Skip to content
2000
Volume 18, Issue 3
  • ISSN: 2666-1454
  • E-ISSN: 2666-1462

Abstract

Background

A key concern in tissue engineering for bone regeneration is the fabrication of scaffolding so that it serves as a template for cell interactions and the formation of bone’s extracellular matrix to provide structural support to the newly formed tissue.

Objective

In the current study, different amounts of citric acid from 65 to 85 (vol%), including different particle sizes (between 250-700 μm), were used as a porogen to fabricate porous biphasic calcium phosphate scaffolds.

Methods

The scaffolds were prepared under different pressures of 150-250 MPa followed by sintering at various temperatures of 1100-1300°C. The compressive strength, total porosity, volume shrinkage, phase composition, and microstructure of the samples were evaluated.

Results

Scaffolds with a macropore size of 100-500 µm were produced by citric acid porogen. The compressive strength varied using different ranges of porogen particle size (containing the same porogen content) as well as concentration. The results showed that the compressive strength decreased when the applied pressure increased from 150 to 250 MPa and a higher amount of porogen was used. The maximum value of compressive strength was ~13.9MPa, for the sample sintered at 1200°C and had a total porosity of ~55.3%.

Conclusion

This kind of porous biphasic calcium phosphate can exhibit an appropriate ability to be used as a bone substitute due to its physico-mechanical outcomes and approved bioactive structure.

Loading

Article metrics loading...

/content/journals/cms/10.2174/0126661454309226240522075544
2024-05-29
2025-06-28
Loading full text...

Full text loading...

References

  1. ZhouJ. XiongS. LiuM. Study on the influence of scaffold morphology and structure on osteogenic performance.Front. Bioeng. Biotechnol.202311112716210.3389/fbioe.2023.1127162 37051275
    [Google Scholar]
  2. NezafatiN. MoztarzadehF. HesarakiS. MoztarzadehZ. MozafariM. Biological response of a recently developed nanocomposite based on calcium phosphate cement and sol–gel derived bioactive glass fibers as substitution of bone tissues.Ceram. Int.201339128929710.1016/j.ceramint.2012.06.024
    [Google Scholar]
  3. TeimouriR. AbnousK. TaghdisiS.M. RamezaniM. AlibolandiM. Surface modifications of scaffolds for bone regeneration.J. Mater. Res. Technol.2023247938797310.1016/j.jmrt.2023.05.076
    [Google Scholar]
  4. ShamsM. KarimiM. GhollasiM. NezafatiN. SalimiA. Electrospun poly-l-lactic acid nanofibers decorated with melt-derived S53P4 bioactive glass nanoparticles: The effect of nanoparticles on proliferation and osteogenic differentiation of human bone marrow mesenchymal stem cells in vitro.Ceram. Int.20184416202112021910.1016/j.ceramint.2018.08.005
    [Google Scholar]
  5. RezaeiH. ShahrezaeeM. Jalali MonfaredM. Fathi KarkanS. GhafelehbashiR. Simvastatin-loaded graphene oxide embedded in polycaprolactone-polyurethane nanofibers for bone tissue engineering applications.J Polymer Engineer202141537538610.1515/polyeng‑2020‑0301
    [Google Scholar]
  6. RezaeiH. ShahrezaeeM. Jalali MonfaredM. GhorbaniF. ZamanianA. SahebalzamaniM. Mussel‐inspired polydopamine induced the osteoinductivity to ice‐templating PLGA–gelatin matrix for bone tissue engineering application.Biotechnol. Appl. Biochem.202168118519610.1002/bab.1911 32248561
    [Google Scholar]
  7. NorouziM. NaderiM.N. KomasiM.H. SharifzadehS.R. ShahrezaeiM. EajaziA. Clinical results of using the proximal humeral internal locking system plate for internal fixation of displaced proximal humeral fractures.Am. J. Orthop.2012415E64E68 22715443
    [Google Scholar]
  8. ShahrezaeeM. HaghighizadehE. SharifzadehS. MomeniM. Transforming growth factor-β3 relation with osteoporosis and osteoporotic fractures.J. Res. Med. Sci.20192414610.4103/jrms.JRMS_1062_18 31160913
    [Google Scholar]
  9. JinP. LiuL. ChengL. ChenX. XiS. JiangT. Calcium-to-phosphorus releasing ratio affects osteoinductivity and osteoconductivity of calcium phosphate bioceramics in bone tissue engineering.Biomed. Eng. Online20232211210.1186/s12938‑023‑01067‑1 36759894
    [Google Scholar]
  10. ArinzehT.L. TranT. McalaryJ. DaculsiG. A comparative study of biphasic calcium phosphate ceramics for human mesenchymal stem-cell-induced bone formation.Biomaterials200526173631363810.1016/j.biomaterials.2004.09.035 15621253
    [Google Scholar]
  11. HouX. ZhangL. ZhouZ. Calcium phosphate-based biomaterials for bone repair.J. Funct. Biomater.202213418710.3390/jfb13040187 36278657
    [Google Scholar]
  12. ZhangL. HanagataN. MaedaM. Porous hydroxyapatite and biphasic calcium phosphate ceramics promote ectopic osteoblast differentiation from mesenchymal stem cells.Sci. Technol. Adv. Mater.200910202500310.1088/1468‑6996/10/2/025003 27877290
    [Google Scholar]
  13. DutaL. DorciomanG. GrumezescuV. A Review on Biphasic Calcium Phosphate Materials Derived from Fish Discards.Nanomaterials20211111285610.3390/nano11112856 34835621
    [Google Scholar]
  14. MofakhamiS. SalahinejadE. Biphasic calcium phosphate microspheres in biomedical applications.J. Control. Release202133852753610.1016/j.jconrel.2021.09.004 34499980
    [Google Scholar]
  15. VezenkovaA. LocsJ. Sudoku of porous, injectable calcium phosphate cements – Path to osteoinductivity.Bioact. Mater.20221710912410.1016/j.bioactmat.2022.01.001 35386461
    [Google Scholar]
  16. KimS.E. ParkK. Recent advances of biphasic calcium phosphate bioceramics for bone tissue regeneration.Adv. Experimental Med. Biol.20201250177188
    [Google Scholar]
  17. Mohammadi ZerankeshiM. MofakhamiS. SalahinejadE. 3D porous HA/TCP composite scaffolds for bone tissue engineering.Ceram. Int.20224816226472266310.1016/j.ceramint.2022.05.103
    [Google Scholar]
  18. HaiderA. HaiderS. Rao KummaraM. Advances in the scaffolds fabrication techniques using biocompatible polymers and their biomedical application: A technical and statistical review.J. Saudi Chem. Soc.202024218621510.1016/j.jscs.2020.01.002
    [Google Scholar]
  19. SolaA. BertacchiniJ. D’AvellaD. Development of solvent-casting particulate leaching (SCPL) polymer scaffolds as improved three-dimensional supports to mimic the bone marrow niche.Mater. Sci. Eng. C20199615316510.1016/j.msec.2018.10.086 30606521
    [Google Scholar]
  20. KazimierczakP. BenkoA. PalkaK. CanalC. KolodynskaD. PrzekoraA. Novel synthesis method combining a foaming agent with freeze-drying to obtain hybrid highly macroporous bone scaffolds.J. Mater. Sci. Technol.202043526310.1016/j.jmst.2020.01.006
    [Google Scholar]
  21. JanuariyasaI.K. YusufY. Porous carbonated hydroxyapatite-based scaffold using simple gas foaming method.Journal of Asian Ceramic Societies20208363464110.1080/21870764.2020.1770938
    [Google Scholar]
  22. SunT. WangJ. HuangH. Low-temperature deposition manufacturing technology: A novel 3D printing method for bone scaffolds.Front. Bioeng. Biotechnol.202311122210210.3389/fbioe.2023.1222102 37622000
    [Google Scholar]
  23. ChinnasamiH. DeyM.K. DevireddyR. Three-dimensional scaffolds for bone tissue engineering.Bioengineering (Basel)202310775910.3390/bioengineering10070759 37508786
    [Google Scholar]
  24. LeeH. JangT-S. SongJ. KimH-E. JungH-D. The production of porous hydroxyapatite scaffolds with graded porosity by sequential freeze-casting.Materials2017104367
    [Google Scholar]
  25. MiriZ. HaugenH.J. LočaD. Review on the strategies to improve the mechanical strength of highly porous bone bioceramic scaffolds.J. Euro Ceramic Soc.2024442342
    [Google Scholar]
  26. DasP. GangulyS. MarviP.K. Borophene based 3D extrusion printed nanocomposite hydrogel for antibacterial and controlled release application.Adv. Funct. Mater.20242024231452010.1002/adfm.202314520
    [Google Scholar]
  27. DasP. GangulyS. SaravananA. Naturally derived carbon dots in situ confined self-healing and breathable hydrogel monolith for anomalous diffusion-driven phytomedicine release.ACS Appl. Bio Mater.20225125617563310.1021/acsabm.2c00664 36480591
    [Google Scholar]
  28. EsmaeiliY. BidramE. BighamA. Exploring the evolution of tissue engineering strategies over the past decade: From cell-based strategies to gene-activated matrix.Alex. Eng. J.20238113716910.1016/j.aej.2023.08.080
    [Google Scholar]
  29. ArifviantoB. ZhouJ. Fabrication of Metallic biomedical scaffolds with the space holder method: A Review.Materials2014753588362210.3390/ma7053588 28788638
    [Google Scholar]
  30. MoussiH. WeissP. Le BideauJ. GautierH. CharbonnierB. Injectable macromolecule-based calcium phosphate bone substitutes.Mater Adv20223156125614110.1039/D2MA00410K
    [Google Scholar]
  31. KanwarS. Al-KetanO. VijayavenkataramanS. A novel method to design biomimetic, 3D printable stochastic scaffolds with controlled porosity for bone tissue engineering.Mater. Des.202222011085710.1016/j.matdes.2022.110857
    [Google Scholar]
  32. WyrzykowskiD. HebanowskaE. Nowak-WiczkG. MakowskiM. ChmurzyńskiL. Thermal behaviour of citric acid and isomeric aconitic acids.J. Therm. Anal. Calorim.2011104273173510.1007/s10973‑010‑1015‑2
    [Google Scholar]
  33. ApelblatA. Properties of citric acid and its solutions. Citric acid.ChamSpringer201410.1007/978‑3‑319‑11233‑6_2
    [Google Scholar]
  34. NilenR.W.N. RichterP.W. The thermal stability of hydroxyapatite in biphasic calcium phosphate ceramics.J. Mater. Sci. Mater. Med.20081941693170210.1007/s10856‑007‑3252‑x 17899322
    [Google Scholar]
  35. SadowskaJ.M. Guillem-MartiJ. GinebraM.P. The influence of physicochemical properties of biomimetic hydroxyapatite on the in vitro behavior of endothelial progenitor cells and their interaction with mesenchymal stem cells.Adv. Healthc. Mater.201982180113810.1002/adhm.201801138 30516356
    [Google Scholar]
  36. HesarakiS. EbadzadehT. Ahmadzadeh-AslS. Nanosilicon carbide/hydroxyapatite nanocomposites: structural, mechanical and in vitro cellular properties.J. Mater. Sci. Mater. Med.20102172141214910.1007/s10856‑010‑4068‑7 20376539
    [Google Scholar]
  37. HesarakiS. SafariM. ShokrgozarM.A. Composite bone substitute materials based on β-tricalcium phosphate and magnesium-containing sol–gel derived bioactive glass.J. Mater. Sci. Mater. Med.200920102011201710.1007/s10856‑009‑3783‑4 19466530
    [Google Scholar]
  38. GholipourmalekabadiM. NezafatiN. HajibakiL. Detection and qualification of optimum antibacterial and cytotoxic activities of silver‐doped bioactive glasses.IET Nanobiotechnol.20159420921410.1049/iet‑nbt.2014.0011 26224350
    [Google Scholar]
  39. BorhanS. HesarakiS. Ahmadzadeh-AslS. Evaluation of colloidal silica suspension as efficient additive for improving physicochemical and in vitro biological properties of calcium sulfate-based nanocomposite bone cement.J. Mater. Sci. Mater. Med.201021123171318110.1007/s10856‑010‑4168‑4 20972610
    [Google Scholar]
  40. LiD.S. ZhangY.P. MaX. ZhangX.P. Space-holder engineered porous NiTi shape memory alloys with improved pore characteristics and mechanical properties.J. Alloys Compd.20094741-2L1L510.1016/j.jallcom.2008.06.043
    [Google Scholar]
  41. SantosM.I. ReisR.L. Vascularization in bone tissue engineering: Physiology, current strategies, major hurdles and future challenges.Macromol. Biosci.2010101122710.1002/mabi.200900107 19688722
    [Google Scholar]
  42. ZhangY.P. LiD.S. ZhangX.P. Gradient porosity and large pore size NiTi shape memory alloys.Scr. Mater.200757111020102310.1016/j.scriptamat.2007.07.043
    [Google Scholar]
  43. Wagoner JohnsonA.J. HerschlerB.A. A review of the mechanical behavior of CaP and CaP/polymer composites for applications in bone replacement and repair.Acta Biomater.201171163010.1016/j.actbio.2010.07.012 20655397
    [Google Scholar]
  44. JamilM. ElouahliA. KhallokH. El ouatliB. HatimZ. Characterization of β-tricalcium phosphate-clay mineral composite obtained by sintering powder of apatitic calcium phosphate and montmorillonite.Surf. Interfaces20191710038010.1016/j.surfin.2019.100380
    [Google Scholar]
  45. KaygiliO. KeserS. AtesT. KırbağS. YakuphanogluF. Dielectric properties of calcium phosphate ceramics.Material Science201622659
    [Google Scholar]
  46. FengC. WuY. CaoQ. LiX. ZhuX. ZhangX. Effect of hydrothermal media on the in-situ whisker growth on biphasic calcium phosphate ceramics.Int. J. Nanomedicine20211614715910.2147/IJN.S280130 33456309
    [Google Scholar]
  47. DorozhkinS.V. Biphasic, triphasic and multiphasic calcium orthophosphates.Acta Biomater.20128396397710.1016/j.actbio.2011.09.003 21945826
    [Google Scholar]
  48. RouvillainJ.L. LavalléF. Pascal-MousselardH. CatonnéY. DaculsiG. Clinical, radiological and histological evaluation of biphasic calcium phosphate bioceramic wedges filling medial high tibial valgisation osteotomies.Knee200916539239710.1016/j.knee.2008.12.015 19185500
    [Google Scholar]
/content/journals/cms/10.2174/0126661454309226240522075544
Loading
/content/journals/cms/10.2174/0126661454309226240522075544
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test