Skip to content
2000
Volume 18, Issue 4
  • ISSN: 2666-1454
  • E-ISSN: 2666-1462

Abstract

Background

The rationality of the mixing process specified in the “Technical Guideline for Construction of Direct-to-Plant SBS Modified Bituminous Pavement” needs further verification.

Objective

To study the dynamic modification effect during the mixing process of SBS-T and the optimal mixing process.

Methods

SBS-T-modified asphalt under different mixing processes was collected in this paper, and the microscopic images were obtained by using fluorescence microscopy. Then qualitative and quantitative analysis were conducted on the dynamic modification effect. The pavement performances of SBS-T modified asphalt mixture under different mixing processes were studied using the high-temperature rutting, low-temperature bending, and immersion Marshall tests.

Results

An increase in temperature is beneficial for SBS-T to reach a rapid melting state. The fluorescence microscopic area reaches its maximum at a mixing temperature of 180°C, a mixing time of 60s~75 s without asphalt, and a mixing time of 120 seconds with asphalt.

Conclusion

The mixing process of SBS-T modified asphalt mixture is as follows: modifier content of 6%~7.5%, mixing temperature of 170°C~180°C, mixing time of 60s~75 s without asphalt, and mixing time of 120 s with asphalt.

Loading

Article metrics loading...

/content/journals/cms/10.2174/0126661454285167231229044154
2024-01-11
2025-06-19
Loading full text...

Full text loading...

References

  1. XuJ. XiaT. YinB. YangM. Effect of MDI on the structure and properties of SBS modified bitumen.Constr. Build. Mater.202025011891110.1016/j.conbuildmat.2020.118911
    [Google Scholar]
  2. CongP. GuoX. MeiL. Investigation on rejuvenation methods of aged SBS modified asphalt binder.Fuel202027911855610.1016/j.fuel.2020.118556
    [Google Scholar]
  3. TanY. ZhangJ. ZouG. QinH. Aging characterization of rheology and morphology evolution of SBS-modified asphalt.Constr. Build. Mater.202234212802710.1016/j.conbuildmat.2022.128027
    [Google Scholar]
  4. DulaimiA. QaidiS. Al-BusaltanS. Application of paper sludge ash and incinerated sewage ash in emulsified asphalt cold mixtures.Front. Mater.20239107473810.3389/fmats.2022.1074738
    [Google Scholar]
  5. Al-KhafajiR. DulaimiA. JaferH. Stabilization of soft soil by a sustainable binder comprises ground Granulated Blast Slag (GGBS) and Cement Kiln Dust (CKD).Recycling2023811010.3390/recycling8010010
    [Google Scholar]
  6. JiX. MouK. ZhangT. Durability of geopolymer stabilized domestic waste incineration slag blending macadam in pavement base.Front. Mater.202310133454710.3389/fmats.2023.1334547
    [Google Scholar]
  7. LiangM. LiangP. FanW. Thermo-rheological behavior and compatibility of modified asphalt with various styrene-butadiene structures in SBS copolymers.Mater. Des.20158817718510.1016/j.matdes.2015.09.002
    [Google Scholar]
  8. LiZ. XuX. YuJ. WuS. Assessment on physical and rheological properties of aged SBS modified bitumen containing rejuvenating systems of isocyanate and epoxy substances.Materials201912461810.3390/ma12040618 30791376
    [Google Scholar]
  9. LvS. XiaC. YangQ. Improvements on high-temperature stability, rheology, and stiffness of asphalt binder modified with waste crayfish shell powder.J. Clean. Prod.202026412174510.1016/j.jclepro.2020.121745
    [Google Scholar]
  10. KayaD. TopalA. McNallyT. Relationship between processing parameters and aging with the rheological behaviour of SBS modified bitumen.Constr. Build. Mater.201922134535010.1016/j.conbuildmat.2019.06.081
    [Google Scholar]
  11. LiangM. XinX. FanW. WangH. SunW. Phase field simulation and microscopic observation of phase separation and thermal stability of polymer modified asphalt.Constr. Build. Mater.201920413214310.1016/j.conbuildmat.2019.01.180
    [Google Scholar]
  12. CongY. HuangW. LiaoK. ZhaiY. Study on storage stability of SBS modified asphalt.Petrol. Sci. Technol.2005231394610.1081/LFT‑20009686221
    [Google Scholar]
  13. LiuW. XuY. WangH. ShuB. BarbieriD. Norambuena-ContrerasJ. Enhanced storage stability and rheological properties of asphalt modified by activated waste rubber powder.Materials20211410269310.3390/ma14102693 34065577
    [Google Scholar]
  14. WidyatmokoI. ElliottR. Characteristics of elastomeric and plastomeric binders in contact with natural asphalts.Constr. Build. Mater.200822323924910.1016/j.conbuildmat.2005.12.025
    [Google Scholar]
  15. WangQ. YuR. CaiL. Aging resistance of polyurethane/graphene oxide composite modified asphalt: Performance evaluation and molecular dynamics simulation.Mol. Simul.202349329831310.1080/08927022.2022.2159052
    [Google Scholar]
  16. LiuY. TakalaJ. Operations strategy optimization based on developed sense and respond methodology.J Innov Sustainab201231253410.24212/2179‑3565.2012v3i1p25‑34
    [Google Scholar]
  17. PolaccoG. FilippiS. Vulcanization accelerators as alternative to elemental sulfur to produce storage stable SBS modified asphalts.Constr. Build. Mater.2014589410010.1016/j.conbuildmat.2014.02.018
    [Google Scholar]
  18. ZhangF. KaloushK. UnderwoodS. HuC. Preparation and performances of SBS compound modified asphalt mixture by acidification and vulcanization.Constr. Build. Mater.202129612369310.1016/j.conbuildmat.2021.123693
    [Google Scholar]
  19. ZhangW. DingL. JiaZ. Design of SBS-modified bitumen stabilizer powder based on the vulcanization mechanism.Appl. Sci.20188345710.3390/app8030457
    [Google Scholar]
  20. YuanJ. LuH. YinW. WuY. Influences of naphthenic oil on SBS-modified asphalt binder.J. Mater. Civ. Eng.20193180401916210.1061/(ASCE)MT.1943‑5533.0002803
    [Google Scholar]
  21. YeF. YinW. LuH. DongY. Property improvement of nano-Montmorillonite/SBS modified asphalt binder by naphthenic oil.Constr. Build. Mater.202024311820010.1016/j.conbuildmat.2020.118200
    [Google Scholar]
  22. MaF. ZhuC. FuZ. Analysis of rheological behavior and anti-aging properties of SBS modified asphalt incorporating UV absorbent and naphthenic oil (NPO).Constr. Build. Mater.202337713095810.1016/j.conbuildmat.2023.130958
    [Google Scholar]
  23. ZhangW. QiuL. LiuJ. Modification mechanism of C9 petroleum resin and its influence on SBS modified asphalt.Constr. Build. Mater.202130612474010.1016/j.conbuildmat.2021.124740
    [Google Scholar]
  24. ZhangW. ZouL. WangY. Influence of High Viscosity Petroleum Resin (HV-PR) on the intermediate and high temperature performances of styrene-butadiene-styrene block copolymer (SBS) modified bitumen.Arab. J. Sci. Eng.20224710125211253310.1007/s13369‑021‑06550‑2
    [Google Scholar]
  25. Íñigo AguirreD.C. Storage stability of SBS/sulfur modified bitumens at high temperature: Influence of bitumen composition and structure.Construct Build. Mater.20145224525210.1016/j.conbuildmat.2013.10.069
    [Google Scholar]
  26. GoliA. ZiariH. AminiA. Influence of carbon nanotubes on performance properties and storage stability of SBS modified asphalt binders.J. Mater. Civ. Eng.20172980401707010.1061/(ASCE)MT.1943‑5533.0001910
    [Google Scholar]
  27. LengZ. TanZ. YuH. GuoJ. Improvement of storage stability of SBS-modified asphalt with nanoclay using a new mixing method.Road Mater. Pavement Des.20192071601161410.1080/14680629.2018.1465842
    [Google Scholar]
  28. LiuS. ZhouS. PengA. LiW. Investigation of physiochemical and rheological properties of waste cooking oil/SBS/EVA composite modified petroleum asphalt.J. Appl. Polym. Sci.2020137264882810.1002/app.48828
    [Google Scholar]
  29. JiangZ HuC EasaSM ZhengX ZhangY Evaluation of physical, rheological, and structural properties of vulcanized EVA/SBS modified bitumen.J Appl Polym Sci201713421app.4485010.1002/app.44850
    [Google Scholar]
  30. NivithaM.R. PrasadE. KrishnanJ.M. Transitions in unmodified and modified bitumen using FTIR spectroscopy.Mater. Struct.2019521710.1617/s11527‑018‑1308‑7
    [Google Scholar]
  31. PanesarS.S. JacobS. MisraM. MohantyA.K. Functionalization of lignin: Fundamental studies on aqueous graft copolymerization with vinyl acetate.Ind. Crops Prod.20134619119610.1016/j.indcrop.2012.12.031
    [Google Scholar]
  32. RooholaminiH. ImaninasabR. VameghM. Experimental analysis of the influence of SBS/nanoclay addition on asphalt fatigue and thermal performance.Int. J. Pavement Eng.201920662863710.1080/10298436.2017.1321414
    [Google Scholar]
  33. MartinhoF.C.G. FarinhaJ.P.S. An overview of the use of nanoclay modified bitumen in asphalt mixtures for enhanced flexible pavement performances.Road Mater. Pavement Des.201920367170110.1080/14680629.2017.1408482
    [Google Scholar]
  34. Martínez-AnzuresJ.D. Zapién-CastilloS. Salazar-CruzB.A. Preparation and properties of modified asphalt using branch SBS/nanoclay nanocomposite as a modifier.Road Mater. Pavement Des.20192061275129010.1080/14680629.2018.1441062
    [Google Scholar]
  35. AshishP.K. SinghD. Use of nanomaterial for asphalt binder and mixtures: A comprehensive review on development, prospect, and challenges.Road Mater. Pavement Des.202122349253810.1080/14680629.2019.1634634
    [Google Scholar]
  36. GalooyakS.S. DabirB. NazarbeygiA.E. MoeiniA. BerahmanB. The effect of nanoclay on rheological properties and storage stability of SBS-modified bitumen.Petrol. Sci. Technol.201129885085910.1080/10916460903502449
    [Google Scholar]
  37. Lastra-GonzálezP. Calzada-PérezM.A. Castro-FresnoD. Vega-ZamanilloÁ. Indacoechea-VegaI. Comparative analysis of the performance of asphalt concretes modified by dry way with polymeric waste.Constr. Build. Mater.20161121133114010.1016/j.conbuildmat.2016.02.156
    [Google Scholar]
  38. DuarteG.M. FaxinaA.L. Asphalt concrete mixtures modified with polymeric waste by the wet and dry processes: A literature review.Constr. Build. Mater.202131212540810.1016/j.conbuildmat.2021.125408
    [Google Scholar]
  39. LiY. CaoD. ZhangY. JiaX. Performance of a dry-method-epoxy modifier and a modified epoxy-asphalt mixture.Constr. Build. Mater.202126612022910.1016/j.conbuildmat.2020.120229
    [Google Scholar]
  40. Rodríguez-FernándezI. Tarpoudi BaheriF. CavalliM.C. PoulikakosL.D. BuenoM. Microstructure analysis and mechanical performance of crumb rubber modified asphalt concrete using the dry process.Constr. Build. Mater.202025911966210.1016/j.conbuildmat.2020.119662
    [Google Scholar]
  41. LuQ. NiW. LuQ. Research on green & sustainable development of asphalt pavement under “carbon neutrality and carbon peaking”.J Munici Technol202341425110.19922/j.1009‑7767.2023.05.042
    [Google Scholar]
  42. ZhangW. JiaZ. ZhangY. HuK. DingL. WangF. The effect of direct-to-plant styrene-butadiene-styrene block copolymer components on bitumen modification.Polymers201911114010.3390/polym11010140 30960124
    [Google Scholar]
  43. Guolu Gaoke Engineering Technology Institute Co., Ltd.Technical Guideline for Construction of Direct-to-Plant SBS Modified Bituminous Pavement.Ministry of Transport of the People's Public of China, Beijing2018
    [Google Scholar]
  44. HaoG. WangY. Wang Y. 3D reconstruction of polymer phase in polymer-modified asphalt using confocal fluorescence microscopy.J. Mater. Civ. Eng.20213310402040010.1061/(ASCE)MT.1943‑5533.0003485
    [Google Scholar]
  45. LaukkanenO.V. SoenenH. WinterH.H. SeppäläJ. Low-temperature rheological and morphological characterization of SBS modified bitumen.Constr. Build. Mater.201817934835910.1016/j.conbuildmat.2018.05.160
    [Google Scholar]
  46. ZhangW. WangF. ShiJ. LiZ. LiangX. Experimental study on nano-parameters of styrene-butadiene-styrene block copolymer modified bitumen based on atomic force microscopy.Polymers201911698910.3390/polym11060989 31167391
    [Google Scholar]
  47. WangP DongZ TanY LiuZ Identifying the rheological properties of polymer-modified bitumen based on its morphology.Road Mater Pavement Des201718sup324925810.1080/14680629.2017.1329879
    [Google Scholar]
  48. CucinielloG. LeandriP. LosaM. AireyG. Effects of ageing on the damage tolerance of polymer modified bitumens investigated through the LAS test and fluorescence microscopy.Int. J. Pavement Eng.20222341083109410.1080/10298436.2020.1788031
    [Google Scholar]
  49. CucinielloG. LeandriP. FilippiS. Microstructure and rheological response of laboratory-aged SBS-modified bitumens.Road Mater. Pavement Des.202122237239610.1080/14680629.2019.1621771
    [Google Scholar]
  50. GongY. XuJ. YanE. Intrinsic temperature and moisture sensitive adhesion characters of asphalt-aggregate interface based on molecular dynamics simulations.Constr. Build. Mater.202129212346210.1016/j.conbuildmat.2021.123462
    [Google Scholar]
  51. HuangM. ZhangH. GaoY. WangL. Study of diffusion characteristics of asphalt-aggregate interface with molecular dynamics simulation.Int. J. Pavement Eng.202122331933010.1080/10298436.2019.1608991
    [Google Scholar]
  52. XuG. YaoY. WuM. ZhaoY. Molecular simulation and experimental analysis on co-aging behaviors of SBS modifier and asphalt in SBS-modified asphalt.Mol. Simul.202349762964210.1080/08927022.2023.2182134
    [Google Scholar]
  53. HuD. PeiJ. LiR. ZhangJ. JiaY. FanZ. Using thermodynamic parameters to study self-healing and interface properties of crumb rubber modified asphalt based on molecular dynamics simulation.Front. Struct. Civ. Eng.202014110912210.1007/s11709‑019‑0579‑6
    [Google Scholar]
  54. LiC. FanS. XuT. Method for evaluating compatibility between SBS modifier and asphalt matrix using molecular dynamics models.J. Mater. Civ. Eng.20213380402120710.1061/(ASCE)MT.1943‑5533.0003863
    [Google Scholar]
  55. ZhouX. MoghaddamT.B. ChenM. Nano-scale analysis of moisture diffusion in asphalt-aggregate interface using molecular simulations.Constr. Build. Mater.202128512296210.1016/j.conbuildmat.2021.122962
    [Google Scholar]
  56. ZhangM. WangX. ZhangW. DingL. Study on the relationship between nano-morphology parameters and properties of bitumen during the ageing process.Materials2020136147210.3390/ma13061472 32213840
    [Google Scholar]
  57. JiX. HouY. ZouH. ChenB. JiangY. Study of surface microscopic properties of asphalt based on atomic force microscopy.Constr. Build. Mater.202024211802510.1016/j.conbuildmat.2020.118025
    [Google Scholar]
  58. ŽelimirJ. Multi-fractal morphology of un-aged and aged SBS polymer-modified bitumen.In: Plastics, Rubber and Composites.Taylor & Francis201710.1080/14658011.2017.1280966
    [Google Scholar]
  59. DongF. WangS. YuX. Investigation on the diffusion behavior of dry modified SBS at the asphalt-aggregate interface: Molecular simulation and experiments.J. Mater. Civ. Eng.20243620402356410.1061/JMCEE7.MTENG‑16856
    [Google Scholar]
  60. AireyG.D. Styrene butadiene styrene polymer modification of road bitumens.J. Mater. Sci.200439395195910.1023/B:JMSC.0000012927.00747.83
    [Google Scholar]
  61. RenS. LiuX. FanW. WangH. ErkensS. Rheological properties, compatibility, and storage stability of SBS latex-modified asphalt.Materials20191222368310.3390/ma12223683 31717293
    [Google Scholar]
  62. YuL. LyuL. LiR. DuY. PeiJ. Microscopic mechanism of direct-input waste plastic modified asphalt.J. Transp. Eng. Part B Pavements202214820402200310.1061/JPEODX.0000347
    [Google Scholar]
  63. García-MoralesM. PartalP. NavarroF.J. The rheology of recycled EVA/LDPE modified bitumen.Rheol. Acta20044348249010.1007/s00397‑004‑0385‑4
    [Google Scholar]
  64. YilmazM. ÇeloğluM.E. Effects of SBS and different natural asphalts on the properties of bituminous binders and mixtures.Constr. Build. Mater.20134453354010.1016/j.conbuildmat.2013.03.036
    [Google Scholar]
  65. ZhouL. HuangW. SunL. Analysis of quantification and mechanism of SBS modifier in SBS-modified asphalt.J. Mater. Civ. Eng.20213370402115810.1061/(ASCE)MT.1943‑5533.0003730
    [Google Scholar]
  66. ZhangJ. TanY. Rheology, morphology and phase behavior of SBS/sulfur modified asphalt based on experimental assessment and molecular dynamics.Int. J. Pavement Eng.202211310.1080/10298436.2022.2159029
    [Google Scholar]
  67. XuN. WangH. ChenY. MiljkovićM. FengP. DingH. Thermal storage stability and rheological properties of multi-component styrene-butadiene-styrene composite modified bitumen.Constr. Build. Mater.202232212649410.1016/j.conbuildmat.2022.126494
    [Google Scholar]
  68. WangR. YueM. XiongY. YueJ. Experimental study on mechanism, aging, rheology and fatigue performance of carbon nanomaterial/SBS-modified asphalt binders.Constr. Build. Mater.202126812118910.1016/j.conbuildmat.2020.121189
    [Google Scholar]
  69. StandardC. Standard test methods of bitumen and bituminous mixtures for highway engineering. JTG E20.Ministry of Transport of the People’s Republic of China: Beijing, China2011
    [Google Scholar]
  70. JTG E42-2005 Test Methods of Aggregate for Highway Engineering.Ministry of Transport of the People's Public of China,Beijing.2005
    [Google Scholar]
  71. RenJ. ZhangX. PengC. Short-term aging characteristics and mechanisms of SBS-modified bio-asphalt binder considering time-dependent effect.Constr. Build. Mater.202235212904810.1016/j.conbuildmat.2022.129048
    [Google Scholar]
/content/journals/cms/10.2174/0126661454285167231229044154
Loading
/content/journals/cms/10.2174/0126661454285167231229044154
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test