pelvis helps man with rare bone cancer keep walking. 2014 Available from: https://www.independent.co.uk/news/uk/home-news/3d-printed-pelvis-helps-man-with-rare-bone-cancer-keep-walking-9119473.html
  4. Basgul C. Yu T. MacDonald D.W. Siskey R. Marcolongo M. Kurtz S.M. Structure–property relationships for 3D-printed PEEK intervertebral lumbar cages produced using fused filament fabrication. J. Mater. Res. 2018 33 14 2040 2051 10.1557/jmr.2018.178 30555210
    [Google Scholar]
  5. Trenfield S.J. Awad A. Goyanes A. 3D printing pharmaceuticals: Drug development to frontline care. Trends Pharmacol. Sci. 39 5 2018 440 451 10.1016/j.tips.2018.02.006 29534837
    [Google Scholar]
  6. Manero A. Smith P. Sparkman J. Dombrowski M. Courbin D. Kester A. Womack I. Chi A. Implementation of 3D printing technology in the field of prosthetics: Past, present, and future. Int. J. Environ. Res. Public Health 2019 16 9 1641 10.3390/ijerph16091641 31083479
    [Google Scholar]
  7. Wohlers T.T. Caffrey T. Wohlers report 2014: 3D printing and additive manufacturing state of the industry annual worldwide progress report. Fort Collins, Colorado Wohlers Associates 2014
    [Google Scholar]
  8. Crenn M.J. Rohman G. Fromentin O. Benoit A. Polylactic acid as a biocompatible polymer for three-dimensional printing of interim prosthesis: Mechanical characterization. Dent. Mater. J. 2022 41 1 110 116 10.4012/dmj.2021‑151 34866117
    [Google Scholar]
  9. Murphy S.V. Atala A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 2014 32 8 773 785 10.1038/nbt.2958 25093879
    [Google Scholar]
  10. Lu D. Li T. Yu W. Feng H. Xu Y. Ma Z. Tan J. Niu G. Zheng P. Xiong Y. Zhang H. Li F. Zhu R. Mei Z. Zhang Y. Liu D. Nan X. Wang J. Dai K. Expert consensus on the design, manufacture, materials, and clinical application of customized three-dimensional printing scoliosis orthosis. Digit. Med. 2022 8 2 10.4103/digm.digm_34_21
    [Google Scholar]
  11. Wang D.D. Qian Z. Vukicevic M. Engelhardt S. Kheradvar A. Zhang C. Little S.H. Verjans J. Comaniciu D. O’Neill W.W. Vannan M.A. 3D printing, computational modeling, and artificial intelligence for structural heart disease. JACC Cardiovasc. Imaging 2021 14 1 41 60 10.1016/j.jcmg.2019.12.022 32861647
    [Google Scholar]
  12. Calderhead R.G. The photobiological basics behind light-emitting diode (LED) phototherapy. Laser Ther. 2007 16 2 97 108 10.5978/islsm.16.97
    [Google Scholar]
  13. Shirasaki Y. Supran G.J. Bawendi M.G. Bulović V. Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photonics 2013 7 1 13 23 10.1038/nphoton.2012.328
    [Google Scholar]
  14. Kim J.H. Jo D.Y. Lee K.H. Jang E.P. Han C.Y. Jo J.H. Yang H. White electroluminescent lighting device based on a single quantum dot emitter. Adv. Mater. 2016 28 25 5093 5098 10.1002/adma.201600815 27135303
    [Google Scholar]
  15. Zhang M. Hu B. Meng L. Bian R. Wang S. Wang Y. Liu H. Jiang L. Ultrasmooth quantum dot micropatterns by a facile controllable liquid-transfer approach: Low-cost fabrication of high-performance QLED. J. Am. Chem. Soc. 2018 140 28 8690 8695 10.1021/jacs.8b02948 29894177
    [Google Scholar]
  16. Yang Z. Gao M. Wu W. Yang X. Sun X.W. Zhang J. Wang H.C. Liu R.S. Han C.Y. Yang H. Li W. Recent advances in quantum dot-based light-emitting devices: Challenges and possible solutions. Mater. Today 2019 24 69 93 10.1016/j.mattod.2018.09.002
    [Google Scholar]
  17. Li X. Hu B. Zhang M. Wang X. Chen L. Wang A. Wang Y. Du Z. Jiang L. Liu H. Continuous and controllable liquid transfer guided by a fibrous liquid bridge: Toward high‐performance QLEDs. Adv. Mater. 2019 31 51 1904610 10.1002/adma.201904610 31696997
    [Google Scholar]
  18. Chen J. Wang J. Xu X. Li J. Song J. Lan S. Liu S. Cai B. Han B. Precht J.T. Ginger D. Zeng H. Efficient and bright white light-emitting diodes based on single-layer heterophase halide perovskites. Nat. Photonics 2021 15 3 238 244 10.1038/s41566‑020‑00743‑1
    [Google Scholar]
  19. García de Arquer F.P. Talapin D.V. Klimov V.I. Arakawa Y. Bayer M. Sargent E.H. Semiconductor quantum dots: Technological progress and future challenges. Science 2021 373 6555 eaaz8541 10.1126/science.aaz8541 34353926
    [Google Scholar]
  20. Yang J. Choi M.K. Yang U.J. Kim S.Y. Kim Y.S. Kim J.H. Kim D.H. Hyeon T. Toward full-color electroluminescent quantum dot displays. Nano Lett. 2021 21 1 26 33 10.1021/acs.nanolett.0c03939 33258610
    [Google Scholar]
  21. Meng T. Zheng Y. Zhao D. Hu H. Zhu Y. Xu Z. Ju S. Jing J. Chen X. Gao H. Yang K. Guo T. Li F. Fan J. Qian L. Ultrahigh-resolution quantum-dot light-emitting diodes. Nat. Photonics 2022 16 4 297 303 10.1038/s41566‑022‑00960‑w
    [Google Scholar]
  22. Dai X. Deng Y. Peng X. Jin Y. Quantum‐dot light‐emitting diodes for large‐area displays: Towards the dawn of commercialization. Adv. Mater. 2017 29 14 1607022 10.1002/adma.201607022 28256780
    [Google Scholar]
  23. Xiang C. Cao W. Yang Y. Qian L. Yan X. The dawn of QLED for the FPD industry. Inf. Disp. 2018 34 6 14 17 10.1002/j.2637‑496X.2018.tb01133.x
    [Google Scholar]
  24. Xiang C. Wu L. Lu Z. Li M. Wen Y. Yang Y. Liu W. Zhang T. Cao W. Tsang S.W. Shan B. Yan X. Qian L. High efficiency and stability of ink-jet printed quantum dot light emitting diodes. Nat. Commun. 2020 11 1 1646 10.1038/s41467‑020‑15481‑9 32242016
    [Google Scholar]
  25. Wei C. Su W. Li J. Xu B. Shan Q. Wu Y. Zhang F. Luo M. Xiang H. Cui Z. Zeng H. A universal ternary‐solvent‐ink strategy toward efficient inkjet‐printed perovskite quantum dot light‐emitting diodes. Adv. Mater. 2022 34 10 2107798 10.1002/adma.202107798 34990514
    [Google Scholar]
  26. Bai W. Xuan T. Zhao H. Shi S. Zhang X. Zhou T. Wang L. Xie R.J. Microscale perovskite quantum dot light‐emitting diodes (Micro‐PeLEDs) for full‐color displays. Adv. Opt. Mater. 2022 10 12 2200087 10.1002/adom.202200087
    [Google Scholar]
  27. Yang Z. Lin G. Bai J. Li L. Zhu Y. He L. Jiang Z. Wu W. Yu X. Li F. Li W. Inkjet-printed blue InP/ZnS/ZnS quantum dot light-emitting diodes. Chem. Eng. J. 2022 450 138413 10.1016/j.cej.2022.138413
    [Google Scholar]
  28. Liu F. Chen D. Wang C. Luo K. Gu W. Briseno A.L. Hsu J.W.P. Russell T.P. Molecular weight dependence of the morphology in P3HT:PCBM solar cells. ACS Appl. Mater. Interfaces 2014 6 22 19876 19887 10.1021/am505283k 25350382
    [Google Scholar]
  29. Ni Z. Wang H. Dong H. Dang Y. Zhao Q. Zhang X. Hu W. Mesopolymer synthesis by ligand-modulated direct arylation polycondensation towards n-type and ambipolar conjugated systems. Nat. Chem. 2019 11 3 271 277 10.1038/s41557‑018‑0200‑y 30692659
    [Google Scholar]
  30. Awad A. Trenfield S.J. Goyanes A. Gaisford S. Basit A.W. Reshaping drug development using 3D printing. Cardiovasc. Imaging 2018 23 8 1547 1555 29803932
    [Google Scholar]
  31. Chen Y. Zhang J. Liu X. Wang S. Tao J. Huang Y. Wu W. Li Y. Zhou K. Wei X. Chen S. Li X. Xu X. Cardon L. Qian Z. Gou M. Noninvasive in vivo 3D bioprinting. Sci. Adv. 2020 6 23 eaba7406 10.1126/sciadv.aba7406 32537512
    [Google Scholar]
  32. Shin Y.J. Shafranek R.T. Tsui J.H. Walcott J. Nelson A. Kim D.H. 3D bioprinting of mechanically tuned bioinks derived from cardiac decellularized extracellular matrix. Acta Biomater. 2021 119 75 88 10.1016/j.actbio.2020.11.006 33166713
    [Google Scholar]
  33. Nagarajan N. Dupret-Bories A. Karabulut E. Zorlutuna P. Vrana N.E. Enabling personalized implant and controllable biosystem development through 3D printing. Biotechnol. Adv. 2018 36 2 521 533 10.1016/j.biotechadv.2018.02.004 29428560
    [Google Scholar]
  34. Tibbits S. 4D printing: Multi-material shape change. Archit. Des. 2014 84 1 116 121 10.1002/ad.1710
    [Google Scholar]
  35. Guillemot F. Mironov V. Nakamura M. Bioprinting is coming of age: Report from the international conference on bioprinting and biofabrication in Bordeaux (3B’09). Biofabrication 2010 2 1 010201 10.1088/1758‑5082/2/1/010201 20811115
    [Google Scholar]
  36. Jeong H.J. Nam H. Jang J. Lee S.J. 3D bioprinting strategies for the regeneration of functional tubular tissues and organs. Bioengineering (Basel) 2020 7 2 32 10.3390/bioengineering7020032 32244491
    [Google Scholar]
  37. Cui H. Nowicki M. Fisher J.P. Zhang L.G. 3D bioprinting for organ regeneration. Adv. Healthc. Mater. 2017 6 1 1601118 10.1002/adhm.201601118 27995751
    [Google Scholar]
  38. Park J. Lakes R.S. Biomaterials: An introduction. Springer New York, USA 3rd ed 2007
    [Google Scholar]
  39. Adamovic D. Ristic B. Zivic F. Review of existing biomaterials — Method of material selection for specific applications in orthopedics. Biomaterials in Clinical Practice Cham Springer Zivic F. Affatato S. Trajanovic M. Schnabelrauch M. Grujovic N. Choy K. 2018 47 99 10.1007/978‑3‑319‑68025‑5_3
    [Google Scholar]
  40. Rezvani Ghomi E. Khalili S. Nouri Khorasani S. Esmaeely Neisiany R. Ramakrishna S. Wound dressings: Current advances and future directions. J. Appl. Polym. Sci. 2019 136 27 47738 10.1002/app.47738
    [Google Scholar]
  41. Marjanović-Balaban Ž. Jelić D. Polymeric biomaterials in clinical practice. Biomaterials in Clinical Practice Springer Cham Zivic F. Affatato S. Trajanovic M. Schnabelrauch M. Grujovic N. Choy K. 2018 101 117 10.1007/978‑3‑319‑68025‑5_4
    [Google Scholar]
  42. Özcan M. Hämmerle C. Titanium as a reconstruction and implant material in dentistry: Advantages and pitfalls. Materials (Basel) 2012 5 9 1528 1545 10.3390/ma5091528
    [Google Scholar]
  43. Pilliar R.M. Modern metal processing for improved load-bearing surgical implants. Biomaterials 1991 12 2 95 100 10.1016/0142‑9612(91)90185‑D 1878463
    [Google Scholar]
  44. Ogihara N. Usui Y. Aoki K. Shimizu M. Narita N. Hara K. Nakamura K. Ishigaki N. Takanashi S. Okamoto M. Kato H. Haniu H. Ogiwara N. Nakayama N. Taruta S. Saito N. Biocompatibility and bone tissue compatibility of alumina ceramics reinforced with carbon nanotubes. Nanomedicine (Lond.) 2012 7 7 981 993 10.2217/nnm.12.1 22401267
    [Google Scholar]
  45. Sáenz A. Rivera E. Brostow W. Castaño V.M. Ceramic biomaterials: An introductory overview. J. Mater. Educ. 1999 21 5/6 267 276
    [Google Scholar]
  46. Maeda H. Seymour L.W. Miyamoto Y. Conjugates of anticancer agents and polymers: Advantages of macromolecular therapeutics in vivo. Bioconjug. Chem. 1992 3 5 351 362 10.1021/bc00017a001 1420435
    [Google Scholar]
  47. Angelova N. Hunkeler D. Box 1. Polymer properties needed for specific biomaterial applications. Trends Biotechnol. 1999 10 17 409 421 10.1016/S0167‑7799(99)01356‑6 10481173
    [Google Scholar]
  48. West J.L. Hubbell J.A. Polymeric biomaterials with degradation sites for proteases involved in cell migration. Macromolecules 1999 32 1 241 244 10.1021/ma981296k
    [Google Scholar]
  49. Markočič E. Škerget M. Knez Ž. Solubility and diffusivity of CO2 in poly(l-lactide)–hydroxyapatite and poly(d,l-lactide-co-glycolide)–hydroxyapatite composite biomaterials. J. Supercrit. Fluids 2011 55 3 1046 1051 10.1016/j.supflu.2010.10.001
    [Google Scholar]
  50. Peng H.T. Martineau L. Shek P.N. Hydrogel–elastomer composite biomaterials: 1. Preparation of interpenetrating polymer networks and in vitro characterization of swelling stability and mechanical properties. J. Mater. Sci. Mater. Med. 2007 18 6 975 986 10.1007/s10856‑006‑0088‑8 17243001
    [Google Scholar]
  51. Sun Z. Patient-specific 3D printing in liver disease. Liver Diseases Springer Cham Radu-Ionita F. Pyrsopoulos N. Jinga M. Tintoiu I. Sun Z. Bontas E. 2020 493 501
    [Google Scholar]
  52. Khosravi F. Nouri Khorasani S. Rezvani Ghomi E. Kichi M.K. Zilouei H. Farhadian M. Esmaeely Neisiany R. A bilayer GO/nanofibrous biocomposite coating to enhance 316L stainless steel corrosion performance. Mater. Res. Express 2019 6 8 086470 10.1088/2053‑1591/ab26d5
    [Google Scholar]
  53. Rezwan K. Chen Q.Z. Blaker J.J. Boccaccini A.R. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 2006 27 18 3413 3431 10.1016/j.biomaterials.2006.01.039 16504284
    [Google Scholar]
  54. Godbey W.T. Atala A. In vitro systems for tissue engineering. Ann. N. Y. Acad. Sci. 2002 961 1 10 26 10.1111/j.1749‑6632.2002.tb03041.x 12081857
    [Google Scholar]
  55. Rhee S. Puetzer J.L. Mason B.N. Reinhart-King C.A. Bonassar L.J. 3D bioprinting of spatially heterogeneous collagen constructs for cartilage tissue engineering. ACS Biomater. Sci. Eng. 2016 2 10 1800 1805 10.1021/acsbiomaterials.6b00288 33440478
    [Google Scholar]
  56. Trenfield S.J. Awad A. Madla C.M. Hatton G.B. Firth J. Goyanes A. Gaisford S. Basit A.W. Shaping the future: Recent advances of 3D printing in drug delivery and healthcare. Expert Opin. Drug Deliv. 16 10 1081 1094 2019 10.1080/17425247.2019.1660318 31478752
    [Google Scholar]
  57. Vithani K. Goyanes A. Jannin V. Basit A.W. Gaisford S. Boyd B.J. An overview of 3D printing technologies for soft materials and potential opportunities for lipid-based drug delivery systems. Pharm. Res. 2019 36 1 4 10.1007/s11095‑018‑2531‑1 30406349
    [Google Scholar]
  58. Agrawal A. Gupta A.K. Printing technology in pharmaceuticals and biomedical: A review. J. Drug Deliv. Ther. 2019 9 2-A 1 4
    [Google Scholar]
  59. Liang K. Brambilla D. Leroux J.C. Is 3D printing of pharmaceuticals a disruptor or enabler? Adv. Mater. 2019 31 5 1805680 10.1002/adma.201805680 30506794
    [Google Scholar]
  60. Hazeveld A. Huddleston Slater J.J.R. Ren Y. Accuracy and reproducibility of dental replica models reconstructed by different rapid prototyping techniques. Am. J. Orthod. Dentofacial Orthop. 2014 145 1 108 115 10.1016/j.ajodo.2013.05.011 24373661
    [Google Scholar]
  61. D’Urso P.S. Barker T.M. Earwaker W.J. Bruce L.J. Atkinson R.L. Lanigan M.W. Arvier J.F. Effeney D.J. Stereolithographic biomodelling in cranio-maxillofacial surgery: A prospective trial. J. Craniomaxillofac. Surg. 1999 27 1 30 37 10.1016/S1010‑5182(99)80007‑9 10188125
    [Google Scholar]
  62. Kozakiewicz M. Elgalal M. Loba P. Komuński P. Arkuszewski P. Broniarczyk-Loba A. Stefańczyk L. Clinical application of 3D pre-bent titanium implants for orbital floor fractures. J. Craniomaxillofac. Surg. 2009 37 4 229 234 10.1016/j.jcms.2008.11.009 19186068
    [Google Scholar]
  63. Cui J. Chen L. Guan X. Ye L. Wang H. Liu L. Surgical planning, three-dimensional model surgery and preshaped implants in treatment of bilateral craniomaxillofacial post-traumatic deformities. J. Oral Maxillofac. Surg. 2014 72 6 1138.e1 1138.e14 10.1016/j.joms.2014.02.023 24679954
    [Google Scholar]
  64. Wurm G. Tomancok B. Pogady P. Holl K. Trenkler J. Cerebrovascular stereolithographic biomodeling for aneurysm surgery. J. Neurosurg. 2004 100 1 139 145 10.3171/jns.2004.100.1.0139 14743927
    [Google Scholar]
  65. Grant G.T. Liacouras P. Kondor S. Maxillofacial imaging in the trauma patient. Atlas Oral Maxillofac. Surg. Clin. North Am. 2013 21 1 25 36 10.1016/j.cxom.2012.12.002 23498329
    [Google Scholar]
  66. Kono K. Shintani A. Okada H. Terada T. Preoperative simulations of endovascular treatment for a cerebral aneurysm using a patient-specific vascular silicone model. Neurol. Med. Chir. (Tokyo) 2013 53 5 347 351 10.2176/nmc.53.347 23708228
    [Google Scholar]
  67. Paiva W.S. Amorim R. Bezerra D.A.F. Masini M. Aplication of the stereolithography technique in complex spine surgery. Arq. Neuropsiquiatr. 2007 65 2b 443 445 10.1590/S0004‑282X2007000300015 17665012
    [Google Scholar]
  68. Zopf D.A. Hollister S.J. Nelson M.E. Ohye R.G. Green G.E. Bioresorbable airway splint created with a three-dimensional printer. N. Engl. J. Med. 2013 368 21 2043 2045 10.1056/NEJMc1206319 23697530
    [Google Scholar]
  69. Akiba T. Nakada T. Inagaki T. Simulation of the fissureless technique for thoracoscopic segmentectomy using rapid prototyping. Ann. Thorac. Cardiovasc. Surg. 2015 21 1 84 86 10.5761/atcs.nm.13‑00322 24633132
    [Google Scholar]
  70. Akiba T. Nakada T. Inagaki T. A three-dimensional mediastinal model created with rapid prototyping in a patient with ectopic thymoma. Ann. Thorac. Cardiovasc. Surg. 2015 21 1 87 89 10.5761/atcs.nm.13‑00342 24633133
    [Google Scholar]
  71. Henry S. McAllister D.V. Allen M.G. Prausnitz M.R. Microfabricated microneedles: a novel approach to transdermal drug delivery. J. Pharm. Sci. 1998 87 8 922 925 10.1021/js980042+ 9687334
    [Google Scholar]
  72. Davis S.P. Landis B.J. Adams Z.H. Allen M.G. Prausnitz M.R. Insertion of microneedles into skin: Measurement and prediction of insertion force and needle fracture force. J. Biomech. 2004 37 8 1155 1163 10.1016/j.jbiomech.2003.12.010 15212920
    [Google Scholar]
  73. Kaushik S. Hord A.H. Denson D.D. McAllister D.V. Smitra S. Allen M.G. Prausnitz M.R. Lack of pain associated with microfabricated microneedles. Anesth. Analg. 2001 92 2 502 504 10.1213/00000539‑200102000‑00041 11159258
    [Google Scholar]
  74. Boehm R.D. Miller P.R. Hayes S.L. Monteiro-Riviere N.A. Narayan R.J. Modification of microneedles using inkjet printing. AIP Adv. 2011 1 2 022139 10.1063/1.3602461 22125759
    [Google Scholar]
  75. Boehm R.D. Miller P.R. Singh R. Shah A. Stafslien S. Daniels J. Narayan R.J. Indirect rapid prototyping of antibacterial acid anhydride copolymer microneedles. Biofabrication 2012 4 1 011002 10.1088/1758‑5082/4/1/011002 22287512
    [Google Scholar]
  76. Liang K. Carmone S. Brambilla D. Leroux J.C. 3D printing of a wearable personalized oral delivery device: A first-in-human study. Sci. Adv. 2018 4 5 eaat2544 10.1126/sciadv.aat2544 29750201
    [Google Scholar]
  77. Boehm R.D. Miller P.R. Daniels J. Stafslien S. Narayan R.J. Inkjet printing for pharmaceutical applications. Mater. Today 2014 17 5 247 252 10.1016/j.mattod.2014.04.027
    [Google Scholar]
  78. Alhijjaj M. Belton P. Qi S. An investigation into the use of polymer blends to improve the printability of and regulate drug release from pharmaceutical solid dispersions prepared via fused deposition modeling (FDM) 3D printing. Eur. J. Pharm. Biopharm. 2016 108 111 125 10.1016/j.ejpb.2016.08.016 27594210
    [Google Scholar]
  79. Khaled S.A. Burley J.C. Alexander M.R. Roberts C.J. Desktop 3D printing of controlled release pharmaceutical bilayer tablets. Int. J. Pharm. 2014 461 1-2 105 111 10.1016/j.ijpharm.2013.11.021 24280018
    [Google Scholar]
  80. Maroni A. Melocchi A. Parietti F. Foppoli A. Zema L. Gazzaniga A. 3D printed multi-compartment capsular devices for two-pulse oral drug delivery. J. Control. Release 2017 268 10 18 10.1016/j.jconrel.2017.10.008 29030223
    [Google Scholar]
  81. Genina N. Boetker J.P. Colombo S. Harmankaya N. Rantanen J. Bohr A. Anti-tuberculosis drug combination for controlled oral delivery using 3D printed compartmental dosage forms: From drug product design to in vivo testing. J. Control. Release 2017 268 40 48 10.1016/j.jconrel.2017.10.003 28993169
    [Google Scholar]
  82. Kyobula M. Adedeji A. Alexander M.R. Saleh E. Wildman R. Ashcroft I. Gellert P.R. Roberts C.J. 3D inkjet printing of tablets exploiting bespoke complex geometries for controlled and tuneable drug release. J. Control. Release 2017 261 207 215 10.1016/j.jconrel.2017.06.025 28668378
    [Google Scholar]
  83. Sadia M. Arafat B. Ahmed W. Forbes R.T. Alhnan M.A. Channelled tablets: An innovative approach to accelerating drug release from 3D printed tablets. J. Control. Release 2018 269 355 363 10.1016/j.jconrel.2017.11.022 29146240
    [Google Scholar]
  84. Goyanes A. Robles Martinez P. Buanz A. Basit A.W. Gaisford S. Effect of geometry on drug release from 3D printed tablets. Int. J. Pharm. 2015 494 2 657 663 10.1016/j.ijpharm.2015.04.069 25934428
    [Google Scholar]
  85. Jamróz W. Szafraniec J. Kurek M. Jachowicz R. 3D printing in pharmaceutical and medical applications – Recent achievements and challenges. Pharm. Res. 2018 35 9 176 10.1007/s11095‑018‑2454‑x 29998405
    [Google Scholar]
  86. Skowyra J. Pietrzak K. Alhnan M.A. Fabrication of extended-release patient-tailored prednisolone tablets via fused deposition modelling (FDM) 3D printing. Eur. J. Pharm. Sci. 2015 68 11 17 10.1016/j.ejps.2014.11.009 25460545
    [Google Scholar]
  87. Li Q. Wen H. Jia D. Guan X. Pan H. Yang Y. Yu S. Zhu Z. Xiang R. Pan W. Preparation and investigation of controlled-release glipizide novel oral device with three-dimensional printing. Int. J. Pharm. 2017 525 1 5 11 10.1016/j.ijpharm.2017.03.066 28377316
    [Google Scholar]
  88. Goyanes A. Kobayashi M. Martínez-Pacheco R. Gaisford S. Basit A.W. Fused-filament 3D printing of drug products: Microstructure analysis and drug release characteristics of PVA-based caplets. Int. J. Pharm. 2016 514 1 290 295 10.1016/j.ijpharm.2016.06.021 27863674
    [Google Scholar]
  89. Goyanes A. Buanz A.B.M. Hatton G.B. Gaisford S. Basit A.W. 3D printing of modified-release aminosalicylate (4-ASA and 5-ASA) tablets. Eur. J. Pharm. Biopharm. 2015 89 157 162 10.1016/j.ejpb.2014.12.003 25497178
    [Google Scholar]
  90. Tagami T. Fukushige K. Ogawa E. Hayashi N. Ozeki T. 3D printing factors important for the fabrication of polyvinylalcohol filament-based tablets. Biol. Pharm. Bull. 2017 40 3 357 364 10.1248/bpb.b16‑00878 28250279
    [Google Scholar]
  91. Fu J. Yin H. Yu X. Xie C. Jiang H. Jin Y. Sheng F. Combination of 3D printing technologies and compressed tablets for preparation of riboflavin floating tablet-in-device (TiD) systems. Int. J. Pharm. 2018 549 1-2 370 379 10.1016/j.ijpharm.2018.08.011 30107218
    [Google Scholar]
  92. Linares V. Casas M. Caraballo I. Printfills: 3D printed systems combining fused deposition modeling and injection volume filling. Application to colon-specific drug delivery. Eur. J. Pharm. Biopharm. 2019 134 138 143 10.1016/j.ejpb.2018.11.021 30476539
    [Google Scholar]
  93. Norman J. Madurawe R.D. Moore C.M.V. Khan M.A. Khairuzzaman A. A new chapter in pharmaceutical manufacturing: 3D-printed drug products. Adv. Drug Deliv. Rev. 2017 108 39 50 10.1016/j.addr.2016.03.001 27001902
    [Google Scholar]
  94. Lepowsky E. Tasoglu S. 3D printing for drug manufacturing: A perspective on the future of pharmaceuticals. Int. J. Bioprint. 2024 4 1 119 10.18063/ijb.v1i1.119 33102905
    [Google Scholar]
  95. Jamroz W. Koterbicka J. Kurek M. Czech A. Jachowicz R. Application of 3D printing in pharmaceutical technology. Farm. Pol. 2017 73 9 542 548
    [Google Scholar]
  96. Weisman J.A. Nicholson J.C. Tappa K. Jammalamadaka U. Wilson C.G. Mills D.K. Antibiotic and chemotherapeutic enhanced three-dimensional printer filaments and constructs for biomedical applications. Int. J. Nanomedicine 10 357 370 2015 10.2147/IJN.S74811 25624758
    [Google Scholar]
  97. Melocchi A. Parietti F. Loreti G. Maroni A. Gazzaniga A. Zema L. 3D printing by fused deposition modeling (FDM) of a swellable/erodible capsular device for oral pulsatile release of drugs. J. Drug Deliv. Sci. Technol. 2015 30 360 367 10.1016/j.jddst.2015.07.016
    [Google Scholar]
  98. Charoenying T. Patrojanasophon P. Ngawhirunpat T. Rojanarata T. Akkaramongkolporn P. Opanasopit P. Fabrication of floating capsule-in- 3D-printed devices as gastro-retentive delivery systems of amoxicillin. J. Drug Deliv. Sci. Technol. 2020 55 101393 10.1016/j.jddst.2019.101393
    [Google Scholar]
  99. Beck R.C.R. Chaves P.S. Goyanes A. Vukosavljevic B. Buanz A. Windbergs M. Basit A.W. Gaisford S. 3D printed tablets loaded with polymeric nanocapsules: An innovative approach to produce customized drug delivery systems. Int. J. Pharm. 2017 528 1-2 268 279 10.1016/j.ijpharm.2017.05.074 28583328
    [Google Scholar]
  100. Palmieri G.F. Michelini S. Martino P.D. Martelli S. Polymers with pH-dependent solubility: Possibility of use in the formulation of gastroresistant and controlled-release matrix tablets. Drug Dev. Ind. Pharm. 2000 26 8 837 845 10.1081/DDC‑100101307 10900540
    [Google Scholar]
  101. Pilipenko I. Korzhikov-Vlakh V. Sharoyko V. Zhang N. Schäfer-Korting M. Rühl E. Zoschke C. Tennikova T. pH-sensitive chitosan–heparin nanoparticles for effective delivery of genetic drugs into epithelial cells. Pharmaceutics 2019 11 7 317 10.3390/pharmaceutics11070317 31284414
    [Google Scholar]
  102. Luzuriaga M.A. Berry D.R. Reagan J.C. Smaldone R.A. Gassensmith J.J. Biodegradable 3D printed polymer microneedles for transdermal drug delivery. Lab Chip 2018 18 8 1223 1230 10.1039/C8LC00098K 29536070
    [Google Scholar]
  103. Nadgorny M. Xiao Z. Chen C. Connal L.A. Three-dimensional printing of pH-responsive and functional polymers on an affordable desktop printer. ACS Appl. Mater. Interfaces 2016 8 42 28946 28954 10.1021/acsami.6b07388 27696806
    [Google Scholar]
  104. Dutta S. Cohn D. Temperature and pH responsive 3D printed scaffolds. J. Mater. Chem. B Mater. Biol. Med. 2017 5 48 9514 9521 10.1039/C7TB02368E 32264566
    [Google Scholar]
/content/journals/cms/10.2174/0126661454329211241015103118
Loading
/content/journals/cms/10.2174/0126661454329211241015103118
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: 3D printing ; healthcare ; modelling technique ; bioprinting ; biomaterials
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test